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Plant leaf movement is induced by some combination of different external and internal

stimuli. Detailed geometric characterization of such movement is expected to improve

understanding of these mechanisms. A metric high-quality, non-invasive and innovative

sensor system to analyze plant movement is Terrestrial LiDAR (TLiDAR). This technique

has an active sensor and is, therefore, independent of light conditions, able to obtain

accurate high spatial and temporal resolution point clouds. In this study, a movement

parameterization approach of leaf plants based on TLiDAR is introduced. For this

purpose, two Calathea roseopicta plants were scanned in an indoor environment during

2 full-days, 1 day in natural light conditions and the other in darkness. Themethodology to

estimate leaf movement is based on segmenting individual leaves using an octree-based

3D-grid and monitoring the changes in their orientation by Principal Component Analysis.

Additionally, canopy variations of the plant as a whole were characterized by a convex-hull

approach. As a result, 9 leaves in plant 1 and 11 leaves in plant 2 were automatically

detected with a global accuracy of 93.57 and 87.34%, respectively, compared to a

manual detection. Regarding plant 1, in natural light conditions, the displacement average

of the leaves between 7.00 a.m. and 12.30 p.m. was 3.67 cm as estimated using

so-called deviation maps. The maximum displacement was 7.92 cm. In addition, the

orientation changes of each leaf within a day were analyzed. The maximum variation in

the vertical angle was 69.6◦ from 12.30 to 6.00 p.m. In darkness, the displacements were

smaller and showed a different orientation pattern. The canopy volume of plant 1 changed

more in the morning (4.42 dm3) than in the afternoon (2.57 dm3). The results of plant 2

largely confirmed the results of the first plant and were added to check the robustness

of the methodology. The results show how to quantify leaf orientation variation and leaf

movements along a day at mm accuracy in different light conditions. This confirms the

feasibility of the proposed methodology to robustly analyse leaf movements.

Keywords: leaf movements, plants, terrestrial LiDAR, indoor, temporal series

INTRODUCTION

Plant canopy structure properties and their spatial changes, are linked to different vegetation
processes, such as radiation absorption, plant water balance, precipitation interception and
photosynthetic activity (Harley and Baldocchi, 1995). Canopy structural and biochemical variables
are frequently used as constraints to model interactions between the land surface and the
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atmosphere (Sellers et al., 1997). Moreover, many studies
that investigated the implications of interception and light
transmission for species competition, biodiversity, ecosystem and
agro-ecosystem dynamics, as well as wood production, depend
on the spatial distribution of leaves and branches (Pretzsch,
2009).

In ecology and plant physiology, circadian rhythms are
activities that occur on a near-24-h cycle due to ecologically
useful adaptions, regarding plant’s physiology and its
environment (Sadava et al., 2009). In this context, the growth
patterns of roots and leaves are determined by the circadian clock
and leaf starch metabolism (Ruts et al., 2012). Therefore, diel
leaf movements are a well-typified symbol of the circadian clock
(Farré, 2012). These movements have been studied intensively for
a long time (Barak et al., 2000). Two reason are notably identified
by scientific researches as operators of these fluctuations, plant
water balance (Chapin et al., 2011), and photoperiodism (Sysoeva
et al., 2010), related to the fluency rate of photosynthetically
active radiation in the plant. To optimize the interception of
incoming light and to avoid temperature related stress, the leaf
angle is adjusting (Medina et al., 1978; Ehleringer, 1998). Plant
imaging aims to analyse and quantify the development, growth,
physiological and other phenotypic plant properties by different
accurate and automated processes. A complete review focuses
on the latest advances in high-throughput image-based plant
phenotyping (Fahlgren et al., 2015). Although many successes
are reported, image based techniques may require the use of a
flash during low-light conditions, while some effort is needed in
setup and/or processing to manually or automatically obtain 3D
results.

TLiDAR has newly arisen as a promising tool to fast measure
3D vegetation structure at plot level with high spatial resolution
and millimeter accuracy (Dassot et al., 2010). Light Detection
And Ranging (LiDAR) is an active remote sensing technique
that accurately measures distances by transmitting laser energy
and detecting the time of arrival of the return energy. As an
active technique, it is almost insensitive to varying external
lighting conditions and is able to capture data even in absence
of light. TLiDAR data are extensively used in engineering
applications to monitor morphological terrain changes (Herrero-
Huerta et al., 2016). The interest on TLiDAR for vegetal
plot measurements started in the past decade in forestry (van
Leeuwen and Disney, 2018) and (Thies and Spiecker, 2004).
Recently, a fully-automatic approach for tree structural modeling
at plot level has been proposed in Raumonen et al. (2013).
Circadian rhythms in tree geometry can be accurately monitored
at millimeter scale and sub-hour temporal resolution by TLiDAR
in outdoor conditions (Puttonen et al., 2016). Dornbusch
et al. analyse circadian movements and rhythmic leaf growth
of Arabidopsis rosettes using a near-infrared laser scanner
(Dornbusch et al., 2014). Low cost 3D imaging tools were used
for this purpose in Paulus et al. (2014) and evaluated with respect
to the metric quality of estimated geometric plant features.
To summarize, TLiDAR has potential to monitor vegetation
geometry at different scale levels. In addition, scanning can be
done outdoors, is insensitive to vary lighting conditions and is
able to operate at up to temporal resolutions of minutes. The

scanning mechanism is based upon a fast rotating multi-facet
polygonal mirror, so little effect is transmitted to plants. As a
disadvantage, point clouds cannot provide direct biochemical
parameters from plants, as hyperspectral and thermal chlorophyll
fluorescence imaging do (Fiorani and Schurr, 2013). On the
other hand, image based-3D modeling needs a significant
amount of post-processing, while TLiDAR requires a higher
cost.

Goal of this research is to show how plantmoves can efficiently
be captured and parameterized using TLIDAR. In general, data
capturing using TLIDAR is considered relatively easy. However,
there is still a lack of methodology and corresponding software
tool to automatically extract geometric parameters from point
cloud data sampling moving plants. Thus, the goal of this study
is to propose a phenotyping pipeline to automatically determine
movement from leaves in indoor plants through TLiDAR.

The paper is organized as follows: after this brief introduction,
the proposed methodology is described in section Methodology.
Next, the results and the discussion are presented in section
Experimental Results and Discussion, respectively. Finally,
conclusions are drawn.

METHODOLOGY

Experimental Setup
An experiment was carried out with the understory species
Calathea roseopicta (Linden) Regel, a native species from
Tropical America, with basal leaves growing in a rosette shape.
Because of the photo- and thermotropism of most tropical plants,
Calathea unfurl its leaves and moves the whole system including
the stem toward the light to optimize the surface for sunlight
absorption. During the dark period (night) the leaves coil up
and minimize the surface to prevent the plant from cooling-
off. Therefore, this species is suitable to monitor the complex,
spatial movement of the leaf-stem system. It needs a minimum
temperature of 16◦C so in temperate systems, it is commonly kept
in indoor conditions. Its non-lignified tissues allow the presence
of soft tissues susceptible to soil water and light conditions
(Chao-ying, 2009). Two plants were tested, planted in an 850 cm3

PVC container filled with a substrate composed of sand and a
high content of organic material. Studied plant #1 had a mean
height of ∼45 cm and a canopy diameter of ∼31 cm during
the measurements, while plant #2 has ∼44 cm and ∼29 cm,
respectively, as Figure 1 illustrates.

The experiment was performed in December 2016. Air
temperature (◦C) and relative humidity (%) were continuously
monitored during the sampling period with a HOBO U30-
NRC weather station, with sampling intervals of 5min. Light
conditions were measured during the experiment by the
“LuxMeterPro Advanced App” from AM PowerSoftware, with
12 lux-accuracy for a distance <5m. A Leica Scan-Station C10
scanner, a high speed TLiDAR implementing the so-called time-
of-flight principle, is used to collect data (Vosselman and Maas,
2010)1. Obstructions in the visibility w.r.t. the position of the

1Available online at: https://hds.leica-geosystems.com (Accessed January 11,

2018).
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laser scanner is hindering complete sampling of the plant surface.
Indeed, leaves in the front, as seen from the scanner position,
may occlude leaves in the back. Thereby, the relative horizontal
position of the TLIDAR w.r.t. the scanned plant should be
carefully chosen to have best coverage of leaves within a single
scan. Usingmultiple scans couldmitigate this occlusion effect but
would (i) include larger time differences within one acquisition
and (ii), would require an additional matching or registration
step to align the scans as obtained from different positions into
a common coordinate system.

Both plants were located in a room, 1.6–1.8m from the
single window oriented in SW direction. Scans were performed
at 2 different days. The first sampling day (test A) was done
under natural light conditions. Previously to these TLiDAR
measurements, the plants were kept in full light conditions.
After a 2 day-period in which the plants were kept in complete
darkness, the second sampling (test B) was carried out in the
dark. An overview of the acquired data is shown in Table 1.

Method of Leaf Movement Estimation
Outlier Removal
The point cloud sample of the plants may contain outliers and
noisy points caused by various reasons such as backscatter from
interference effects (Thies and Spiecker, 2004). Such points are
not regarded as samples of the actual plant and the first step is
to filter them from the point cloud. To remove separate isolated
points or few-point clusters, a statistical analysis of the distances
is performed as follow. First, all points are visited. For each
query point, all neighboring points within a pre-set distance are
determined and all distances from the query point to these points
are determined. After visiting all points, the mean and standard

deviation of these distances (d and σd, respectively) is stored.

FIGURE 1 | Picture of Calathea roseopicta plant 2.

Next, a threshold (Ld) is defined as:

Ld = d + p · σd (1)

where p is the confidence level, expressed as the critical value
associated in the standard normal density curve (Palnick, 2014).

Again, all points are visited. For a given point, when its average
distance to its k neighbors is above Ld, it is marked as an outlier
and removed (Rusu et al., 2008). This method is reasonably fast
once the points are organized in a data structure like an octree.

Point Cloud Registration and Deviation Map

Calculation
Scans are taken withoutmoving the TLiDAR during the sampling
periods. Still, it is not guaranteed that the scans obtained at
different moments are fully aligned. Therefore, the registration
or alignment of the 3D point clouds is checked using 7
external spherical targets of 10 cm-diameter from Leica©. This
registration step estimates a rigid body transformation (only
translations and rotations can be applied to the point clouds).
The Iterative Closest Point algorithm by Besl and McKay (1992)
is used, reaching a negligible mean absolute error among targets
from multi-temporal datasets.

After that, all the point clouds are cropped using a common
bounding box. At this point, the recognition of correspondences
among point clouds is essential to compute plant movements
of the plant as displacements between multi-temporal datasets.
Therefore, first cloud-to-cloud differences between sequential
TLiDAR datasets are computed using a chamfer distance
approach that exploits an octree organization (Akmal Butt and
Maragos, 1998). Second, the distance statistics resulting from
this first step are used to refine the displacements. A more
precise cloud-to-cloud distance between two multi-temporal
point clouds is extracted by applying a local approximation
model to the reference cloud by a quadric surface. As a result,
a deviation map of displacements between point clouds is
obtained which precisely outlines the coordinates and enables the
quantification of plant movements.

Segmentation in Individual Leaves
The changes in the orientation of the leaves along time are
estimated from the point cloud data. For that purpose, individual
plant leaves are extracted from the point clouds using a
segmentation method based on an organization of the point
cloud in an octree structure, as proposed in Woo et al. (2002).

TABLE 1 | Overview of the acquired data.

Test Condition Plant #points in Point Cloud

7:00 a.m 12:30 a.m 6:00 p.m

A Natural light 1 98,868 94,043 93,235

2 84,966 82,727 88,597

B Darkness 1 94,355 96,456 95,765

2 81,916 82,254 77,008
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FIGURE 2 | Calculation of the orientation variation of each leaf along the time.

Initially, the point normals are estimated by Delaunay
triangulation (Golias and Dutton, 1997). Next, the 3D points
are organized in an octree structure, where the local point
normals are used as a criterion for splitting an octree cell:
if points at a certain octree depth all have similar normals,
subdivision terminates; otherwise, the octree cell is divided.
This process is repeated until normals stabilize at a certain
depth or the maximal octree depth is reached. After splitting
is finished, adjacent cells having similar orientation are merged
in a bottom-up procedure. First, cells with a large variation in
normals are simply removed. Such behavior might, for example,
occur at the edges of leaves. Next, an optimally flat cell is
selected as a seed cell and adjacent cell are added as long as a
homogeneity criterion is met. When such segment is finished,
a new seed is selected and the procedure is repeated using the
remaining cells. The standard deviation of the normal vectors
in a cell is taken as homogeneity criterion. After termination
of this procedure, the point cloud is automatically separated
into certain regions by considering the obtained segments. Using
a suitable criterion value, it is possible to tune the method
such that the resulting segments correspond to individual
leaves.

The last step is to match individual leaves, which is difficult as
the individual leaves are moving and changing the shape between
the different data acquisitions. Automatic co-registration of each
leaf point cloud segment is done by least squares matching of
overlapping surfaces (Least Squares 3D Surface Matching). The
transformation parameters of the 3D compared surface (leaf
segment after movement) to a 3D reference surface (leaf segment
before movement) is approximated by a so-called Generalized
Gauss–Markov model, based on minimizing the squared sum
of Euclidean distances between surfaces (Gruen and Akca,
2008).

Leaf Normal Calculation
Once the leaves are segmented, leaf-wise orientation is
approximated by the leaf normal. For this purpose, Principal
Component Analysis (PCA) is used (Weinmann et al., 2014).
This statistical analysis uses the first and second moments of the
points and results in three orthogonal vectors centered on the
center of gravity of the point cloud. The PCA synthesizes the
distribution of points along the three dimensions and therefore
models the principal directions and magnitudes of variation of
the point distribution around the center of gravity.

The coordinates xi, yi, and zi for each point i=1,. . . k from the
point cloud of each leaf, is considered. The covariancematrix (Σ)
(2) of each leaf point cloud (X) is defined by:

∑

=
(X − X)

T
(X − X)

k
=





σ
2
x σxy σxz

σxy σ
2
y σyz

σxz σyz σ
2
z



 (2)

where (σ 2
x , σ

2
y , σ

2
z ) are the variances of the coordinate directions

and the elements outside the main diagonal of Σ are the
covariances. X contains k copies of the mean of the three
coordinates of the leaf point cloud (X). The principal leaf normal
is the third eigenvector of Σ (Jolliffe, 2002).

Computation of Orientation Variation
The orientation variation of each leaf is characterized in a
spherical coordinate system by determining the change in
both spherical azimuth (θ) (aspect) and elevation angle (8)
(hyponasty). For this reason, firstly, a subtraction of the normals
from each leaf at different times is done, always in temporal order
with respect to the first epoch. These angles obtained from the
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difference-in-normal vector (x, y, z) are calculated as follows:

θ = arctan
y

x
(3)

∅ = arctan
z

√

x2 + y2
(4)

Figure 2 explains how the computation of the orientation
variation is carried out.

Volume Variations by Canopy Mesh
The foliage shape of the full plant may help to understand the
radiation regime and canopy structure. However, the single scan
acquisitions only give a partial point cloud due to the one-sided
field of view of the TLiDAR. This paragraph explains how to
quantify the canopy volume variation from the point cloud of the
plant.

The approach is supported by a 3D modeling of the plant
using a 3D Delaunay triangulation (Golias and Dutton, 1997), as
used before for the leaf segmentation (section Segmentation in
Individual Leaves). The result is a 3D mesh. An additional filter
phase is required to obtain a plant canopy model close to reality.
The approximation shown in Attene (2008) is used in this step
which incorporates several smoothing operators to repair issues
in the mesh like holes and different types of noise (Fan et al.,
2008).

Once the canopy mesh is fixed, its shape is approximated
by a 3D convex hull (Barber et al., 1996). The convex-hull is
chosen due to its capacity of enveloping the effective area which
potentially can be related to the radiance absorption. As an
alternative in future, an alpha-shape approximation of the hull
could be used, which is able to more flexible estimate the shape of
the plant canopy, by varying the alpha coefficient.

As single scans only provide partial point clouds, the recovery
of the less well-visible backside is achieved through symmetry.
Therefore, the symmetry axis is estimated by a 180◦ field of view
from the dataset. Finally, the canopy shape is obtained which
allows the direct volume estimation and changes along time.

EXPERIMENTAL RESULTS AND
DISCUSSION

Sunrise and sunset times were similar during the experiment.
Therefore, the sampling periods are comparable. The plant
substrate wasmaintained well-watered to reduce the effect of root
water shortage. The room temperature remained constant during
the sampling period; however the relative humidity changed
between test A and B (Table 2). This variation in humidity could
have led to stress or more water movement within the plants in
test B.

The scan pre-processing settings to remove noise (section
Outlier Removal) from the data were fixed to a neighborhood size
of a 1.6 cm sphere diameter. The leaf movements of C. roseopicta
plant 1 are illustrated in Figure 3, by superimposing the scan
obtained at 7.00 a.m. to the one obtained at 12.30 p.m. during
test A (Figure 3A) and by calculating the deviation map from the
compared point cloud (at 12.30 p.m.) to the reference point cloud

TABLE 2 | Room conditions during test A and B [sunrise and sunset times

provided in GMT(+1)].

Test Date Timing Variables

Sunrise Sunset Temp. Rel. humidity

A 02/12/2016 8:30 a.m 16:34 p.m 21.2◦ 47.4 %

B 05/12/2016 8:34 a.m 16:32 p.m 21.2◦ 32.2 %

FIGURE 3 | Scans at 7.00 a.m. and at 12.30 p.m. of plant 1 during test A:

superimposed (7.00 a.m. in black color and 12.30 p.m. in green color) (A) and

deviation map (B).

(at 7.00 a.m.) (Figure 3B), as section Point Cloud Registration
and Deviation Map Calculation explains. This time interval was
chosen as during this time the biggest movement in terms of leaf
displacement occurred. Further estimations can be obtained from
this product. For instance, themaximumdisplacement of 7.92 cm
between the two scans occurs at leaf #7. The average distance
movement of this leaf is 3.67 cm.

In order to apply the segmentation method to extract
individual leaves, some parameters have to be fixed; notably,
the minimum voxel size and the number of iterations. These
parameters were set as 1.8 cm and 5 iterations, respectively.
Furthermore, the standard deviation of point normals within
a cell as a tolerance for subsequent subdivisions, was set at
6 cm. To perform the Least Square Matching for individually
matching the leaves among multi-temporal datasets, the iteration
criteria threshold was set as 3.8 cm. As a result, 9 leaves of
plant 1 and 11 leaves of plant 2 were recognized from all the
scans. Figure 4 shows the individual leaves extracted from both
plants at 7.00 a.m. (test A) in different colors, where normals
in red are obtained by PCA. Outliers are colored in dark
blue.

The global accuracy reached was analyzed by comparison
to a manual segmentation of the leaves. To do so, each leaf is
considered a target class and for each point. It can be determined
if it is classified in the correct class. Results are collected in a
confusion matrix (not shown), (Sasidharan et al., 2010). The
resulting global accuracy was found to be 93.57% for plant 1
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and 87.34% for plant 2. The plant species morphology gives
the opportunity to use the proposed automatic segmentation
technique due to the fact that the leaves and stems have
dissimilar orientations. Once the individual leaves are obtained,
the variability of each leaf orientation along the sampling tests
is estimated. Figure 5 shows the variation in orientation from
the leaves of plant 1 during test A (Figure 5A) and during
test B (Figure 5B). These variations were first derived between
7.00 a.m. and 12.30 p.m. (beginning of the arrow) and next
between 12.30 and 6.00 p.m. (end of the arrow). These intervals
were chosen because during these intervals, movement was
bigger. The azimuth changes are represented on the x-axis while
the vertical angle change is on the y-axis (both in sexagesimal

degrees), taking into account the normal direction of each leaf
as obtained by PCA. The color of each trajectory corresponds
to the leave color in Figure 1. Different light conditions clearly
correspond to different movement directions. The orientation
change in darkness (Figure 5B) is smaller than during natural
light conditions (Figure 5A).

The results of the orientation variations from plant 2
are displayed in Table 3. A similar magnitude order in the
orientation variation is reached regarding plant 1 during both
tests.

From the scan analysis results, we conclude that C. roseopicta
displayed significant movement in the leaves during light and
dark periods, with different patterns for both tests and plants.

FIGURE 4 | Individual leaves of plant 1 (A) and plant 2 (B) extracted using an octree-based segmentation (leaves in different colors) and consecutive orientation

estimation by PCA (normal vector in red of each leaf).

FIGURE 5 | Movement pattern from individual leaves of plant 1, based on the angle orientation change within sampling periods: during test A (A) and during test B

(B) [azimuth changes on x axis and vertical angle changes on y axis from 7.00 a.m. to 12.30 p.m. (beginning of the arrow) and from 12.30 p.m. to 6.00 p.m. (end of

the arrow)].
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This species shows conspicuous movement between the tested
light conditions, however this leaf movement can be influenced
by growing patterns of young leaves (Puttonen et al., 2016).

Leaf #1 from plant 1, for example, moves in the same direction
during both light conditions, but its movement is larger in natural
light conditions. In both situations, the starting point is similar:
it means that the angle variation between 7.00 a.m. and 12.30
p.m. is comparable. Conversely, the end point is really different
(from 12.30 to 6.00 p.m.). A possible explanation is that the
movement of this leaf during the afternoon is related to the
photosynthesis process, so the leaf movement has less influence
for the sun-light in the morning. It can probably be related

TABLE 3 | Results of orientation variation from plant 2 during test A and B.

Test #Leaf Azimuth changes Vertical angle changes

7.00–12.30 12.30–18.00 7.00–12.30 12.30–18.00

A #1 −58◦ −54◦ −56◦ −64◦

#2 47◦ −22◦ 51◦ 27◦

#3 20◦ 69◦ −3◦ −53◦

#4 −7◦ 15◦ −20◦ −24◦

#5 −42◦ 18◦ 45◦ −14◦

#6 −83◦ 24◦ −88◦ −21◦

#7 −11◦ −72◦ −32◦ −10◦

#8 −55◦ 81◦ −70◦ −64◦

#9 31◦ 31◦ 34◦ −55◦

#10 13◦ −13◦ −45◦ −39◦

#11 −7◦ −2◦ 60◦ −47◦

B #1 −63◦ 75◦ 75◦ −71◦

#2 19◦ −18◦ 35◦ 49◦

#3 −70◦ 7◦ 85◦ −45◦

#4 52◦ 37◦ 34◦ −52◦

#5 −5◦ −18◦ 5◦ −28◦

#6 9◦ 47◦ 9◦ 58◦

#7 −70◦ −79◦ −50◦ 83◦

#8 6◦ 81◦ 46◦ 61◦

#9 18◦ −23◦ −39◦ 12◦

#10 79◦ 28◦ −88◦ 1◦

#11 0◦ 18◦ 63◦ 36◦

to the different transpiration rates produced by leaf #1 within
a day.

Canopy variations along time can actually be quantified.
As section Volume Variations by Canopy Mesh describes, the
convex-hull of the entire plant is generated from the point cloud.
This process is illustrated in Figure 6, where the shape variation
of the plant 2 during test A at 12.30 p.m. (Figure 6A) and 6.00
p.m. (Figure 6B) can be clearly defined as ‘closing the leaves’
(Figure 6C). The convex-hull volume was analyzed to extract the
variations at different times. Table 4 characterizes these values
during the morning and afternoon in test A and B from the
two studied plants, proving that in natural light conditions the
variation is always bigger.

Thus, our data shows that light conditions influence diel
leaf movement, characterized by movement patterns and leaf
movement rate. As a general idea, we saw that leaves were
opening during the day and closing at night (changing the
elevation angle along sampling periods), generating an up and
down movement as previous studies already indicated (Manel
et al., 2001).

Notice that leaves can generate shadows within plants,
occluding certain parts, therefore the obtained 3D point cloud
of the plant surface, usually is incomplete. To overcome this
challenge, the individual leaf architecture could be reconstructed
via a model, already proposed for cereal leaves (Dornbusch et al.,
2012).

The biological significance of diel leaf movements is related to
favorable conditions of energetic requirements, water availability
and auxin responsiveness (Stitt and Zeeman, 2012). This
proposition agrees with the maximal peak of movement and

TABLE 4 | Canopy volume analysis by convex-hull.

Test #Plant Canopy volume (dm3) Volume variation (dm3)

7:00 12:30 18:00 7:00–12:30 12:30–18:00

A 1 33.12 28.70 31.27 −4.42 2.57

B 1 30.6 30.49 28.96 −0.16 −1.53

A 2 37.24 41.98 25.00 4.74 −16.98

B 2 45.52 43.36 44.80 −2.16 1.44

FIGURE 6 | Canopy point cloud at 12.30 p.m. (A) and at 6.00 p.m. (B) during test A from plant 1, together with its convex hull plotted by lines in random colors

depending on the face they belong to. Both convex hulls superimposed, one in lines and the other in solid (C).

Frontiers in Plant Science | www.frontiersin.org 7 February 2018 | Volume 9 | Article 189

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Herrero-Huerta et al. Leaf Movements by Terrestrial LiDAR

orientation variation during the early morning. Moreover, the
leaf vertical angle tracks the usual daily temperature oscillations
with a top in the late-afternoon. Bridge et al. (Bridge et al., 2013)
determined that moving up the leaves is favorable to cool them
during the warm daily hours and reduces the radiation contents
when it exceeds the photosynthetic capacity.

CONCLUSIONS

This paper shows how TLiDAR can be used to efficiently
and non-invasively parameterize plant movement. It presents a
phenotyping method to monitor leaf movements from plants by
TLiDAR, even in absence of light. We show that this approach is
robust and computationally easy to determine, providing a tool to
accurately measure complex leaf-stem system movements from
plants with high temporal and spatial resolution.

Calathea roseopicta species was studied, showing different leaf
movements in presence of natural daylight conditions and in
darkness. Moreover, canopy variations in volume were analyzed
by a convex hull approach. In darkness, the displacements
are smaller and with a dissimilar orientation pattern than in
natural light conditions. The natural movements are expressed
by opening of the leaves during the day and closing them at night,
pointing to the source of natural light (the window, in our study
case). In absence of light, the plant still showed displacements,
but with different pattern and magnitude.

The low relative humidity conditions during both sampling
periods may have resulted in an increment in transpiration rates,
leading to possible leaf movement during the photosynthesis. As

further consideration, water availability should be controlled and
sunlight received by the plant should be equal in all directions to
rigorously compare multi-temporal datasets.

Using TLiDAR technology to derive vegetation movements
open up fresh challenges which merit more methodological
advance. The proposed methodology could help to support
biological investigations of exchange of water, sunlight
absorption and other bio-geochemical between plants and
the atmosphere. Furthermore, these achievements would break
through the barrier of knowledge in objectively determining
the behavior of plants and even its structure and function in
ecosystem, nowadays remaining poorly understood (Whippo
and Hangarter, 2009). Furthermore, the behavior of interior
plants is linked to indoor air quality and this connection will be
explored as further studies.
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