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In plants, water deficiency can result from a deficit of water from the soil, an obstacle to
the uptake of water or the excess water loss; in these cases, the similar consequence
is the limitation of plant growth and crop yield. Silicon (Si) has been widely reported
to alleviate the plant water status and water balance under variant stress conditions in
both monocot and dicot plants, especially under drought and salt stresses. However,
the underlying mechanism is unclear. In addition to the regulation of leaf transpiration,
recently, Si application was found to be involved in the adjustment of root hydraulic
conductance by up-regulating aquaporin gene expression and concentrating K in the
xylem sap. Therefore, this review discusses the potential effects of Si on both leaf
transpiration and root water absorption, especially focusing on how Si modulates the
root hydraulic conductance. A growing number of studies support the conclusion
that Si application improves plant water status by increasing root water uptake,
rather than by decreasing their water loss under conditions of water deficiency. The
enhancement of plant water uptake by Si is achievable through the activation of
osmotic adjustment, improving aquaporin activity and increasing the root/shoot ratio.
The underlying mechanisms of the Si on improving plant water uptake under water
deficiency conditions are discussed.

Keywords: silicon, water status, water balance, drought, salt stress, transpiration, water uptake

INTRODUCTION

Silicon (Si) is the second most abundant element in soil. Plants generally take up Si in the form of
soluble monosilicic acid H4SiO4, which normally ranges from 0.1 to 0.6 mM in the soil solution
(Ma and Yamaji, 2006). All terrestrial plants contain Si in their tissues although the contents of
Si varies considerably among species, ranging from 0.1 to 10% Si on a dry weight basis (Ma and
Yamaji, 2006; Cornelis et al., 2010; Sahebi et al., 2015). Si has not been recognized as an essential
element for plant growth, it does exert beneficial effects for many plant species, including both
monocots and dicots (Ma and Yamaji, 2015). Indeed, Si seems to alleviate the detrimental effects
of various stresses, including drought, salinity, heat, cold, metal toxicity, nutrient imbalance, plant
pathogens, and insect pests (Liang et al., 2007; Guntzer et al., 2012; Hernandez-Apaolaza, 2014;
Zhang et al., 2014; Meharg and Meharg, 2015; Vivancos et al., 2015; Guo et al., 2016; Reynolds
et al., 2016).

Water deficiency is one of the major environmental constraints of plant growth and crop
productivity (Chaves and Oliveira, 2004; Verslues et al., 2006). Plant water deficiency may result
from a shortage of water in soil (drought) or from an obstacle to water uptake (physiological
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drought). Plant water deficiency can also be caused by the
excessive high vapor pressure deficit in the atmosphere, which
results in higher rates of water loss via transpiration than the rates
of water transport to the leaves (Mahajan and Tuteja, 2005). In
these cases, plant water status is disturbed, resulting in disruption
of important metabolic processes and reduction in growth rates
(Verslues et al., 2006). Hence, investigating mechanisms of plants’
ability to tolerate water stress may lead to an understanding of
how to increase water stress resistance. Recently, improvement of
plant resistance to drought, osmotic, and salt stresses have been
widely observed after the addition of Si to the growth medium
(Zhu and Gong, 2014; Rizwan et al., 2015; Coskun et al., 2016;
Helaly et al., 2017).

Several different aspects are involved in Si-improved plants’
resistance to drought or salt stress, including maintenance of
nutrient balance, promotion of photosynthetic rate, increasing
antioxidant capacity, and sequestration of toxic ions (Ma, 2004;
Liang et al., 2007; Sacała, 2009; Zhu and Gong, 2014; Rizwan et al.,
2015). Moreover, various compounds of Si, including 1–2 mM
Na2SiO3, K2SiO3 or H2SiO3, either applied in the soil or the
nutrient solution, are showed to improve the water status of
plants experiencing drought or salt stress (Romero-Aranda et al.,
2006; Sacała, 2009; Liu et al., 2014, 2015). In addition, it has been
reported that supplement with 1 mM H2SiO3 in the nutrient
solution can alleviate K deficiency, which also causes tissue
dehydration (Chen et al., 2016). A variety of beneficial effects of
Si application could be ascribed to the alleviation of problematic
water status in those studies by decreasing the transpiration rate,
increasing the osmotic adjustment capacity, or increasing water
uptake (Liang et al., 2007; Sacała, 2009; Zhu and Gong, 2014;
Rizwan et al., 2015). In this review, we address recent results that
are relevant to the Si effect, and assess what they mean for the
interpretation of how Si improves plant water status and enables
the maintenance of plant water balance under water deficiency
condition.

SILICON CONTRIBUTES TO
ALLEVIATION OF PLANT WATER STATUS
UNDER STRESS CONDITIONS

A common consequence of several abiotic stresses is the
disturbance of plant water status. Abiotic stresses, such as
drought, salinity, and freezing have a common impact on plant
cells in decreasing the availability of water (Mahajan and Tuteja,
2005; Verslues et al., 2006), quantified as a decrease in plant water
potential and relative water content. Conversely, maintenance
of higher relative water contents indicates a better water status
(Verslues et al., 2006).

Under drought stress, the beneficial effect of Si on plant water
status has been extensively examined in various plant species,
including sorghum (Hattori et al., 2007; Yin et al., 2013; Ahmed
et al., 2014), wheat (Gong and Chen, 2012), maize (Amin et al.,
2014), rice (Ming et al., 2012), cucumber (Ma et al., 2004),
Kentucky Bluegrass (Saud et al., 2014), canola (Habibi, 2014),
sunflower (Gunes et al., 2008), chickpea (Gunes et al., 2007),
soybean (Shen et al., 2010), alfalfa (Liu and Guo, 2013), and

tomato (Shi et al., 2016). The improvements of relative water
content and/or water potential by Si application occurred under
both polyethylene glycol-induced osmotic stress (Hattori et al.,
2007; Ming et al., 2012) and potted soil drought conditions (Gong
et al., 2003; Amin et al., 2014). In addition, it has been showed that
in the leaves of Si-treated wheat, both relative water contents and
the water potential were maintained to a greater extent compared
to that without Si-treatment, suggesting that Si could also be
used to improve the water status of wheat under field drought
conditions (Gong and Chen, 2012).

Under salt stress condition, the beneficial role of Si in
mitigating the adverse effects of salinity by preventing root Na+
uptake and/or its transport from roots to shoots has been widely
reported (Liang et al., 2007; Savvas et al., 2007, 2009; Zhu and
Gong, 2014; Savvas and Ntatsi, 2015). In addition to ion toxicity,
high concentrations of salts in solution also cause osmotic stress
in plants, because they limit the availability of water, affecting
water status and leaf growth (Munns and Tester, 2008). Chen
et al. (2014) reported that Si could alleviate the salt stress in both
two phases of growth inhibition, with the alleviative effects being
more pronounced in the osmotic stress phase than ion toxicity
phase. Moreover, Si application is widely reported to improve
the leaf relative water contents and/or leaf water potential under
salt stress in wheat (Tuna et al., 2008), rice (Yeo et al., 1999),
sorghum (Liu et al., 2015), maize (Parveen and Ashraf, 2010),
tomato (Li et al., 2015), Phaseolus vulgaris (Zuccarini, 2008),
sunflower (Ashraf et al., 2015), and cucumber (Wang et al.,
2015). The only exception to these findings was the observation
that Si decreased tomato leaf water potential under salt stress
(Romero-Aranda et al., 2006). However, in this study, plant water
content in salinized plants supplied with Si was 40% higher than
in salinized plants without Si, and leaf turgor potential and net
photosynthetic rates were much higher in salinized plants with Si.
Therefore, in spite of the leaf water potential, it can be concluded
that Si improves the water status of tomato under salt stress.

A recent study in sorghum showed that Si could alleviate
potassium (K) deficiency by improving plant water status (Chen
et al., 2016). K is the most abundant cation in plants and
plays a key role in osmotic processes that contribute to cellular
turgor, photosynthesis, and transpiration (Wang and Wu, 2013).
K is involved in regulating the plant water status, and severe
K deficiency causes tissue dehydration (Kanai et al., 2011).
Moreover, it has also been reported that Si could enhance
freezing stress resistance in freezing-susceptible wheat cultivar
by alleviating water-deficit stress that caused by freezing-induced
cellular dehydration (Liang et al., 2008).

SILICON CONTRIBUTES TO
MAINTAINING HIGHER TRANSPIRATION
UNDER STRESS CONDITIONS

Under normal growth conditions, water is absorbed by the
roots and lost from the leaves, and plants keep a proper water
balance by continuously adjusting these two processes (Maurel
and Chrispeels, 2001). Under water deficient conditions, the
plant’s first response is to avoid low water potential by adjust
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their water balance between root water uptake and leaf water loss
(Luu and Maurel, 2005; Verslues et al., 2006). Plants can reduce
leaf water loss by controlling the transpiration rate and also by
decreasing their leaf area. Under normal growth conditions, only
a few reports have shown that Si affects the transpiration rate. The
pioneering researchers in this field reported that Si application
can reduce the excessive leaf transpiration in rice and sugarcane
under normal growth conditions; they postulated that this effect
could be due to the reduction in transpiration rate through
cuticular layers thickened by silica deposits (Yoshida, 1965;
Savant et al., 1996). However, other researchers reported that
rather than due to the thickness of cuticular layers, the reduced
transpiration levels of Si-fed maize and rice were primarily due
to the lower transpiration through stomatal pores (Agarie et al.,
1998; Gao et al., 2004, 2006), which mainly ascribed to the
turgor loss of guard cells originating from Si deposition and
changing of the physical and mechanical properties of their cell
walls (Ueno and Agarie, 2005; Savvas and Ntatsi, 2015). The
reduced transpiration rates caused by Si were also reported in
upland rice and cucumber in the absence of stress (Ma et al.,
2004; Ming et al., 2012). Despite these reports, Si application
has been found to have no effect on transpiration rates under
normal growth conditions in the vast majority of studies (Hattori
et al., 2005, 2009; Chen et al., 2011; Gong and Chen, 2012).
We suspect that the conflicting results are due to species and
genotypic variations since we have noticed that the effects of
Si on reducing the transpiration rate under normal growth
conditions tend to appear in the species and genotypes with high
Si accumulation and high contribution of cuticular transpiration
to total transpiration.

When plants first begin to experience drought stress, they
decrease the leaf water loss mainly by decreasing the leaf
transpiration rate through stomatal closure. Conflicting reports
exist in the literature regarding the impact of Si on leaf
transpiration rate. Maize leaf transpiration is reported to be
decreased by Si in the studies of Gao et al. (2004, 2006) and Amin
et al. (2014). Liu and Guo (2013) reported that Si application
reduced both the transpiration rate and stomatal conductance
but had no effect on photosynthetic rate in alfalfa under drought
stress. Although, it has been reported that Si reduced the excessive
leaf transpiration in rice under normal growth conditions (Savant
et al., 1996; Agarie et al., 1998; Ming et al., 2012), the results
of Chen et al. (2011) and Ming et al. (2012) showed that rice
leaf transpiration was enhanced by Si when the plants were
experiencing drought. Many other results on drought stressed
plants have been shown to be consistent with enhanced leaf
transpiration by Si application (Hattori et al., 2005; Sonobe et al.,
2009; Chen et al., 2011; Gong and Chen, 2012; Pereira et al., 2013;
Zhang et al., 2013; Liu et al., 2014; Saud et al., 2014; Kang et al.,
2016). Under salt stress, the leaf transpiration rate has also been
widely reported to be enhanced by Si (Yeo et al., 1999; Parveen
and Ashraf, 2010; Liu et al., 2015; Wang et al., 2015; Mahmood
et al., 2016; Qin et al., 2016). Also relevant are the findings of
Chen et al. (2016), who reported that Si application enhances the
transpiration of sorghum experiencing K-deficiency. Therefore,
we conclude that Si application generally enhances transpiration
of plants under various conditions of water stress.

SILICON ENHANCES ROOT WATER
UPTAKE UNDER STRESS CONDITIONS

During water deficiency, the regulation of root water uptake, in
some cases, may be more crucial to overcome stress injury than
the regulation of leaf water loss (Aroca et al., 2012). Compared
with the effect of Si on the leaf transpiration, fewer studies have
focused on the impact of Si on root water uptake. Root water
uptake capacity is represented by root hydraulic conductance
(Steudle, 2000). Recently, improving root hydraulic conductance
by Si application has been directly demonstrated in sorghum
(Hattori et al., 2007; Sonobe et al., 2009, 2010; Liu et al., 2014),
rye (Hattori et al., 2009), tomato (Shi et al., 2016), and cucumber
(Wang et al., 2015; Zhu et al., 2015) under drought stress, salt
stress and K deficiency conditions.

The extent of root hydraulic conductance depends on the
driving force, root surface area, root anatomy, and root’s
permeability to water (Steudle, 2000; Vandeleur et al., 2009;
Sutka et al., 2011). A promotion of osmotic driving force
by Si application has been observed in various studies.

FIGURE 1 | Possible mechanisms for silicon (Si) mediated water balance of
plants experiencing water deficiency. (1) Si enhances the aquaporin activity by
up-regulating the expression of Plasma membrane Intrinsic Protein (PIP)
aquaporin genes and alleviating the ROS (reactive oxygen species)-induced
aquaporin activity inhibition. (2) Si enhances the accumulation of soluble
sugars and/or amino acids in the xylem sap by osmorugulation; Si activates
the K+ translocation to xylem sap by the activation the expression of SKOR
(Stelar K+ Outward Rectifer) gene. The osmolyte accumulations in the xylem
sap increase the osmotic driving force. (3) Si might adjust the root growth and
increase root/shoot ratio, which together with enhancement of aquaporin
activity and osmotic driving force contribute to the improvement of root
hydraulic conductance. The higher root hydraulic conductance results in
increased uptake and transport of water, which helps to maintain a higher
photosynthetic rate and improve plant resistance to water deficiency.
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Sonobe et al. (2010) suggested that Si application leads to a
strong water potential gradient through accumulation of soluble
sugars and amino acids in the plant. A similar consequence
of Si application was observed in rice (Ming et al., 2012) and
canola (Habibi, 2014) under drought stress. Liu et al. (2015)
reported that Si had no effect on osmotic potential of root xylem
sap under osmotic stress although it increased root hydraulic
conductance in sorghum (Liu et al., 2015). In the study of tomato
under osmotic stress, water stress also did not cause the change
in root osmotic potential in Si-treated plants (Shi et al., 2016).
Under salt stress, Zhu et al. (2015) found that Si decreased root
xylem osmotic potential via accumulation of soluble sugars in
cucumber. Under K deficiency condition, Si was also seen to
decrease the root xylem osmotic potential through accumulation
of K in sorghum (Chen et al., 2016). Therefore, under those
conditions, regulation of the osmotic driving force could play a
central role in Si-mediated enhancement of water uptake.

In addition to driving force, aquaporins were reported to
play a central role in regulating root water permeability in
response to short term water stress (Maurel et al., 2008). Liu
et al. (2014) firstly reported that Si-pretreatment significantly
increased the expression of aquaporin genes, which in turn
increased the root water uptake in sorghum under drought stress.
Recently, Liu et al. (2015) and Zhu et al. (2015) also observed
that Si application increased aquaporin expression in sorghum
and cucumber under salt stress. In addition, Si can also increase
aquaporin expression in sorghum under K deficiency (Chen
et al., 2016). However, the expression of aquaporin genes was
not significantly regulated (less than twofold) by Si application
in tomato under water stress (Shi et al., 2016). It is worth
noting here that only three aquaporin genes (SlPIP1; 3, SlPIP1; 5,
and SlPIP2; 6) were studied in this tomato study. Furthermore,
modulation of aquaporin transport activity can also occur at
post-transcriptional level. It is speculated that increased root
hydraulic conductance by Si under stress conditions may be
partly ascribed to Si-induced reductions in oxidative stress and
membrane damage (Li et al., 2015; Shi et al., 2016). Similarly, Liu
et al. (2015) suggested that Si could enhance aquaporin activity
by reducing H2O2 accumulation. Certainly, it can be concluded
that regulation of aquaporin transport activity is involved in
Si-induced enhancement of root hydraulic conductance under
stress conditions. But whether it is a general mechanism for
the enhancement of root hydraulic conductance under stress
conditions requires further study.

When long-term water stress occurred, changes in root surface
and anatomy may also be important for enhancing plant water
uptake (Javot and Maurel, 2002). Under drought stress, Si-
pretreatment has been reported to increase the root/shoot ratio,
contributing to a higher ability of water uptake in sorghum
(Hattori et al., 2005, 2009). The increased root/shoot ratio
was also observed in other studies of sorghum (Ahmed et al.,
2011a,b) and rice (Ming et al., 2012) under drought stress
as well as cucumber under salt stress (Wang et al., 2015).
These results suggest that Si-mediated modifications of root
growth may also account for the increase in the water uptake
ability in Si-treated plants. However, Liu et al. (2014) did not

observe any Si-mediated changes in vessel diameter or vessel
number of sorghum root under drought stress. And several
researchers observed no effect of Si on the root/shoot ratio in
other plant species under stress conditions (Gong et al., 2003;
Gao et al., 2004; Sonobe et al., 2009; Chen et al., 2011; Shi et al.,
2016). In summary, Si-mediated modification of root growth
may enhance root water uptake under stress conditions, but
this adjustment is not a common phenomenon to all plants
and it remains unclear whether Si is directly involved in the
modification of root growth or not. Further studies are needed to
clarify how Si regulates root development under water deficient
condition.

CONCLUSION AND PERSPECTIVES

Water deficiency is one of the major environmental factors
limiting the growth of plants and the production of crops.
The investigations described here showed that Si application
moderates the plant hydraulic properties by increasing the root
water uptake, but not by decreasing their water loss under water
deficient condition. As illustrated in Figure 1, the potential key
mechanisms involved in Si-mediated enhancement of plant root
water uptake under water deficiency include: (1) enhancement
of the osmotic driving force via active osmotic adjustment;
(2) improvement of aquaporin transport activity at both
transcriptional and post-transcriptional levels; (3) modification
of root growth and increasing root/shoot ratio (Figure 1).

Predictions of future global environmental changes point to an
increase in both the severity and frequency of water stress in the
near future. Therefore, genetic and biochemical manipulation of
crops to increase their capacities of Si absorption, translocation
and distribution from applied Si fertilizer should be considered
as a preferable choice to improve crop production under
water deficient condition. However, the mechanisms behind the
beneficial effects of Si are still largely unknown. Hence, the
mechanisms by which Si moderates the plant water status still
need further investigation, especially regarding the molecular and
biochemical basis by which Si regulates plant water uptake. In
addition, the application of Si and its performance under field
conditions still needs extensive investigation.
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