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Nitric oxide (·NO) is known to attenuate dormancy and promote germination, a function
that seemingly depends on crosstalk with the abscisic acid (ABA) signaling network. In
the past 2 years, a number of independent studies have revealed that ·NO gates the
ABA signaling network at multiple steps, ensuring redundant and effectively irreversible
control of germination. Here we summarize the recent studies, and propose a model of
the multiple functions of ·NO in seed dormancy.
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INTRODUCTION

Elemental nitrogen is capable of a range of oxidation states (−3 to +5). The formation of reactive
nitrogen species (RNS) is thus a necessary consequence of nitrogen metabolism. These RNS include
peroxynitrite (ONOO−), and the free radicals ·NO and nitrogen dioxide (·NO2). Due to their high
reactivity, RNS can modify the structure and function of proteins through the nitration of tyrosine
or nitrosylation of cysteine residues. These functions have been adopted as central modes of post-
translational regulation, governing wide developmental, acclimation and stress response processes
in plants. For example, root and shoot elongation, pollen and seed development, stomatal closure,
and antioxidant defense (Prado et al., 2004; Lombardo et al., 2006).

Among the RNS, ·NO is the most well-studied, and several developmental and adaptive
functions have been assigned. Distinct roles of ·NO in regulating seed dormancy and germination
have been described, including the interaction with other plant growth regulators (Beligni and
Lamattina, 2000; Batak et al., 2002; Bethke et al., 2006). Nevertheless, the collective influence
of ·NO is pervasive, demonstrating function in tropic growth responses, root development and
branching, nodule formation, cell wall lignification, xylem differentiation, cellulose biosynthesis,
stomatal aperture, pollen tube growth, floral transitions, fruit maturation, and leaves senescence
(reviewed by Sanz et al., 2014). Moreover, at physiological concentrations, ·NO is in the gas phase
and able to diffuse across membranes, and may have relatively long half-life. These features make
·NO an important local and long-range signaling molecule and gasotransmitter (Lamattina and
García Mata, 2016).

RNS EFFECT POST-TRANSLATIONAL CONTROL OF
PHYTOHORMONE SIGNALING

Many of the developmental functions of RNS result from the interference with phytohormone
signaling pathways, mainly by the S-nitrosylation of key intermediate signaling proteins.
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For example, the S-nitrosylation of phosphotransfer proteins
functions in the repression of cytokinin (CK) signaling (Feng
et al., 2013). In a similar way, the S-nitrosylation of OPEN
STOMATA1 (OST1) and SUCROSE NON-FERMENTING1
(SNF1)-RELATED PROTEIN KINASE2.6 (SnRK2.6) negatively
regulates ABA signaling in guard cells (Wang et al., 2015a).
Other SnRK2 proteins are also susceptible to S-nitrosylation,
attenuating ABA control of seed germination (Wang et al.,
2015b). In addition, ·NO was shown to increase the
DELLA protein concentration, which negatively regulates
gibberellic acid (GA) signal transduction (Lozano-Juste
and Leon, 2011; Krasuska et al., 2016). Together, these
observations demonstrate that ·NO can fine-tune phytohormone
signaling at several levels, and is thus an important sensory
medium.

INVOLVEMENT OF RNS IN THE
ABA-MEDIATED DORMANCY CONTROL

The ABA network governing seed dormancy is well-described
(Graeber et al., 2012). In this network, the binding of
ABA to the ABA receptors, PYR/PYL/RCAR, results in the
inactivation of type 2C protein phosphatases (PP2C). This
inactivation triggers the action of the SnRK2 kinase, which
promotes the activity of the basic leucine zipper transcription
factor ABSCISIC ACID INSENSITIVE5 (ABI5) (Figure 1).
In turn, ABI5 exerts considerable transcriptional control over
dormancy (Skubacz et al., 2016). ABI5 is thus considered

a key repressor of seed germination and post-germination
development (Finkelstein and Lynch, 2000; Lopez-Molina et al.,
2001).

Crosstalk between ·NO and ABA has been demonstrated
by pharmacological and genetic approaches, for example
the enhanced dormancy potential and ABA hypersensitivity
of ·NO-deficient seeds of arabidopsis (Arabidopsis thaliana;
Lozano-Juste and Leon, 2010), which was later explained
by the hyperaccumulation of ABI5 (Albertos et al., 2015).
However, on closer inspection it is clear that RNS can
interfere with ABA signaling by four independent pathways
(Figure 1).

Firstly, RNS can inactivate the PYR/PYL/RCAR receptor by
tyrosine-nitration (Castillo et al., 2015), enabling the activity of
PP2C, which inactivates SnRK2. Thus, the influence of ABI5
is attenuated (Figure 1, i). Secondly, different SnRK2 proteins
(SnRK2.6, SnRK2.2, and SnRK2.3) were shown to be inactivated
by S-nitrosylation (by ·NO), affecting ABA signaling not only
in stomatal closure but also seed germination (Wang et al.,
2015b). As mentioned above, in a nitrosative condition, most
of the available SnRK2 would be dephosphorylated (inactive).
It seems clear, however, that any remaining phosphorylated
SnRK2 can be inactivated directly by ·NO, which nitrosylates
a cysteine residue near the kinase catalytic site, blocking the
kinase activity (Figure 1, ii; Wang et al., 2015a). Thirdly,
·NO assists the degradation of ABI5 by the S-nitrosylation
at cysteine-153, targeting it to the proteasome by enhancing
its interaction with CULLIN4-based and KEEP ON GOING
E3 Ligases (Figure 1, iii; Albertos et al., 2015). Accordingly,

FIGURE 1 | Possible mechanisms by which RNS modulate the ABA regulation of dormancy. In absence of ·NO, the transcription factor ABI5 controls the expression
of genes relevant to ensure the dormant state. The expression of ABI5 is induced by the Group VII ETHYLENE RESPONSE FACTORS (ERF) and the activity of ABI5
is promoted by SnRK2 kinases. ABA binds to the PYR/PYL/RCAR receptor to complex PP2C and avoids the inactivation of SnRK2. However, seed imbibition
produces an increase of ·NO levels, resulting in a potential increase of different RNS. In this situation, the ABA control of dormancy can be attenuated by four
different pathways: (i) the PYR/PYL/RCAR complex can be S-nitrosylated avoiding the interaction with ABA; (ii) ·NO can S-nitrosylates SnRK2 kinases inactivating
their kinase activity; (iii) ·NO can target ABI5 to the proteasome by S-nitrosylation affecting the expression of genes under its regulation; and (iv) ·NO also targets the
Group VII ERF to the proteasome, via the N-end rule pathway of proteolysis.
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the levels of ·NO and the amount of S-nitrosylated proteins
increase in barley seed embryos during the first hours
post-imbibition (Ma et al., 2016). Finally, ·NO promotes
the degradation of the Group VII ETHYLENE RESPONSE
FACTORS (ERF, Figure 1, iv) via the N-end rule pathway
of proteolysis. These ERFs are positive regulators of the
transcription of ABI5, and hence their degradation limits further
synthesis (Gibbs et al., 2014).

PERSPECTIVES

• RNS can modulate a single signaling pathway at multiple
levels. Here we have described the fine-tuning of ABA
signaling by four independent mechanisms, all of which
apparently negatively regulate the canonical ABA pathway.
RNS crosstalks with other phytohormone pathways have been
demonstrated. Due to the pervasive influence of RNS activities
on enzyme functions, now we expect further detail to emerge
on the redundancies of RNS signaling, positive, negative and
conflicting influences.
• Although the crosstalk between RNS and ABA is

well-developed, questions still remain. For example, whether
the nitration of the PYR/PYL/RCAR complex does occur
in vivo. The influence of ·NO is particularly dependent on
spatial, temporal and concentration conditions.
• ·NO acts as a gasotransmitter affecting diverse biological

processes. In plants, there are many pathways of ·NO synthesis.
However, no ·NO synthase has been identified in plants yet.
The potential finding of a plant ·NO synthase would be key to
manage the ·NO homeostasis and thus the processes under its
regulation.

• From a management point of view, and in particular for
seed producers, it would be interesting to develop procedures
to manage endogenous ·NO levels. This would lead to the
possibility of producing seeds with prolonged or reduced
dormancy, as desired.
• With the arising of genome editing techniques, it

would be possible to replace susceptible residues to
nitration and nitrosylation by amino acids with similar
physicochemical characteristics in order to reduce the
susceptibility of the enzymes to RNS but keeping their
functionality.

CONCLUDING REMARKS

Nitric oxide participates in the regulation of the dormancy release
by (i) the tyrosine nitration of ABA receptors, (ii) S-nitrosylation
of SnRK2s, (iii) S-nitrosylation of ABI5, and (iv) the degradation
of ERF. This evidence supports an inverse molecular link between
·NO and ABA hormone signaling in which ·NO acts upstream
and downstream.
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