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Soft white wheat is used in domestic and foreign markets for various end products

requiring specific quality profiles. Phenotyping for end-use quality traits can be costly,

time-consuming and destructive in nature, so it is advantageous to use molecular

markers to select experimental lines with superior traits. An association mapping panel

of 469 soft white winter wheat cultivars and advanced generation breeding lines was

developed from regional breeding programs in the U.S. Pacific Northwest. This panel

was genotyped on a wheat-specific 90K iSelect single nucleotide polymorphism (SNP)

chip. A total of 15,229 high quality SNPs were selected and combined with best linear

unbiased predictions (BLUPs) from historical phenotypic data of the genotypes in the

panel. Genome-wide association mapping was conducted using the Fixed and random

model Circulating Probability Unification (FarmCPU). A total of 105 significant marker-trait

associations were detected across 19 chromosomes. Potentially new loci for total flour

yield, lactic acid solvent retention capacity, flour sodium dodecyl sulfate sedimentation

and flour swelling volume were also detected. Better understanding of the genetic

factors impacting end-use quality enable breeders to more effectively discard poor quality

germplasm and increase frequencies of favorable end-use quality alleles in their breeding

populations.

Keywords: association mapping, soft white wheat, end-use quality, Pacific Northwest, linkage disequilibrium,

plant breeding

INTRODUCTION

Kernel texture (hardness), water absorption, protein (gluten) strength, and milling quality
differentiate the end-use quality of wheat (Triticum aestivum L.). Generally, hard wheat flours
have higher gluten strength, damaged starch, and non-starch polysaccharides that lead to increased
water absorption capacity, whereas soft wheat flours have lower gluten strength, damaged starch,
and non-starch polysaccharides that lead to decreased water absorption capacity (Hoseney, 1994;
Souza et al., 2002). Since phenotypic laboratory milling and baking quality assays are destructive,
laborious, and expensive, breeders routinely do not use these methods for selection in early
generations. Higher throughput and more cost-effective methods of screening early generation
material are needed, such as smaller-scale phenotyping tests or use of molecular markers.
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End-use quality traits in soft wheat are predominately
controlled by genetic factors, so potential gains from selection
in earlier generations is possible (Smith et al., 2011; Carter
et al., 2012; Souza et al., 2012). Even though several major
loci affecting wheat end-use quality have been characterized,
numerous smaller effect quantitative trait loci (QTL) influence
these traits and remain uncharacterized. Kernel texture, along
with protein strength, are key criteria for wheat market classes
and end-use. Hardness is primarily controlled by allelic variation
in the Pina and Pinb genes in the Ha locus on 5DS (Bhave and
Morris, 2008a,b). However, soft wheats are fixed for the wild type
alleles at both Pina and Pinb, so smaller effect genetic factors
from other genomic regions impact variation in hardness in this
market class (Morris, 2002; Kiszonas et al., 2013a). Flour protein
content, damaged starch, and non-starch polysaccharides affect
water absorption and dough rheology.

Gluten is comprised of both glutenins and gliadins which
function as endosperm storage proteins. Glutenins are controlled
by the high molecular weight (HMW) and the low molecular
weight (LMW) loci on the long and short arms of chromosome
1A, 1B and 1D (Payne et al., 1987; Ibba et al., 2017). The
HMW glutenins (encoded by Glu-1), and their corresponding
x- and y-type subunits account for 47-60% of the variation in
bread making quality of wheat (Payne et al., 1987; Lukow et al.,
1989). The genes for gliadins are found on homoeologous groups
1 and 6 chromosomes (Payne et al., 1984; Payne, 1987). The
genes that encode the granule-bound starch synthase1 (GBSS1)
enzyme (Wx-4A,Wx-7A, andWx-7D) on chromosomes 4A, 7A,
and 7D control starch amylose composition in wheat, a key
factor in white salted noodle texture (Nakamura et al., 1993;
Epstein et al., 2002). Non-starch polysaccharides exert a large
influence upon water absorption and dough rheology despite
being minor flour constituents (Kiszonas et al., 2013b). Non-
starch polysaccharides, mostly arabinoxylans, can oxidatively
cross-link to increase dough water holding capacity (Izydorczyk
and Biliaderis, 1992). While these major genes exert influence
upon wheat end-use quality, they tend to be fixed in breeding
population, especially by market class. Identification of the
molecular markers associated with genetic factors contributing
to soft wheat end-use quality will enable breeders to select for
end-use quality in early generation advancement when grain is
limited, but the number of lines is great. To date, the number
of diagnostic molecular markers for quality traits is limited to
the major genes for HMW, LMW, GBSS1 and puroindolines
(Gale, 2005). DNA markers for the HMW Glu-D1 locus that can
discriminate between Dx2 + Dy12 and Dx5 + Dy10 genotypes
are routinely in marker-assisted selection; the former being
preferred for soft wheats and the latter for hard wheats due to
its effect on gluten strength resulting in stronger dough and good
bread making quality (Payne et al., 1981; Liu et al., 2008). Use of
high-throughput marker assisted selection or genomic selection
methods will facilitate evaluation of the high progeny numbers
required to simultaneously improve end-use quality along with
plant resistance to abiotic and biotic stresses, grain yield, and
agronomic productivity.

Association mapping in germplasm collections is particularly
useful for identifying common small effect QTL due to increased

recombination events in the lineages of the accessions (Bernardo,
2008). The inbred lines commonly used for association mapping
represent a wider genetic base of breeding materials than those
used in genetic mapping of bi-parental populations; therefore,
it should be possible to discern numerous genes of relative
importance to the traits in question (Bernardo, 2008). When
advanced generation breeding lines are used for association
mapping, the favorable alleles associated with traits of interest
may quickly become subjects of selection. Although there
has been previous genome wide association mapping studies
(GWAS) in soft wheat (Breseghello and Sorrells, 2006), there
has not been a comprehensive report of kernel, milling and
baking quality traits for soft white wheat. Since many of these
traits are correlated (Souza et al., 2012), examining them in one
population can provide evidence of pleiotropic loci. In addition,
we examined one of only a few association mapping panels
comprised of elite and adapted soft wheats.

It was hypothesized that significant marker-trait associations
(MTAs) can be detected in a panel of soft white winter wheat
adapted to the Pacific Northwest and that SNPs with pleiotropic
effects on numerous end-use quality traits will also be identified.
The objective of this study was to assess a regionally adapted
germplasm panel for significant MTAs to several end-use quality
traits. These results should further elucidate the genetic factors
controlling soft wheat end-use quality.

MATERIALS AND METHODS

Germplasm
This association mapping panel was developed using 480
advanced soft white winter wheat breeding lines and released
cultivars from Pacific Northwest breeding programs (Oregon
State University, University of Idaho, Washington State
University, USDA-ARS, and private breeding companies)
selected from 1992 to 2014. Experimental lines were included, if
they had at least six environmental observations in the Wheat
Analysis System database from the USDA-ARS Western Wheat
Quality Laboratory in Pullman, WA. The population contained
lines with either a club or a lax head type. Club, Soft White (lax
head), and Western White (a mixture of the two) are the three
market sub-classes traded in commerce. Out of the 480 original
lines in the panel, only 469 lines were eventually used in the
association analysis. Three were phenotypically identified as hard
white winter lines and an additional eight lines were excluded
from the analysis due to poor DNA quality or missing marker
covariate information. The degree of relatedness between these
469 lines is presented in Supplementary File 1.

Phenotyping
Historic phenotypic data on all end-use quality traits were
obtained from theWheat Analysis System database in the USDA-
ARS Western Wheat Quality Laboratory in Pullman, WA, USA.
Environments were considered to include both crop year and
field locations, for a total of 462 individual environments. These
field locations included sites in Montana, Idaho, Oregon, and
Washington from 1992 to 2014. Each genotype was represented
by a single sample per environment. The dataset was unbalanced;
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not all experimental lines were grown in all environments,
except for one location in 2014, where the entire association
mapping panel was grown in one complete field replication in
Pullman, WA.

Testing procedures from the American Association of Cereal
Chemists International (AACC International, 2008) were used
to measure the grain, milling, flour and baking quality traits
(Table 1). Test weight was measured as grain weight per
volume using Approved Method 55-10.01. The Single Kernel
Characterization System (SKCS) 4100 (Perten Instruments,
Springfield, IL, USA) was used to assess kernel size, weight, and
hardness (Approved Method 55-31.01). Grain protein content
was measured using near infrared reflectance (ApprovedMethod
39-10.01). Flour protein content and flour ash content were
measured using Approved Methods 39-11.01 and 08-01.01,
respectively. All samples were milled on a Quadrumat Senior
experimental mill (Brabender, South Hackensack, NJ, USA) as
modified by Jeffers and Rubenthaler (1977). The milling traits
measured included break flour yield, total flour yield and milling
score. The milling score encompassed both total flour yield
(FYELD) and flour ash (FASH) content in a single value (Carter
et al., 2012). It was calculated as follows:

MSCOR = (100− (0.5 (16− 13.0+ (80− FYELD)

+50 (FASH − 0.30))) × 1.274) − 21.602

The sodium dodecyl sulfate (SDS) sedimentation test assessed
gluten strength of flour samples (Approved Method 56-
60.01), and the flour swelling volume test assessed the starch
composition of flour samples (Approved Method 56-21.01). The
four solvent retention capacity (SRC) tests assess different aspects
of end-use quality using the following solvents: water, lactic
acid, sucrose, and sodium carbonate. These different solvents
provide insight into certain end-use quality traits: the water
SRC measures overall flour absorption, the lactic acid SRC
measures glutenin quality, the sucrose SRC measures non-starch
polysaccharides and gliadins, and the sodium carbonate SRC
measures damaged starch content (Gaines, 2000; Kweon et al.,
2011).

Smaller-scale laboratory tests for dough rheology and overall
end-use quality are especially useful to differentiate between the
quality traits of later generation breeding lines. In soft wheat,
sugar snap cookie diameter (Approved Methods 10-50.05) and
Japanese sponge cake volume (Choi et al., 2012) are essential
indicators of soft wheat end-use quality performance. Soft wheat
flours with better overall quality will result in cookies with
greater spread (diameter) and sponge cakes with greater volume
(Slade and Levine, 1994; Choi et al., 2012; Kiszonas et al.,
2015). The mixograph (Approved Method 54-40.02) measures
the resistance of dough to overmixing, optimal gluten matrix
development time, and other dough rheological properties.
Mixographmeasurements are useful because they provide insight
into how an experimental line will perform in a commercial
processing.

The different traits are grouped into four categories namely:
grain characteristics, milling traits, flour and baking parameters
(Table 1).

Genotyping
The DNA for the association mapping panel was extracted as
described by Naruoka et al. (2015). The association mapping
panel was genotyped at the USDA-ARS Biosciences Research
Laboratory in Fargo, ND, USA using an Illumina Infinium
iSelect 90K SNP chip, as specified by the manufacturer’s
protocols. A total of 81,575 markers were obtained from the
90K SNP chip. GenomeStudio v2011.1 software (Illumina)
was used for genotype classification and allele clustering.
The default clustering algorithm was used to cluster each
SNP into up to three allele clusters, then SNP clusters were
manually curated to ensure more accurate genotyping. The SNP
consensus map developed by Wang et al. (2014) was used to
determine chromosome and chromosome position of SNPs.
However, numerous unmapped SNPs were also included in the
analysis.

Statistical Analyses
The historic phenotypic data were assessed for influential
outliers (greater than 3 standard deviations) and these were
removed prior to any statistical analyses. The summary
statistics (minimum, mean, maximum and standard errors) were
calculated for each phenotypic trait with Proc UNIVARIATE in
SAS 9.3 (SAS Institute Inc., Cary, NC, USA) (Table 1). Due to
the unbalanced phenotypic data included in the analysis, best
linear unbiased predictions (BLUPs) for each phenotypic trait
were calculated using ProcMIXED in SAS 9.3 with both genotype
and environment as random effects. The mixed linear model
was y = X + Zυ + e, where y is the vector of observations for
an individual quality trait, X is the intercept, υ is the vector of
random effects, Z is the design matrix for the random effects,
and e is the vector of residuals. In our case, the genotype and
environment effects were considered random and with only
one observation per environment, the genotype by environment
interaction served as an estimate of the residuals. Thus, genotype
by environment interaction per se could not be evaluated in this
dataset.

The BLUP for each trait were used as phenotypes in the
final marker-trait association analysis. Narrow-sense heritability
(h2) was calculated as the ratio of the additive variance to
the total phenotypic variance using the R package rrBLUP
(Endelman, 2011). Genome-wide annotated SNP markers were
used determine the additive genetic variance of each trait
and control for genetic relationships (Kruijer et al., 2015).
Phenotypic correlations among traits were determined using
Pearson coefficients calculated using JMP Genomics 6.0.
Principal component analysis (PCA) was conducted to reduce
the complexity of the correlation matrix for all end-use quality
traits.

Population Structure and Linkage
Disequilibrium (LD)
Linkage disequilibrium was calculated using 15,229 annotated
markers and MAF greater than 5% in JMP Genomics 6.0. LD
for markers on the same chromosome was measured using
the squared allele-frequency correlation (r2) between alleles at
two loci according to Weir (1996). A critical r2 value beyond
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TABLE 1 | Approved methods, units, means, and ranges of end-used quality traits in a Pacific Northwest soft white winter wheat diversity panel.

Trait Abbr. Approved method Units Mean Min Max S.E.c h2d

GRAIN CHARACTERISTICS

Kernel hardness SKHRD 55-31.01 unitless 31.9 −4.1 55.7 0.13 0.89

Kernel size SKSIZE 55-31.01 mm 2.6 1.7 3.3 < 0.00 0.57

Kernel weight SKWT 55-31.01 mg 36.3 22.1 57.9 0.07 0.61

Test weight TWT 55-10.01 kg/hL 78.7 71 86.2 0.02 0.69

Grain protein WPROT 39-10.01 percent 10.4 5.6 15.6 0.02 0.23

MILLING TRAITS

Break flour yield BKYLD – percent 49.2 32.4 55.8 0.04 0.80

Total flour yield FYELD – percent 69.7 61.5 75.2 0.04 0.50

Milling score MSCOR – unitless 85.6 68.3 98.5 0.06 0.52

FLOUR PARAMETERS

Flour ash FASH 08-01.01 percent 0.38 0.21 0.54 < 0.00 0.47

Flour protein FPROT 39-11.01 percent 8.7 4.2 13.7 0.02 0.29

Flour SDSa sedimentation FSDS 56-60.01 g/mL 9.5 1.6 27.3 0.07 0.68

Carbonate SRC FSRC 56-11.02 percent 70.9 54.2 86.5 0.08 0.65

Lactic acid SRC FSRL 56-11.02 percent 89.3 59.4 165.5 0.52 0.75

Sucrose SRC FSRS 56-11.02 percent 90.2 69.5 124 0.17 0.46

Water SRCb FSRW 56-11.02 percent 54.8 46.6 60 0.03 0.71

Flour swelling volume FSV 56-21.01 mL/g 19.1 8.2 24 0.03 0.39

BAKING PARAMETERS

Mixograph height MPHT 54-40.02 cm 44.8 30.5 60.8 0.1 0.32

Mixograph width MPW 54-40.02 cm 90.7 2 290.5 0.96 0.16

Mixograph width 2 mins MPW2 54-40.02 cm 6.7 0.8 18.2 0.08 0.32

Mixograph peak time MPTIME 54-40.02 min 2.3 0.5 7 0.02 0.16

Cookie diameter CODI 10-52.02 cm 9.4 8.2 10.2 < 0.00 0.71

aSDS, sodium dodecyl sulfate.
bSRC, solvent retention capacity.
cS.E, standard error.
dh2, narrow-sense heritability.

which LD is due to physical linkage was determined by taking
the 95th percentile of the r2 distribution for unlinked markers
(Breseghello and Sorrells, 2006). Locally weighted polynomial
regression (LOESS)-based curves were then fitted on scatter
plots of r2 values plotted against the genetic distance (cM). The
intersection of the LOESS curve fit and critical value of r2 was
considered as the estimate of the extent of LD.

Since the association mapping panel was developed with
different market sub-classes of wheat and from different breeding
programs, population substructures were assumed to be present.
Population structure was assessed using principle component
analysis (PCA) calculated in GAPIT2 (Tang et al., 2016).
Population differentiation was further assessed by estimating FST
for individual loci (Wright, 1951) and genetic distance between
subpopulations using the JMP Genomics 6.0. Allele similarity
scores were also calculated to analyze pairwise relationships
among the genotypes.

Association Analysis
Prior to association analysis, the SNPs were filtered to exclude
those with greater than 20% missing data and those with a minor
allele frequency (MAF) < 0.05 leaving a total of 15,229 high

quality SNP markers. The remaining missing data were imputed
using BEAGLE 3.3.2 (Browning and Browning, 2016). Based
upon the Pearson correlation coefficient between phenotype
and principle components (PC), the significantly correlated PCs
were used as covariates in the final model. Fixed and random
model Circulating Probability Unification (FarmCPU) (Liu et al.,
2016) was used for the marker-trait association analysis, which
was implemented in GAPIT2 (Tang et al., 2016). Significant
associations were tested using the Bonferroni correction method

(Bland and Altman, 1995) with α = 0.05, which is equivalent

to the marker-wise threshold P-value = 3 × 10−6 (0.05/15,229

SNPs).
Due to the diverse backgrounds of the lines included in the

association mapping panel and the large influence that the high

molecular weight (HMW) glutenins can have upon soft wheat

end-use quality, the panel was screened for alleles at Glu-D1
(Liu et al., 2008) using Kompetitive Allele Specific PCR (KASP)
markers (LGC Group) specific to that gene. The correlation
analysis was conducted on each of the phenotypic traits to
determine if the allelic diversity at the Glu-D1 locus significantly
affected each trait. The high molecular weight (HMW) glutenin
data were added into the GWAS model as covariate when the
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trait was significantly influenced. The proportion of explained
phenotypic variance by the SNP was calculated as follows:

R2 =
∑n

i=1
(ŷi − ŷ)

2

/

∑n

i=1
(yi − y)2

where yi is the observed phenotype value, and ŷi is the estimated
phenotype value from the multiple linear regression model that
was fitted using all significant SNPs as the independent variable
with fixed effect. Regression analysis was further conducted for
cookie diameter to determine the amount of phenotypic variation
explained by significant SNPs directly associated with these traits
or other traits affecting cookie diameter. We used JMP Genomics
6.0 to compare models that included only significant markers or
phenotypic data and the full model with both parameters.

RESULTS

Trait Statistics, Heritability Estimates and
Correlations
Significant phenotypic variation was present in this association
mapping panel for the measured end-use quality traits (Table 1).
Each of the traits followed a continuous distribution and the
standard errors were relatively low. Narrow-sense heritability
(h2) estimates ranged from 16 to 89%. High h2 traits (above 70%)
included kernel hardness, break flour yield, lactic acid SRC, water
SRC and cookie diameter. Low h2 traits (below 35%) included
grain protein, flour protein and most of the baking parameter
traits except for cookie diameter.

Significant phenotypic correlations, either positive or
negative, were observed within and across trait categories
(Supplementary Table 1). The highest correlation coefficient
(r = 0.99) was observed between mixograph peak time and
mixograph width. All milling traits were positively correlated
to each other and ranged from r = 0.58–0.79. Cookie diameter
was significantly correlated with all traits except test weight.
Cookie diameter was positively correlated with all milling traits,
and additionally flour swelling volume, and had a negative
correlation with all the other traits.

The complexity of the correlation matrix for all end-use
quality traits was visualized using PCA (Figure 1). The first PC
axis (PC1) corresponds to the direction and degree in which
correlated traits are related, either positive or negative. Cookie
diameter, flour swelling volume, and all of the flour parameter
traits were positively correlated and had negative values in the
first PC. This group of traits was negatively correlated with grain
morphology (kernel size and weight), mixograph data and SRC
tests, of all which had positive PC1 values. Grain morphology,
mixograph data and SRC tests were positively correlated.
The second PC axis (PC2) further describes the affinity of
different traits as they influence specific end-use qualities. Flour
SDS sedimentation and lactic acid SRC both estimate gluten
strength, which directly affects dough strength represented by
the mixograph height data. SRC tests and mixograph height both
had positive PC2 values. Flour SDS sedimentation and lactic acid
SRC were highly correlated (r = 0.88) (Supplementary Table 1).
Both traits were also correlated with mixograph height (r = 0.61

with lactic acid SRC and r = 0.49 with flour SDS). On the other
hand, sucrose, carbonate and water SRC had negative PC2 values.
Carbonate and sucrose SRC relate to the level of starch damage
and arabinoxylan content, respectively. Water SRC estimates
global water absorption, with higher values indicating among
other things, more starch damage. These traits had positive
correlations, but carbonate and water SRC were the most highly
correlated (r = 0.78).

Marker Statistics, LD and Population
Structure
A total of 15,229 polymorphic SNP markers were tested for
association with end-use quality traits. About 84% of the markers
were annotated using a consensus map (Wang et al., 2014)
whereas 17% did not yet have a genomic position on the
consensus map (Figures 2A,B). The B genome had the highest
number of markers (6,476) followed by the A genome with
5,168 markers. The D genome was the least covered with only
1,037 markers. Among all chromosomes, 5B had the most
markers (1,1352) and 4D the fewest with 28 markers. Average
marker density was 1 SNP every 0.44 cM with the most-dense
marker coverage in chromosome 5B at 1 SNP every 0.06 cM
(Supplementary Table 2). A large proportion (73%) of the
genotypes carried the Dx2 + Dy12 subunit combination (Glu-
D1 2+12) compared to 16% with the Dx5 + Dy10 subunit
(Supplementary Figure 1).

Linkage disequilibrium was calculated for locus pairs within
the same chromosomes. About 56% of intra-chromosomal pairs
had significant LD (P < 0.01), 17% of which had r2 > 0.2.
Genome-wide LD decay was observed using a scatterplot of LD
(r2) plotted against inter-marker distance (cM) (Figure 2C). LDs
with r2 > 0.2 extended to distances up to 10 cM. Rapid LD decay
was observed from r2 = 0.6 of locus pairs with 0 cM distance to r2

= 0.26 within 5 cM of genetic distance across all chromosomes.
Prior knowledge about the association mapping panel

indicated the presence of at least two sub-populations
that represent different wheat market sub-classes which are
differentiated by head type: lax or club (Naruoka et al., 2015).
This feature was further supported by principle component
analysis showing two major subpopulations defined by the
first principal component (Figure 3). Even though there was
some overlap between the two sub-populations, there was a
clear distinction between club (37%) and lax (64%) head types.
The club wheat genotypes predominately originated from the
USDA-ARS wheat breeding program based in Pullman, WA,
whereas the lax wheat genotypes came from the Washington
State University, University of Idaho, Oregon State University,
and other private breeding programs. In PC2, a smaller subgroup
within the lax subpopulation was also observed. Based on
pedigree information, the genotypes in this subgroup had
at least 50% of their genetic background derived a common
variety “Eltan”, a widely accepted variety in the PNW in the
late 1990’s. This was further validated by their high allele
similarity scores (>50%) with “Eltan.” Overall population FST
(0.31) showed a substantial genetic differentiation between
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FIGURE 1 | Biplot of principal components showing the phenotypic correlation of end-use quality traits in a soft white winter wheat diversity panel. SKHRD, kernel

hardness; SKSIZE, kernel size; SKWT, kernel weight; TWT, test weight; WPROT, gain protein; BKFYELD, break flour yield; FYELD, total flour yield; MSCOR, milling

score; FASH, flour ash; FPROT, flour protein; FSDS, flour SDS sedimentation; FSRC, carbonate solvent retention capacity; FSRL, lactic acid solvent retention

capacity; FSRS, sucrose solvent retention capacity; FSRW, water solvent retention capacity; FSV, flour swelling volume; MPTIME, mixograph peak time; MPW, mixo

graph height; MPW, mixograph width; MPW2, mixograph width 2 mins; CODI, cookie diameter.

subpopulations, which was also consistent with their genetic
distances (Supplementary Table 2).

Detection of Marker-Trait Associations
(MTAs) for End-Use Quality Traits
The mixed linear model used in the association analysis varied
among different traits by the number of principal components
and Glu-D1 as an additional covariate (Supplementary Table 3).
Taking all traits together, a total of 105 MTAs was significant
across 19 wheat chromosomes (Figure 4). Summary information
for each MTA can be found in Supplementary Table 4. Sixty
MTA were detected on the B genome, followed by A (34) and D
(11) genomes. Chromosome 1B was the most informative with
16 MTAs, whereas chromosome 4D was the least informative
having only one associated marker. An average of five MTAs
per trait were observed. The highest number of MTAs per trait
were for flour SDS sedimentation and water absorption with 10
SNP markers each. Traits with the fewest number of associated
markers include: flour ash (2), flour swelling volume (2), milling

score (2) and grain protein (2). There were no significant
associations detected for mixograph height, width and peak time
in this panel. Among the 105 MTAs, 49 had R2 values between
5 – 44% (Table 2); they were widely distributed throughout the
genomes except on chromosomes 3D, 4D, 6D, and 7D. More
information on the 49 MTAs will be presented in the succeeding
sections.

DistributionandCo-Localizationof 49MTAs
ThirteenMTAs for grain characteristics were detected across nine
chromosomes (Table 2 and Supplementary Table 5). Six MTAs
that explained between 6 – 27% of the phenotypic variation
in single kernel weight were identified on 2A, 2D, 3B, 4B, 5D,
and 6B. IWB77420 on chromosome 2D was the most significant
MTA with R2 = 0.27. The allele for heavier kernel weight was
present in 99% in the genotypes with the lax head type, but
only carried by 1% of the club wheats. Three MTAs for test
weight on chromosomes 2B (IWB77391), 3B (IWB18115) and
5A (IWB4446) explained up to 9% of the phenotypic variation.
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FIGURE 2 | Distribution of 15,229 SNP markers across the genome (A) and different chromosomes (B). A scatterplot (C) showing the decline of genome-wide linkage

disequilibrium (LD) r2 over genetic distances (cM). The horizontal line corresponds to the 95th percentile of distributions of unlinked (>40 cM) markers at r2 = 0.18.

FIGURE 3 | Principal component analysis (PCA) of a soft white winter wheat diversity panel using 15,229 SNP markers from all genomes showing two major

sub-populations representing head type: club (1) or lax from (2) wheat breeding programs in the PNW. The lax form group can be further subdivided into two groups

(2a,b). The phenotypic variation explained by each PC axis are as follows: PC1 = 13.8% and PC2 = 8.1%.

Frontiers in Plant Science | www.frontiersin.org 7 March 2018 | Volume 9 | Article 271

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Jernigan et al. GWAS for End-Use Quality Traits

More than 80% of the genotypes carried the alleles for higher
test weight in IWB18115 and IWB4446, whereas, only 21%
had the favorable allele of IWB77391 (Supplementary Table
5). IWB4446 was also associated with grain protein and flour
protein, explaining 6 and 7% of the phenotypic variation, but the
allelic effect was positively correlated, which is not desired in soft
white wheat. Two MTAs for single kernel size (diameter) were
observed in chromosomes 2B (IWB30179) and 4A (IWB51337),
together accounting for 16% of the trait variation. An MTA that
explained 6% of the variation in kernel hardness was detected in
chromosome 5A (IWB80508). The majority of both the club and
lax head-type sub-groups (92 and 93%, respectively) carried the
allele for softer kernel.

Nine markers on chromosomes 1B, 2D, 4A, 4B, 5A, 5B, and
7B were associated with break flour yield (3), flour yield (5) and
milling score (1) (Table 2). The favorable alleles for these MTAs

were highly represented in the club head genotypes compared
to lax head-type genotypes (Supplementary Table 5). IWB66086
at 110.1 cM on 4A accounted for most of the variation (11%)
in break flour yield as well as 8% of the variation in carbonate
SRC and in cookie diameter. Othermarkers associated with break
flour yield included IWB45033 (R2 = 0.09) at 40.6 cM on 5B and
IWB54370 (R2 = 0.05) at 55.6 cM on 7B. IWB78525, an MTA for
milling score on 5B, was 2 cM from the break flour yield MTA.
Four out of five MTA for higher flour yield had R2 values≥ 20%,
and two of these, IWB9175 and IWB27057, were positioned in the
short and long arms of chromosome 1B, respectively. Aside from
flour yield, IWB27057 was also strongly associated with water
SRC (R2 = 0.22). The strongest MTA (IWB60199) for flour yield
was positioned at 68 cM on 4B and the allele for higher flour yield
was highly represented (84%) in the club wheats (Supplementary
Table 5).

FIGURE 4 | Continued
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FIGURE 4 | Location of the 105 MTAs for end-use quality traits detected in the Pacific Northwest soft white winter wheat diversity panel. Genetic linkage maps of the

chromosomes are based on the wheat consensus SNP map (Wang et al., 2014). Values on the left are genetic distance in centimorgan (cM). On the right, SNP ID and

the associated end-used quality traits. See Table 1 for complete description of trait abbreviations. Trait groupings are color coded. Blue, grain characteristics; Green,

flour parameters; Brown, milling traits; Red, baking parameters. SKHRD, kernel hardness; SKSIZE, kernel size; SKWTkernel weight; TWT, test weight; WPROT, grain

protein; BKFYELD, break flour yield; FYELO, total flour yield; MSCOR, milling score; FASH, flour ash; FPROT, flour protein; FSOS, flour SDS sedimentation; FSRC,

carbonate solvent retention capacity; FSRL, lactic acid solvent retention capacity; FSRS, sucrose solvent retention capacity; FSRW, water solvent retention capacity;

FSV, flour swelling volume; MPW2, mixograph width 2 mins; CODI, cookie diameter.

The number of marker-trait associations for flour quality
traits were greatest for flour SDS sedimentation, lactic acid SRC
and water SRC, with 5 SNP markers each (Table 2). IWB3277
(1D) and IWB57207 (7B) were both associated with flour SDS
sedimentation and lactic acid SRC. IWB3277, on the short
arm of chromosome 1D, accounted for at least 44% of the
phenotypic variation in these traits and the alleles for lower
values were present in 74% of the genotypes (Supplementary
Table 5). However, IWB14950 (79.8 cM) and IWB56695 (78.5 cM)
on chromosome 1B were also associated with flour and lactic
acid SRC, respectively. The MTA for water SRC with the greatest

effect (R2 = 0.27) was positioned at 26.5 cM on chromosome
5A (IWB10273). Water SRC and cookie diameter shared a
locus on chromosome 1B at 8.4 cM (IWB7122) explaining
9-12% of the phenotypic variation. The favorable allele for
flour ash (lower ash content is preferred) on chromosome
1A (IWB35825) was present in only 6% of the genotypes,
mostly coming from the Oregon State University wheat breeding
program (Supplementary Table 5). An MTA was identified
for flour protein on chromosome 6A (IWB31459) and the
allele associated with lower protein was present in 79% of the
genotypes. A large effect flour protein MTA was positioned
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TABLE 2 | Markers associated with end-use quality traits in the Pacific Northwest soft white winter wheat diversity panel.

Trait SNP IDb SNP namec Chromd Pos (cM)e P-valuef Allelesg MAFh α
i R2j

GRAIN CHARACTERISTICS

SKHRDa IWB80508 wsnp_Ku_c4389_7970859 5A 39.62 7.68E-09 C/T 0.07 + 0.06

SKSIZE IWB30179 Excalibur_rep_c106124_239 2B 93.47 5.48E-07 A/G 0.36 + 0.07

IWB51337 Ra_c1897_2401 4A 134.66 1.44E-06 G/A 0.17 – 0.09

SKWT IWB73879 Tdurum_contig93508_295 2A 139.35 1.74E-06 A/G 0.29 – 0.19

IWB77420 wsnp_Ex_c25311_34578436 2D 50.83 7.11E-10 C/T 0.37 – 0.27

IWB10462 BS00070455_51 3B 34.20 2.67E-06 G/T 0.39 – 0.10

IWB66440 Tdurum_contig10300_400 4B 62.92 1.55E-07 A/C 0.31 – 0.07

IWB43793 Kukri_c29969_543 5D 60.61 2.27E-06 G/T 0.45 + 0.06

IWB68374 Tdurum_contig15235_951 6B 64.71 1.87E-06 G/A 0.42 – 0.21

TWT IWB77391 wsnp_Ex_c24711_33964543 2B 108.04 2.57E-08 C/A 0.21 + 0.09

IWB18115 D_GB5Y7FA02I44NU_340 3B 69.53 1.46E-06 C/T 0.11 – 0.09

IWB4446 BobWhite_c8266_227 5A 140.59 2.14E-09 C/A 0.20 – 0.07

WPROT IWB4446 BobWhite_c8266_227 5A 140.59 9.66E-07 C/A 0.20 – 0.06

MILLING TRAITS

BKFYELD IWB66086 TA006348-0950 4A 110.13 7.53E-07 C/T 0.08 – 0.11

IWB45033 Kukri_c40388_844 5B 40.57 4.94E-07 G/A 0.31 + 0.09

IWB54370 RAC875_c16839_188 7B 55.64 4.39E-08 G/A 0.45 – 0.05

FYELD IWB9175 BS00064032_51 1B 79.77 2.37E-07 A/G 0.35 – 0.20

IWB27057 Excalibur_c49496_705 1B 122.52 5.04E-15 C/T 0.22 – 0.23

IWB6967 BS00022211_51 2D 42.37 1.05E-06 A/C 0.43 – 0.08

IWB60199 RAC875_c6865_349 4B 68.45 4.93E-07 G/A 0.42 + 0.27

IWB76667 wsnp_Ex_c14812_22928900 5A 43.27 3.72E-10 T/C 0.33 + 0.20

MSCOR IWB78525 wsnp_Ex_c5915_10379277 5B 38.50 3.10E-08 A/G 0.35 – 0.06

FLOUR PARAMETERS

FASH IWB35842 IACX219 1A 73.48 1.14E-06 G/T 0.06 – 0.05

FPROT IWB4446 BobWhite_c8266_227 5A 140.59 2.07E-08 C/A 0.20 – 0.07

IWB31459 Excalibur_rep_c98042_438 6A 140.87 3.24E-09 T/C 0.21 + 0.05

FSDS IWB14950 CAP8_c818_370 1B 79.77 1.35E-11 G/T 0.31 + 0.24

IWB3277 BobWhite_c4303_524 1D 3.40 1.77E-08 T/C 0.36 – 0.48

IWB29489 Excalibur_c94962_57 3A 173.15 2.06E-06 A/G 0.24 + 0.24

IWB6111 BS00009782_51 6A 48.09 2.74E-11 T/C 0.30 – 0.05

IWB57207 RAC875_c36670_72 7B 21.86 1.47E-09 C/A 0.08 + 0.20

FSRC IWB66086 TA006348-0950 4A 110.13 1.44E-06 C/T 0.08 + 0.08

FSRL IWB10813 BS00075532_51 1A 111.56 6.79E-09 G/A 0.07 + 0.07

IWB56695 RAC875_c32077_284 1B 78.45 1.40E-08 C/T 0.34 + 0.30

IWB3277 BobWhite_c4303_524 1D 3.40 7.10E-07 T/C 0.36 – 0.44

IWB12222 BS00104279_51 4B 104.79 3.85E-07 T/C 0.23 + 0.12

IWB57207 RAC875_c36670_72 7B 21.86 2.89E-06 C/A 0.08 + 0.24

FSRS IWB35053 IAAV5588 1B 85.57 4.68E-10 C/A 0.31 + 0.05

IWB59549 RAC875_c60758_585 5B 121.43 3.78E-08 G/T 0.11 + 0.06

IWB38357 Ku_c12886_1250 7A 80.64 2.24E-06 A/G 0.23 + 0.12

FSRW IWB7122 BS00022504_51 1B 8.36 1.33E-11 G/A 0.06 + 0.09

IWB9256 BS00064349_51 1B 95.49 1.40E-06 T/C 0.33 - 0.15

IWB27057 Excalibur_c49496_705 1B 122.52 1.35E-06 C/T 0.22 + 0.08

IWB65378 TA001322-1176 2B 96.14 1.10E-09 A/G 0.47 - 0.05

IWB10273 BS00068257_51 5A 26.50 3.34E-08 C/T 0.25 - 0.27

FSV IWB80451 wsnp_Ku_c38543_47157828 5A 138.73 1.74E-08 C/T 0.22 + 0.20

BAKING PARAMETERS

MPW2 IWB6084 BS00009594_51 2A 167.87 1.95E-07 T/C 0.46 - 0.07

IWB35089 IAAV5782 1B 43.86 1.41E-09 G/A 0.39 - 0.22

(Continued)
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TABLE 2 | Continued

Trait SNP IDb SNP namec Chromd Pos (cM)e P-valuef Allelesg MAFh α
i R2j

CODI IWB7122 BS00022504_51 1B 8.36 5.87E-07 G/A 0.06 - 0.12

IWB66086 TA006348-0950 4A 110.13 7.47E-07 C/T 0.08 - 0.08

aSKHRD, kernel hardness; SKSIZE, kernel size; SKWT, kernel weight; TWT, test weight; WPROT, grain protein; BKFYELD, break flour yield; FYELD, total flour yield; MSCOR, milling

score; FASH, flour ash; FPROT, flour protein; FSDS, flour SDS sedimentation; FSRC, carbonate solvent retention capacity; FSRL, lactic acid solvent retention capacity; FSRS, sucrose

solvent retention capacity; FSRW, water solvent retention capacity; FSV, flour swelling volume; MPW2, mixograph width 2 mins; CODI, cookie diameter.
b,c,d,eSNP ID, SNP name, chromosome location and position based on wheat 90K consensus map (Wang et al., 2014).
fNominal p-values.
gAlleles for specific SNP markers. Underlined nucleotides represent minor alleles.
hMinor allele frequency (MAF). Frequency of minor allele in the panel.
jAlpha (α) denotes the allelic effect of the minor alleles.
iPhenotypic variation explained by the SNP.

at 138 cM on chromosome 5A and explained 20% of the
phenotypic variation. The minor alleles of the four MTAs for
baking parameters contributed to reduced peak width and cookie
diameter. Of these, the MTA for mixograph peak width 2 mins,
IWB35089 (1B), had the largest effect R2 = 0.22 (Table 2).

DISCUSSION

Variation and Heritability Among End-Use
Quality Traits
The use of historical data facilitated a larger number of
phenotypic observations (e.g., as many as 5,000 observations for
test weight) to capture a wider range of performance in end-
use quality traits that represented past and current soft winter
wheat germplasm in the Pacific Northwest. The use of BLUPs
accommodated departures from normality, while at the same
time accounting for year and environmental effects that are
common in unbalanced multi-location trials (Smith et al., 2005).
Heritability estimated using genome-wide markers showed a
clear picture of the proportion of additive variance for each trait.
Quality traits with high heritability such as kernel hardness, break
flour yield, lactic acid SRC, water SRC, and cookie diameter,
indicate that a large portion of their expression is genetically
controlled and that breeding lines can be selected for substantial
genetic gains in the end-use quality of soft winter wheat (Guttieri
et al., 2001). High heritability estimates for these traits were
also reported in soft winter wheat using biparental populations
(Carter et al., 2012; Jernigan et al., 2017) and wheat germplasm
core collections (Tadesse et al., 2015). In this study, traits with
lower heritability (like grain protein, flour protein and some
baking parameters) also had the fewest associations and their
MTA had minor effects. These results are consistent with the
complex and polygenic nature of quality traits (Turner et al.,
2004).

MTA for Grain Characteristics
The main goal of this study was to dissect the underlying genetics
controlling end-use quality traits of soft wheat, a class of wheat
that is different from the hard wheat preferred for baking bread
(Kiszonas and Morris, 2018). Soft and hard wheats are mainly
classified by the Ha locus and the puroindoline genes, Pina and
Pinb in the distal portion of chromosome 5DS (Sourdille et al.,

1996; Morris, 2002). The hardness locus has a strong influence
on most end-use quality traits such as kernel texture, flour yield,
flour particle size, starch damage, and dough strength (Campbell
et al., 2001; Nelson et al., 2006; Boehm Jr et al., 2017). No
marker on chromosome 5DS was associated kernel hardness, but
universally, the Ha locus is fixed for the wild type soft allele in
our panel. We detected a marker (IWB80508) for single kernel
hardness on chromosome 5A. A similar locus in the same region
on chromosome 5A, identified by wPt-1165, was also detected
by Bordes et al. (2011) in a global core collection of 372 wheat
accessions further supporting our hypothesis on the importance
of this region in controlling kernel hardness. The MTA in 5BL
(IWB80740) was < 1 cM on the consensus map to a kernel
hardness QTL (QHa.wak) identified in a bi-parental population
derived from a cross between the club head cultivar “Coda” and
the lax head cultivar “Brundage” (Jernigan et al., 2017). Both
Coda and Brundage were included in our panel, validating this
result. Softer kernels often have higher milling performance and
flour yields (Carter et al., 2012) primarily due to the differences in
fracture patterns caused by milling. Soft wheats endosperm tends
to fracture through cells, vs. at the cell wall in hardwheats, leading
to smaller particle size distribution, less starch damage, and
lower water absorption (Hoseney et al., 1988). Not surprisingly,
we detected an MTA (IWB76667) for flour yield near (∼4 cM)
IWB80508 on chromosome 5A which explained about 20% of the
phenotypic variation. In addition, co-localized MTAs for single
kernel hardness and water absorption SRC were also detected at
57 cM on chromosome 6BS.

Kernel weight, kernel size, grain protein, and test weight are
also important factors influencing wheat milling performance
(Morris and Rose, 1996; Campbell et al., 1999). Kernel size and
weight were highly correlated in this study; however, we did not
detect any markers associated with both traits. It is possible that
no major gene or MTA is controlling both traits and different
genomic regions with minor effects contribute to the overall
trait expression. The kernel weight MTA (IWB68374) was also
reported in Sun et al. (2008) as a pleiotropic region controlling
starch quality. To date, the most phenotypic variation explained
by a single QTL (IWB77420) for kernel weight and size is only
28% (Jernigan et al., 2017) identified from wheat with a lax head
type. IWB77420 was also associated with single kernel weight in
this study and the allele for heavier kernel was present in 99% of
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the genotypes with lax head type and only 1% of the genotypes
with club head types. This MTA is linked to the compactum (C)
locus for club head type. IWB77420 was 2 cM proximal to the
flanking marker of the C locus, wmc144 (Johnson et al., 2008),
in the integrated map (Maccaferri et al., 2015). Club wheat has
unique spike morphology, due to the C locus on chromosome
2DL (Johnson et al., 2008) that results in redistribution of yield
components. The C locus directly influences seed size, seed
number, and test weight (Gul and Allan, 1972). Club cultivars
have smaller seeds than lax cultivars, but spikelet fertility and
number of seeds per spike is greater in club wheat (Zwer et al.,
1995).

Grain protein is an essential component affecting flour
functionality. Unlike hard wheats, lower protein levels are desired
for soft wheats tominimize gluten formation andmixing strength
that is otherwise needed in bread doughs (Souza et al., 2012).
The positive correlation between protein concentration and flour
SDS sedimentation (a measure of gluten strength) provides
further evidence of their direct relationship. All MTAs for protein
concentration explained no more than 7% of the phenotypic
variation. Grain and flour protein concentrations have low
heritability and are largely dependent on the environment
(Turner et al., 2004). Grain and flour protein were highly
correlated. A marker (IWB4446) on 5AL was associated with
both traits and is close (less than 3 cM) to a previously reported
flour QTL (QFpro.wak) (Jernigan et al., 2017). IWB4446 was also
associated with test weight despite having a low correlation with
protein concentration. This MTA can be useful in hard wheats
as selection for higher test weight would lead to an increase
in protein concentration. However, this strategy would not be
beneficial for soft wheats in maintaining lower protein values. If
IWB4446 will be used to select for lower protein concentration,
reduction in test weight should be compensated by using MTA
from other chromosomes. Test weight is of commercial value to
wheat growers and should be given equal consideration with the
other quality traits.

MTA for Milling Traits
Milling performance directly translates into greater profit
margins for flour millers. Hence, breeding programs aim for
soft wheats with high break flour yield, flour yield, and milling
score. The moderate to high heritability estimates and positive
correlations among milling traits suggest simultaneous progress
from selection can be achieved. Selecting alleles that increase
these traits could lead to higher milling scores (Supplementary
Table 6). Club wheat varieties like “ARS-Crescent,” “Cara,” and
“Chukar” that are considered to have “excellent” quality carried
all 9 favorable alleles for superior milling traits compared to
“Xerpha,” a common (lax head) wheat graded as a “least desirable”
variety for Washington, Northern Idaho and Oregon, which
only had two favorable alleles (Washington Grain Commission,
2017). Soft winter wheat varieties (with lax head type) like ARS-
Amber, BrundageCF and Jasper carried at least five favorable
alleles of the nineQTL formilling traits were also highly preferred
in the PNW. MTAs for break flour yield (IWB45033) and
milling score (IWB78525) were identified less than 2 cM apart
in chromosome 5B. A QTL for kernel hardness (QHa.wak) was

also reported in this region and contributed to variation in break
flour yield (Jernigan et al., 2017). IWB60199 on chromosome 4B
(68.4 cM), which explained 27% of the variation in flour yield,
was represented in 17 and 84% of the genotypes with lax and club
head types, respectively (Table 2 and Supplementary Table 6).
Even though this marker is near a major gene for plant height
(Rht-B1) on 4B, we do not think there is a pleiotropic effect of
dwarfing genes on flour yield. The majority (85%) of lines with
lax head type carry the semi-dwarf allele Rht-B1b, mainly because
this allele has historically been used in combinationwith selection
for better emergence potential in lower rainfall regions of the
Pacific Northwest. The club wheat lines, which have been bred
and selected for higher flour yield, have a higher predominance
of the semi-dwarf allele Rht-D1b, mainly because they have not
undergone the intense selection for better emergence as the lines
with lax heads have. Thus, although there is a correlation between
dwarfing genes and flour yield, we do not believe it is causal.

To our knowledge, the two large effect MTAs for total flour
yield on the short and long arms of chromosome 1B have not
been reported, especially IWB27057, which was also associated
with lower water absorption SRC. IWB27057 is 15 cM proximal
from the high molecular weight glutenin gene (Glu-B1) in
chromosome 1B. Soft wheats with lower water absorption are
important in baking cookies. Upon further validation, these
MTAs can be used to select soft wheats with improved total
milling performance.

MTA for Flour Parameters
The strength of correlation among pairs of SRC traits were
consistent with the clustering of MTA in certain genomic regions
such as flour SDS sedimentation and lactic acid SRC (r =

0.87), which are both predictors of gluten strength. MTAs for
flour SDS sedimentation and lactic acid SRC were detected on
chromosomes 1BS and 1DS, respectively, near known glutenin
genesGlu-B1 andGlu-D3, respectively (Zheng et al., 2009). These
MTAs are linked with major glutenin genes. The high frequency
of the favorable allele on 1DS among club lines can be beneficial
in breeding for wheats with lower gluten content/strength. The
MTA (IWB9175) for total flour yield which was also detected
in this region was consistent with the significant correlations
among these traits. No additional MTAs were detected in the
region of Glu-D1 because we included variation at Glu-D1 as a
covariate in the association analysis. The MTA (IWB57207) on
chromosome 7BS is potentially a novel locus controlling flour
SDS sedimentation and lactic acid SRC. The high frequency
of this MTA in this panel makes it a valuable resource for
introducing new alleles with diverse genetic backgrounds.

Water SRC co-localized with other quality traits on 1BS and
1BL, and with cookie diameter and total flour yield. Higher water
SRC is partly a consequence of starch damage from milling and
non-starch polysaccharides, including arabinoxylans (Guttieri
et al., 2008; Souza et al., 2012; Kiszonas et al., 2013b). A higher
concentration of water-soluble arabinoxylans will result in
smaller (less desirable) cookie diameters (Guttieri et al., 2001,
2008; Ramseyer et al., 2011). Arabinoxylan content in wheat flour
is measured by the sucrose SRC test, thus, it was not surprising to
also detect a marker for sucrose SRC near the water absorption
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SRC marker on 1BL and 6BS (Figure 4). Partly due to low
heritability, only two MTAs each were detected for flour ash and
flour swelling volume. The region (IWB35842), associated with
flour ash on chromosome 1A, was likely the same as the QTL for
flour ash identified from a double haploid mapping population
(El-Feki et al., 2013). Lower flour ash is desired especially in
export markets because higher ash flours are associated with
reduced flour functionality affecting most batters and dough (Liu
et al., 2011). The high representation of the allele for lower ash
content in this population indicates that breeding programs in
the Pacific Northwest have indirectly selected for this allele by
phenotypically selecting for high flour yield, high milling score,
and low flour ash. The marker (IWB80451) associated with flour
swelling volume on 5A is potentially an important locus due to
its large effect and availability especially in genotypes with lax
head type.

Implications for Improvement of Cookie
Diameter
The sugar snap cookie test is considered the best single indicator
of the overall quality of soft wheat flour (Morris and Rose, 1996;
Miller et al., 1997) and has been the primary means of selecting
breeding materials. The best cookies (with greater diameter) are
derived from wheats with softer kernels, higher break flour yield
and total flour yield, lower ash content, lower starch damage,
lower gluten strength, and lower water absorption. The modest
effects (R2 = 0.8–0.12) of theMTAs for cookie diameter, however,
illustrated the complexity of this trait. A combination of different
MTA from the traits mentioned above would be an effective
strategy to achieve substantial gains. A regression analysis was
used to model cookie diameter using only phenotype data,
markers, or a combination of both. There was a 7% improvement
in the R2 of the model when combining marker and phenotypic
data in predicting cookie diameter (Supplementary Figure 2).
Kiszonas et al. (2015) also modeled cookie diameter using a
similar set of traits on 120 soft wheats and reported an R2 of 0.59.
Breeding lines carrying most if not all of the alleles for greater
cookie diameter were identified in this study and can be used by
breeders to produce soft wheat varieties with superior end-use
qualities (Supplementary Table 6).

Toward Genomic Selection for End-Use
Quality Traits
One advantage of performing association mapping in elite
and adapted lines rather than on a diversity panel is the
opportunity to directly utilize the identified alleles in regional
breeding programs. Genotypes that carry the favorable alleles
for different end-use quality MTAs can be cycled back into
breeding programs as parental material to exploit transgressive
segregation, pyramid desirable alleles, and ensure potential
genetic gains in succeeding generations. KASP markers of the

reported MTAs are commercially available (http://polymarker.
tgac.ac.uk/), making it easier to test and determine the value
of these MTAs in different breeding programs. Typically, end-
use quality assessment is conducted later in the breeding cycle
because these tests are time consuming and require a large
amount of grain. MTAs with larger effects can potentially be used
in marker-assisted selection to increase selection efficiency by
reducing the time and cost in screening a larger number of plants.
But for markers with minor effects, MAS would be inferior to
phenotypic selection.

Genomic selection is a breeding method used to predict
the breeding value of individual genotypes using genome-wide
markers (Bernardo, 1994; Meuwissen et al., 2001). This method
can simultaneously model all additive genetic variance that is
unaccounted for in GWAS with complex and low heritability
traits. Once training models are developed, genomic selection
for end-use quality can be implemented in earlier stages
of the breeding pipeline. We are currently testing different
genomic selection models to improve prediction accuracy
for end-use quality traits. Preliminary results indicate that
a multi-trait genomic selection approach using correlated
end-use quality traits significantly improved prediction
accuracy.
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