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Cacao (Theobroma cacao) is a globally important crop, and its yield is severely
restricted by disease. Two of the most damaging diseases, witches’ broom disease
(WBD) and frosty pod rot disease (FPRD), are caused by a pair of related fungi:
Moniliophthora perniciosa and Moniliophthora roreri, respectively. Resistant cultivars
are the most effective long-term strategy to address Moniliophthora diseases, but
efficiently generating resistant and productive new cultivars will require robust methods
for screening germplasm before field testing. Marker-assisted selection (MAS) and
genomic selection (GS) provide two potential avenues for predicting the performance
of new genotypes, potentially increasing the selection gain per unit time. To test the
effectiveness of these two approaches, we performed a genome-wide association
study (GWAS) and GS on three related populations of cacao in Ecuador genotyped
with a 15K single nucleotide polymorphism (SNP) microarray for three measures of
WBD infection (vegetative broom, cushion broom, and chirimoya pod), one of FPRD
(monilia pod) and two productivity traits (total fresh weight of pods and % healthy
pods produced). GWAS yielded several SNPs associated with disease resistance in
each population, but none were significantly correlated with the same trait in other
populations. Genomic selection, using one population as a training set to estimate the
phenotypes of the remaining two (composed of different families), varied among traits,
from a mean prediction accuracy of 0.46 (vegetative broom) to 0.15 (monilia pod), and
varied between training populations. Simulations demonstrated that selecting seedlings
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using GWAS markers alone generates no improvement over selecting at random, but
that GS improves the selection process significantly. Our results suggest that the GWAS
markers discovered here are not sufficiently predictive across diverse germplasm to be
useful for MAS, but that using all markers in a GS framework holds substantial promise
in accelerating disease-resistance in cacao.

Keywords: Theobroma cacao, witches’ broom disease, frosty pod rot, SNPs, GWAS, genomic selection

INTRODUCTION

Cacao (Theobroma cacao) is tropical understory tree native
to the Amazon basin that produces one of the world’s most
valuable agricultural commodities: cacao beans. As the primary
ingredient in chocolate, cacao trees are the base of a $100 billion
USD global industry (World Cocoa Foundation, 2012) and a
substantial contributor to the economies of West Africa and Latin
America (Franzen and Mulder, 2007). Yields can be as high as
3,000 kg ha−1, but pathogens severely limit production: as much
as 30% of the crop is estimated to be lost annually due to disease
(Bowers et al., 2001). The majority of these losses come from
three fungal pathogens, dubbed the ‘cacao disease trilogy’ (Fulton,
1989; Evans, 2007): black pod rot (BPR), witches’ broom disease
(WBD), and frosty pod rot disease (FPRD). Although BPR is by
far the most serious pathogen in terms of annual losses, WBD and
FPRD may have the potential to be even more damaging due to
the fact they have not yet spread to West Africa, the largest center
of cacao production (Ploetz, 2007).

Both WBD and FPRD are caused by basidiomycete fungi
(Moniliophthora perniciosa and M. roreri, respectively), which
are closely related (Aime and Phillips-Mora, 2005; Meinhardt
et al., 2014). Both fungi have co-evolved with cacao and related
species in its native range and have spread throughout the
Americas (Evans, 2007; Evans et al., 2013). WBD colonizes
meristematic tissue, and can infect shoots, flowers and developing
fruit, sometimes resulting in the death of the entire tree
(Meinhardt et al., 2008). FPRD only infects pods, but its
aggressiveness and persistence has resulted in the abandonment
of cacao cultivation in large areas in the Americas (Phillips-Mora
and Wilkinson, 2007). Current methods for controlling these
diseases center on the application of fungicides/biocontrol agents
and phytosanitation practices on-site, and the restriction of
movement of the pathogens to new areas that are not yet affected
(Bowers et al., 2001; Ploetz, 2016). These strategies, however,
are considered ‘short- to medium-term’ (Hebbar, 2007); long-
term solutions will require the development of disease-resistant
germplasm.

Cacao is a long-lived woody perennial with an extended
juvenile phase, and thus stands to benefit more than most crops
from marker-assisted breeding (MAB; McClure et al., 2014). The
first step toward MAB for resistance to Moniliophthora is the
identification of genetic markers that robustly predict resistance.
Thus far, studies into the development of cacao disease markers
have relied on bi-parental linkage mapping (Lanaud et al., 2009;
Motilal et al., 2016; Royaert et al., 2016). Although a powerful
tool, this method relies on creating segregating populations
from crosses, a challenging task in slow-growing perennials.

Furthermore, markers identified may not be effective outside of
the mapping population.

Alternatives to traditional QTL mapping include genome-
wide association studies (GWAS), and genomic selection (GS).
Although these two methods generally rely on more intense
genotyping of single nucleotide polymorphisms (SNPs) either
through next-generation sequencing (NGS; Davey et al., 2011)
or high-density SNP microarrays (Gupta et al., 2008), they are
generally considered more robust. GWAS functions by testing
the association between phenotypes and individual SNPs in a
population, generating single markers that can be used to screen
germplasm for useful traits (Korte and Farlow, 2013). Conversely,
GS calculates the association between phenotypes and the entire
marker set within a ‘training population’ to create a model that
can then be used to predict the phenotypes of individuals in a test
population (Meuwissen et al., 2001; Hayes et al., 2009). Although
both methods can be effective tools in MAB, the merits of each
have been debated, with some suggesting that integrating the two
may hold the key to better phenotype prediction (Zhang et al.,
2014; Bian and Holland, 2017).

Fungal diseases, and Moniliophthora species in particular,
remain one of the primary constraints of cacao production in the
Americas and, if they extend beyond their current range, threaten
to seriously damage the chocolate industry worldwide. Genetic
resistance to these diseases is therefore a top priority for T. cacao
breeders and a central focus for genomic research on this crop.
The ability to accurately screen for disease resistance genetically,
without having to phenotype trees at a mature stage, could greatly
increase the efficiency of cacao improvement. With a choice of
methods at breeder’s disposal, it is important to evaluate the
effectiveness of each approach. This study aims to gauge the
effectiveness of GWAS and GS in three cacao populations, mainly
including selections from 225 bi-parental crosses, in predicting
resistance to FRPD and WBD, as well as productivity. In addition,
we seek to determine how these techniques may be applied in
disease resistance prediction between related populations.

MATERIALS AND METHODS

Populations
Crosses were made according to three factorial mating schemes
according to the genetic types of the parents (Supplementary
Table S1), including (A) wild parents (wild accessions never
tested in crosses), (B) known accessions (previously selected
accessions and some previously tested as parents), and (C)
accessions from the ‘Nacional’ genetic group. Approximately 100
progenies were obtained from each cross, half of which were
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randomly selected and planted in large bags for 1–2 years (two
to three rainy seasons) under mature cocoa trees highly infected
with WBD, in five randomized blocks containing 10 plants each.
Of these fifty, plants were selected if (a) they showed an absence
of witches’ brooms symptoms, or (b) the diameter of the broom
relative to the diameter of the stem from where the broom was
growing of less than 0.6, a common technique for screening
plants for WBD resistance at the seeding stage (Surujdeo-Maharaj
et al., 2003). Further to these selections, approximately ten
percent of the plants were also chosen randomly without taking
into account any WBD symptoms. Individual accessions were
cloned (through grafting on IMC 67 open pollinated seedlings)
and planted in three adjacent plots at a test site in Ecuador
(“Estacion Tropical Experimental de Pichilingue,” Rios Province,
Ecuador) starting in 2007, 2009 and 2010. Plots were planted
sequentially by year. For each population, three replicates were
planted in four blocks (a total of N = 12 replicates for each clone),
with the exception of Malvinas, in which only three blocks were
planted (N = 9). Trees that died during the trial were replanted.

We therefore examined a total of 1,345 accessions from the
three plots (referred to here as populations): Las Tecas’ (N = 589)
‘Malvinas’ (N = 385) and ‘Ganaderia’ (N = 391) were genotyped
using the 15K Theobroma cacao L. SNP array (Livingstone et al.,
2017). Although the three populations were derived from many
of the same parents, the accessions in each population were
largely distinct, sharing only a couple accessions between them.

Phenotypic Data
Phenotypic observations were taken approximately every month,
and aggregated per year from the year following planting until
2013. Observations for WBD traits (vegetative brooms, flower
cushion broom, and chirimoya pods) were taken once per year
in July. The following observations were recorded:

• Chirimoya pods: counts of developing pods infected by
WBD (Moniliophthora perniciosa)
• Flower cushion broom: counts of cushion flowers infected

by WBD
• Vegetative brooms: counts of twigs/branches infected by

WBD
• Monilia pods: counts of pods infected by FPRD

(Moniliophthora roreri)
• Healthy pods: counts of pods not infected by any pathogen
• Total pod number: includes counts of healthy pods, pods

infected with FPRD, and sick pods (pods infected with
pathogens not including FPRD)
• Total fresh weight of pods (g)

All phenotypes were log-transformed, apart from monilia
pods and healthy pods, which were taken as a percentage of
total pods. To obtain adjusted means across replicates for each
genotype, the following mixed linear model was applied:

y = µ+ G+ A+ A× N + A× G+ B (1)

× A× N + R+ I + ε

where y is the phenotypic value of the accession, µ is the overall
mean, G is the fixed effect of accession identity, A is the random

effect of tree age, N is random effect of the year of the observation,
B is the random block effect, R is the random effect of rep, I is the
random effect of individual tree, and ε is the residual error. The
adjusted value for each trait for each accession (i.e., µ + G) was
used for all downstream analyses (adjusted accession values given
in Supplementary Table S2).

DNA Extraction and Microarray
Leaf samples were collected from the 1465 accessions at INIAP,
Ecuador. The DNA from these samples was extracted using
the Zymo Research plant DNA extraction kit following the
manufacturer’s protocol (Zymo) and submitted to Illumina for
genotyping on the custom Infinium II BeadArray. Details of the
15K SNP array are described in Livingstone et al. (2017).

Genotypic Data
Genetic data were filtered using PLINK v1.07 (Purcell et al.,
2007). The minor allele frequency threshold was set at 5%
and the missingness by individual filter at 10%. Missing
genotypes were imputed using LinkImpute v 1.1.1, a k-nearest
neighbor imputation technique (Money et al., 2015). Accuracy
of the imputation was 0.966 using two nearest neighbors
(k = 2) and 65 SNPs (l = 65). The final genotype set, after
manual curation to remove genetically identical and likely
mislabeled individuals, was 1,345 accessions (Ganaderia = 391,
Malvinas = 385, Las Tecas = 589, with 17 accessions common
to more than one population) with a complete set of 9,640
SNPs.

Population Structure, Ancestry, and
Linkage Disequilibrium
The proportion of membership in each of the 10 cacao ancestral
genetic groups (Motamayor et al., 2008) was estimated using
the software Admixture (Alexander et al., 2009). Supervised
admixture analysis was performed using the individuals with
>0.85 proportion ancestry from a study of 200 T. cacao genomes
(Cornejo et al., unpublished) and individuals used to describe the
ancestral types (Motamayor et al., 2008) as references. Principal
component analysis (PCA) of the genotype matrix was performed
in R using the ‘prcomp’ function (R Core Team, 2016). Linkage
disequilibrium (LD) was calculated using PLINK v1.07 (Purcell
et al., 2007).

Genome-Wide Association Analysis
Genome-wide association analysis was performed using
Tassel v5.2.35 (Bradbury et al., 2007), correcting for kinship
using the internally generated an identity-by-state (IBS)
k-matrix and genetic structure (Q) using the ancestry estimates
generated in the admixture analysis. Each population was
analyzed separately using adjusted accession means (see section
Phenotypic Data) as phenotypes. The P-value threshold for
multiple tests was set as the Bonferroni correction of the
effective number of independent tests (Meff; Cheverud, 2001)
based on the number of principal components required
to explain 99.5% of the variation observed in the SNP
data.
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Genomic Prediction
Genomic prediction of phenotypes was performed using a
G-BLUP model in ASREML-R (Butler et al., 2007), a mixed model
with the following form:

y = Xβ+ Zu+ ε (2)

where y is the phenotypic values, β is the vector of fixed effects
(including the intercept and, when used, single markers identified
by GWAS as being significantly associated with the trait being
tested) with corresponding design matrix (X); u is the vector of
random genotypic effects, with its corresponding design matrix
(Z), and u∼MVN(0, σ2

uG), where G is the k-matrix obtained by
GenoMatrix (Nazarian and Gezan, 2016) from the IBS matrix
generated by Tassel; and ε is the vector of residuals, where
ε∼MVN(0, σ2I), where I is an identity matrix. Also, σ2

u and
σ2 are the variance component associated with genotypic and
residual effects, respectively. The narrow-sense heritability, h2,
was calculated from the estimated variance components by using
the following expression: h2 = σ2

u/(σ2
u + σ2).

Each of the three populations was used as a training set to
generate a predictive model using all genotype/phenotype data
(i.e., without cross validation) that was applied to remaining two
‘test’ populations to generate genomic-estimated breeding values
(GEBVs). The accuracy of the prediction model was calculated
by determining the correlation between predicted and estimated
phenotypic (see section Phenotypic Data) values per accession in
the test populations. To determine the general accuracy of the
model, the correlation between the predicted and observed values
in the training population were also calculated and reported.

Type ‘B’ correlations (Yamada, 1962), which measure the
correlations between genetic values estimated with genomic
prediction models in different environments, were calculated
for the three populations to evaluate differences between their
respective plot areas. Note that values of Type ‘B’ correlation close
to zero (or one) indicate large (or small) presence of genotype-by-
environment interactions, respectively.

Selection Simulation
For a subset of traits (vegetative broom, cushion broom, monilia
pod and total fresh weight), a screening trial simulation was set
up to determine the effectiveness of applying different methods of
selecting the top-performing genotypes at the seedling stage. For
the simulation, phenotypic and genotypic information for Las
Tecas, the largest population, was used as a training population
to select the top 40 performing individuals (approximately
10% selection intensity) for all three populations (Las Tecas,
Ganaderia, and Malvinas). Five methods were considered:

(i) GWAS markers, in which individuals were ranked
according to the total number of SNP markers with
‘favorable’ alleles discovered in the training population
they carried (in the case of ‘ties’ exceeding the 40-
individual limit, individuals of the lowest rank were
selected at random until the limit was reached).

(ii) Bi-parental QTL markers, in which individuals were
ranked according to a similar scheme as (i), but using SNP

markers discovered in a related bi-parental population
(Livingstone et al., 2017). As markers were only available
for monilia pod resistance and pod fresh weight, only these
traits were considered for this method.

(iii) Genomic selection, in which individuals were ranked
according to the predicted phenotypic values (i.e., GEBV)
from the genomic prediction models generated in the
training population (Las Tecas).

(iv) Genomic selection with GWAS markers, in which
individuals in the test populations were ranked in a
similar model as (iii), while using the markers in (i) as
fixed effects (Bian and Holland, 2017).

(v) Genomic selection with bi-parental QTL markers, in which
individuals in the test populations were ranked in a similar
model as (iv), but using the SNP markers from (ii) as fixed
effects. As in (ii), only monilia pod and pod fresh weight
were considered for this method.

In addition, the Las Tecas accessions were ranked according
to the seedling broom width score (see section Phenotypic Data)
to determine how the genetic methods compared to an early
phenotypic screening technique.

The mean phenotypic value of the top 40 individuals selected
by each method for each trait was determined and compared to a
distribution of means from 10,000 sets of 40-individual groups
selected at random from each population (with replacement).
Those selected means that fell within the top 1% of the
distribution (P < 0.01) were considered to be significantly more
favorable than choosing at random; those that fell outside the
distribution (P < 0.0001) were considered highly significant.

RESULTS

Phenotype Associations
Correlations between the adjusted means of phenotypes are
shown in Figure 1. Correlations of all phenotypes remained
largely similar across all populations. All WBD phenotypic traits
(vegetative broom, chirimoya pods, and cushion broom) were
positively correlated, particularly the latter two. Correlations
between monilia pod incidence (FPRD) and WBD disease
were not as pronounced and varied across populations. Disease
phenotypes did not show strong correlations with productivity
measurements (total fresh weight and percent healthy pods),
apart from healthy pods and monilia pods, which were negatively
correlated.

Structure and Diversity of Populations
The percent ancestry of each of the populations is given in Table 1
and Figure 2. All populations were prevailingly of ‘Nacional’
ancestry, with a mean ancestry proportion of 29%, 19%, and
26% for Ganaderia, Malvinas, and Las Tecas, respectively. This
was followed by the ‘Amelonado’ (16%, 20%, and 15%) and
‘Contamana’ (14%, 17%, and 15%).

Principal component analysis (Figure 3) confirmed that
the major dimensions of genetic variation were influenced
by ancestral background, with ‘Nacional’/‘Contanama’-derived
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FIGURE 1 | Correlation (R-values) between phenotypes in three cacao populations. Phenotypes were log-transformed (Veg. br., Chir. pod, Cus. br., Fr. wt.) or set as
proportion of total pods (Mon. pod, Hea. pod), then adjusted using site, year, and plant age to get a mean value per genotype.

accessions differentiating from ‘Amelonado’/‘Iquitos’/‘Nanay’
accessions along the primary axis, and the ‘Curaray’-derived
accessions separating out along the secondary axis. This analysis
also suggests that the three populations, Ganaderia, Malvinas,
and Las Tecas, although composed of different families are
not fundamentally genetically distinct from each other, as the
accessions from each population are distributed evenly among
the first three PCs, which account for 55.6% of the genetic
variation.

In contrast to ancestry and PCA, linkage disequilibrium
breakdown did show some important distinctions between
populations (Figure 4). Ganaderia and Las Tecas had an average
within-chromosome LD r2 value of 0.188 and 0.147 (within a 100
kbp window), respectively, whereas Malvinas (showing a more
even composition of the main genetic groups) had a mean value
of 0.418, showing much less recombination.

Genome-Wide Association Analysis
Results of GWAS for the four disease traits and two productivity
traits are given in Figure 5 and Supplementary Table S3. Overall,
only three pairs of SNPs in close proximity (>100 kbp) were
shared across two populations, and only one associated with
the same trait. No markers in any population were associated
significantly with the percent of healthy pods.

TABLE 1 | Mean percent ancestries of three populations of cacao.

Ancestral Group Ganaderia Malvinas Las Tecas All

Nacional 29.7% 19.8% 26.4% 25.3%

Amelonado 15.8% 19.8% 14.6% 16.7%

Contenama 13.5% 17.0% 14.6% 15.0%

Iquitos 10.7% 11.6% 13.1% 11.8%

Curaray 12.9% 8.2% 11.0% 10.7%

Nanay 6.1% 7.2% 7.0% 6.8%

Criollo 6.3% 6.3% 6.4% 6.3%

Purus 3.2% 2.9% 3.4% 3.1%

Maranon 1.1% 5.8% 2.2% 3.0%

Guiana 0.7% 1.6% 1.3% 1.2%

Ganaderia had a large number of significant associations (9)
associated with total fresh weight, some of which corresponded
to disease markers in other populations. This population also had
a significant marker for cushion broom on chromosome 6, and
three hits for vegetative broom on chromosomes 8 and 9.

Malvinas had several significant associations (6) for
monilia pod, spread over five chromosomes, including one on
chromosome 9 that lay in relatively close proximity (∼750 kbp)
to a similar marker found in Las Tecas. One ∼300 kbp region in
chromosome 1 had significant associations for chirimoya pod,
cushion broom and monilia pod, and another for chirimoya pod
was found on chromosome 7.

Las Tecas had the fewest number of total significant
associations (9) with three for chirimoya pod, two for cushion
broom and one each for monilia pod and fresh weight. Most
markers associated with disease phenotypes discovered in this
population tended to be in regions near significant associations
in the two other populations, although one marker for chirimoya
pod on chromosome 2 was not found elsewhere.

Genomic Prediction
Prediction of phenotypes via a genomic prediction model was
performed using each population as a training population for the
remaining two, as well as themselves (Table 2). Model-derived
narrow-sense heritability (h2) varied greatly between traits and
sites, with vegetative broom and total fresh weight showing some
of the highest values, and pod diseases (chirimoya and monilia)
some of the lowest. Likewise, the prediction accuracy of the
models varied between traits, although they remained notably
consistent between populations (the exception being healthy
pods, which was predicted much less accurately using Malvinas
as a test population).

The type ‘B’ correlations (Yamada, 1962), which measure the
phenotypic expression of genetically similar individuals across
environments (in this case, plots within the same site across
different number of years) among the three populations is
given in Table 3. All correlations of traits between populations
were positive, with those between Las Tecas and the other two
populations higher than those between Ganaderia and Malvinas
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FIGURE 2 | Ancestry proportions for 1,345 accessions from three cacao populations. Each accession is represented by a vertical line and derives its ancestry from
up to 10 ancestral groups which are indicated by the various colors in the legend. Ancestry was estimated using supervised Admixture analysis using a
genome-wide panel of 9,640 SNPs.

FIGURE 3 | Principal component analysis (PCA) of genetic relatedness of
1,345 cacao individuals in three sites using a genome-wide panel of 9,640
SNPs. Shapes refer to the population of the individual. Colored points are
individuals showing >0.5 proportion ancestry of an ancestral group (see
Figure 2 for description). Percentage of the variation captured by each
component is given on the axis labels.

FIGURE 4 | Mean pairwise SNP intra-chromosomal linkage disequilibrium
(LD) by inter-SNP distance for three populations of cacao. Lines represent
Loess-smoothed averages.

(mean r2 values of 0.83 and 0.88, respectively, versus 0.79),
though this relationship is not consistent across all phenotypes.

Early WBD Phenotypic Selection
For one of three populations (Las Tecas) accessions were scored
at the seedling stage on three dates to determine potential

FIGURE 5 | Genomic position of SNP markers significantly associated with
five phenotypes among three populations of cacao (see Supplementary
Table S3 for SNP information).

resistance to WBD before field trials. Of the total population
of 569 test accessions (minus those removed from the analysis
due to incomplete genotype data), 305 were scored as ‘Resistant’
(showing no sign of WB infection), 105 as ‘Partially Resistant’
(showing symptoms of WB on the first date but not subsequent
dates) and 159 as ‘Susceptible’ (showing symptoms on all three
dates which developed into brooms) but were nonetheless
retained because the broom to stem ratio was smaller than 0.6 (see
Materials and Methods). The mean actual values of the accessions
in each seedling resistance category for the three WB diseases
(vegetative broom, chirimoya pod, and cushion broom) as scored
at maturity under field conditions are given in Table 4. Although
the arithmetic means of the putatively resistant populations were
lower than the susceptible in the case of vegetative brooms, they
were actually higher in the case of chirimoya pods and cushion
brooms. Nevertheless, the standard deviation of means was high
in all cases, and the differences between the populations can be
considered negligible.

Selection Simulation
To simulate a screening of germplasm via genotyping, we used
the data from the GWAS and GS of Las Tecas, which was
not only the largest population of the three but also the one
with the most years of phenotypic data available, to predict the
top 40 individuals (∼10% selection intensity) performers in the
Ganaderia and Malvinas populations. The top 40 individuals,
as predicted by GWAS markers, QTL markers discovered in a
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TABLE 2 | Accuracy of genomic selection (GS) models for six traits in three populations of cacao, using one of three populations as the training set and the remaining
two as test sets.

Trait Training population Model h2 Test populations Mean accuracy∗

Ganaderia Malvinas Las Tecas

Vegetative broom Ganaderia 0.568 0.856 0.304 0.545 0.425

Malvinas 0.193 0.450 0.611 0.505 0.478

Las Tecas 0.675 0.578 0.376 0.889 0.477

Chirimoya pods Ganaderia 0.083 0.458 0.158 0.098 0.128

Malvinas 0.222 0.161 0.583 0.235 0.198

Las Tecas 0.276 0.116 0.236 0.649 0.176

Cushion broom Ganaderia 0.205 0.259 0.195 0.218 0.207

Malvinas 0.219 0.171 0.643 0.202 0.198

Las Tecas 0.238 0.159 0.298 0.655 0.229

Monilia pods Ganaderia 0.219 0.620 0.070 0.245 0.158

Malvinas 0.030 0.121 0.373 0.377 0.065

Las Tecas 0.282 0.259 0.130 0.661 0.237

Healthy pods Ganaderia 0.201 0.604 0.064 0.336 0.200

Malvinas 0.122 0.005 0.572 0.125 0.065

Las Tecas 0.426 0.317 0.157 0.755 0.237

Total fresh weight Ganaderia 0.424 0.783 0.301 0.477 0.389

Malvinas 0.456 0.272 0.804 0.460 0.366

Las Tecas 0.433 0.388 0.393 0.788 0.391

∗Excluding prediction of training population (i.e., diagonals). The trait narrow-sense heritability (h2) is given for each model. Model accuracy is defined as the correlation
between predicted and observed values. Mean accuracy is the average accuracy across test populations (i.e., not including the accuracy of the training population on
itself).

related biparental population (Livingstone et al., 2017), GS and
additional GS models that incorporated the GWAS/QTL markers
as fixed effects, were compared to the phenotypic distribution of
the entire population, as well as the actual top 10% of performers,
for the traits vegetative broom, chirimoya pod and fresh weight.
In the case of ‘ties,’ resulting in more than 40 individuals sharing
the same top score, 40 were selected at random. The results
(Figures 6, 7) show that GS was the most accurate selection
method and suggests that the addition of markers as fixed effects
had a negligible impact on prediction accuracy. Focusing solely
on the Las Tecas population, early phenotypic selection gave
a slight advantage in selecting for vegetative broom, but none
for chirimoya pods. In addition, because so many accessions
were scored as ‘Resistant’ in phenotypic scoring (305, 51% of
the population) without any means for further discrimination,
the level of resistance within the population would still depend
largely on random chance.

DISCUSSION

Population Structure
Although the three populations used in this study were not
genetically dissimilar (Figure 3), some key differences existed
between them. This was most apparent when observing the
breakdown of LD (Figure 4), which remained much higher
in one population than the other two. Part of this finding
may be explained by ancestry: both Ganaderia and Las Tecas
are dominated by ‘Wild’ and ‘Nacional’ types, respectively,

while Malvinas is composed mostly of crosses among “known
accessions.” Malvinas is more diverse in terms of ancestry
distribution (Figure 2, Table 1, and Supplementary Table S1),
but it is derived from long-cultivated varieties which likely have
a higher degree of LD than their wilder counterparts, as has been
described in cacao previously (Stack et al., 2015).

GWAS Markers
Selection using small sets of markers associated with desired
phenotypes is a more traditional approach to MAB, and is a
viable option for many crops (Bouchez et al., 2002; Zhou et al.,
2003; Fan et al., 2006; Kuchel et al., 2007). The use of GWAS has
allowed molecular biologists to look beyond bi-parental crosses
and closely interrelated populations to find robust markers across
diverse individuals in numerous crops (Cockram et al., 2010;
Kump et al., 2011; Migicovsky et al., 2016; Berdugo-Cely et al.,
2017). In total, we found 18 SNPs significantly associated with
disease phenotypes, and an additional 10 SNPs associated with
productivity (fresh weight). Many of these markers occurred in
areas identified in previous studies, as described below. A large
number of disease markers occurred on chromosome 9 (Figure 5
and Supplementary Table S1), known to be a ‘hot spot’ for
WBD resistance, as well as for FPRD and BPR (Phytophthora;
Brown et al., 2005; Lanaud et al., 2009; Fister et al., 2016;
Royaert et al., 2016). It has been suggested that the source of this
resistance may be related to the function of a Uveal Autoantigen
with Coiled-coil domains and Ankyrin repeats (UACA) gene,
which triggers cell apoptosis when DNA damage is detected
(Royaert et al., 2016). Given that this molecular-level response
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TABLE 3 | Type ‘B’ correlation among three populations of cacao for six
phenotypes.

Trait Training population Test population

Malvinas Las Tecas

Vegetative broom Ganaderia 0.909 0.999

Malvinas – 0.924

Chirimoya pods Ganaderia 0.810 0.578

Malvinas 0.907

Cushion broom Ganaderia 0.996 0.947

Malvinas – 0.883

Monilia pods Ganaderia 0.430 0.700

Malvinas – 0.804

Healthy pods Ganaderia 0.863 0.942

Malvinas – 0.998

Total fresh weight Ganaderia 0.722 0.880

Malvinas – 0.792

TABLE 4 | Mean values of three witches’ broom disease phenotypes observed at
maturity grouped by their WB seedling phenotype score in a single population of
cacao (Las Tecas).

Symptom Score∗ N Vegetative broom Chirimoya pod Cushion broom

Resistant 305 0.79 ± 0.288 0.13 ± 0.114 0.24 ± 0.164

Partially RResistant 105 0.86 ± 0.256 0.14 ± 0.165 0.20 ± 0.202

Susceptible 59 0.78 ± 0.259 0.10 ± 0.146 0.24 ± 0.177

∗ Out of three observation dates, accessions showing symptoms in all dates were
marked ‘Susceptible,’ those in −2 dates were marked ‘Partially Resistant,’ and
those showing no symptoms were marked as ‘Resistant.’

would be effective against a wide range of fungal pathogens, it
is perhaps not surprising that hits for both vegetative broom and
monilia pod infection occur there. Another notable set of markers
occur on a region of approximately 550 kbp in chromosome 1,
where significant markers for chirimoya pod, cushion broom and
monilia pod were found in the Malvinas population. No QTLs
for traits specific to that region have been identified previously,
though this has been identified as a region associated with
resistance to Phytophthora diseases (Lanaud et al., 2009). The fact
that neither of the other two populations had significant hits in
this area suggests that their effectiveness outside of closely related
germplasm may be limited. Finally, a region on the anterior of
chromosome 10 was also somewhat enriched in markers, with
hits for fresh weight and monilia pods (traits that show at least
some correlation, see Figure 1) across all populations. Putative
pathogen defense-related genes have been identified in the area
(Lanaud et al., 2004; Brown et al., 2007), though they have not
been widely reported.

Although many good candidate loci may have been identified
by GWAS, it is important to note that few are shared across
populations. This finding could be explained by several factors.
First, although the three populations overall were not that
different in their genetic structure, they were enriched differently
in terms of either ‘Wild,’ ‘Known Accessions’ or ‘Nacional’ type
crosses. The ‘Wild’ parents were observed to show tolerance
against WBD (after a 2-year evaluation process in the germplasm
collections) unlike the Nacional-type parents. This observation

may suggest that resistance genes may have been distributed
differentially among the three populations, hence the low
repeatability of markers significantly associated with resistance.
Even in the case that similar resistance alleles were present in
the different populations, if they were inherited from different
parents it is possible that the marker-allele association was
not conserved, leading to population-specific markers (Biscarini
et al., 2010). Furthermore, disease resistance is a complex and
evolving trait and is more likely to be polygenic when considered
over multiple years and environments (Lindhout, 2002). This
is particularly true in cases such as our study, where multiple
sources of diverse germplasm, each carrying its own (polygenic)
resistance mechanisms, are introgressed. While efforts have been
made to modify GWAS to be better able to handle polygenic
traits (Segura et al., 2012), its main strength is identifying single
markers with large effects, making its ability to robustly predict
traits such as disease resistance limited.

Genomic Selection
Unlike GWAS, GS is designed to be able to consider multiple
markers when predicting phenotypes from genotypes. In general,
our models had good predictive ability for some more heritable
traits (i.e., vegetative brooms, total fresh weight). Although
the Las Tecas population had a greater number of accessions
and arguably higher quality phenotype data (based on 5 years
instead of 3), models using it as a training population were
not much higher in accuracy than those using the two smaller
populations. However, it could predict phenotypes of the two
smaller populations better than they could themselves. As the
accuracy of GS models can depend heavily on the size of the
training population (Zhong et al., 2009), this is not surprising.

Early Phenotypic Screening of WBD
Incidence
Early phenotypic selection of accessions is a common practice
in cacao breeding that has been used effectively in the past
(Surujdeo-Maharaj et al., 2003; Thévenin et al., 2010). In our
study, the procedure did an adequate job of selecting accessions
that were less likely to be susceptible to vegetative broom
formation, though not other forms of WBD (chirimoya pods),
but it was still much less effective than genomic selection
(Figure 6). Much like selection by GWAS markers, this method
could identify individuals who were extremely susceptible very
easily, but it was unable to distinguish between plants that had
moderate or high resistance. In our study, nearly half of the
accessions tested had a nearly identical ranking (i.e., showing no
signs of WBD at the seedling stage), making selections from this
set only slightly better than random.

Selection Simulation
Although both GWAS and GS offer different approaches to MAB,
the ultimate test of these methods lies in their ability to be
applied in an actual breeding situation. We decided to simulate
an early-stage germplasm population screening wherein 10% of
the accessions would be selected from a population based on their
predicted performance from genotypic information. As a training
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FIGURE 6 | Simulated selection screen of two traits (vegetative broom and chirimoya pod) in three populations of cacao using three genetic prediction methods and
one phenotypic method, compared against a random sampling of the populations. The predicted top ∼10% (40 individuals) performers for each phenotype from
each population (‘Ganaderia,’ ‘Malvinas,’ ‘Las Tecas’) were selected using predictions from the training population (‘Las Tecas’), using three different methods
(‘GWAS’ = ranking by sum of desirable GWAS-derived markers, ‘GS’ = ranking by genomic selection model GEBV, ‘GS + GWAS’ = ranking by genomic selection
model GEBV with GWAS markers as fixed effects, ‘Pheno’ = phenotypic selection of seedlings for disease susceptibility (in Las Tecas only). Curve indicates the
distribution of means from a 10,000-fold sampling of 40 random accessions from the training population. Lines indicate the position of the mean of the set selected
by each method, including the actual top 10% selected by observed phenotypes. Sets outside of the random distribution are significantly different than the
population mean at P < 0.0001.

population, we selected Las Tecas as it offered the largest number
of accessions and the best-quality phenotype data. We then
selected three traits that represented slightly different scenarios:
vegetative broom, which had high GS prediction ability (0.477)
and markers only moderately associated with the trait (i.e., with
a GWAS Meff – adjusted P-value at < 0.1 level, rather than below
the typical 0.05 threshold) in the training population, chirimoya
pods, which had three strongly associated single markers (GWAS
Meff – adjusted P-value < 0.05) but poor GS predictability
(0.176), and total fresh weight, which had moderate values for
both GS (0.391) and a single, strongly associated marker. Of the
three models used to rank accessions (GWAS marker score, GS-
predicted phenotype, GWAS marker Fixed Effect GS-predicted
phenotype), none matched the ‘true’ value (i.e., the actual top
ranked 40 individuals in Ganaderia and Malvinas for each trait),
but it did reveal several important issues.

First, the selection by GWAS markers alone did not
significantly improve selection for any trait in either population
over what could be considered random chance selection. This is
not altogether surprising, given that our prior GWAS analysis
showed us that Las Tecas had no significant markers in common

with the other two populations for those traits. However, even
though there were more markers in common, it is still unlikely
that GWAS would have improved the selection significantly,
because at least two of the disease markers, the minor allele was
associated with susceptibility rather than resistance. These types
of markers would therefore be useful in identifying individuals
with the poorest predicted performance, but in severe selection
sweeps such as ours, would not contribute much to predicting
individuals with above-average phenotypes.

Genomic selection, on the other hand, could select top
performers much better, selecting a significantly better subset in
vegetative broom in both populations, and a mean fresh weight
in Ganaderia. The addition of GWAS or QTL markers as fixed
effects provided little improvement to predictive ability and in
some cases reduced it. Again, this finding is perhaps not entirely
surprising, given our prior knowledge that the GWAS makers
were unlikely to be applicable to the population, a caveat to
this method (Bian and Holland, 2017). On the other hand, in a
real selection sweep, it would not be unrealistic to assume that
markers having significant associations in a genetically similar
population would confer some level of phenotypic improvement.

Frontiers in Plant Science | www.frontiersin.org 9 March 2018 | Volume 9 | Article 343

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-00343 March 16, 2018 Time: 15:37 # 10

McElroy et al. GS GWAS Cacao Disease

FIGURE 7 | Simulated selection screen of two traits (monilia Pod, total fresh weight) in three populations of cacao using five genetic prediction methods, compared
against a random sampling of the populations. The predicted top ∼10% (40 individuals) for each phenotype from each population (‘Ganaderia,’ ‘Malvinas,’ ‘Las
Tecas’) were selected using predictions from the training population (‘Las Tecas’), using three different methods (‘GWAS’ = ranking by sum of desirable
GWAS-derived markers, ‘QTL’ = ranking by sum of desirable biparental population QTL markers, ‘GS’ = ranking by genomic selection model GEBV,
‘GS + GWAS’ = ranking by genomic selection model GEBV with GWAS markers as fixed effects, ‘GS + QTL’ = ranking by genomic selection model GEBV with QTL
markers as fixed effects). Curve indicates the distribution of means from a 10,000-fold sampling of 40 random accessions from the training population. Lines indicate
the position of the mean of the set selected by each method, including the actual top 10% selected by observed phenotypes. Sets outside of the random
distribution are significantly different than the population mean at P < 0.0001.

Disease resistance in crops is often thought of as a qualitative
trait, with genotypes falling into categories of ‘Resistant’ or
‘Susceptible’ due to a small number of genetic loci. For this
reason, breeders often approach the selection of disease-resistant
germplasm as being well-suited to marker-assisted selection
(MAS) while leaving traits thought to be more quantitative in
nature (e.g., yield) to complex whole-genome techniques such as
GS. We have demonstrated that for plant diseases with no single,
large-effect QTLs, GS may be a more effective selection method
to screen for disease resistance. This efficacy was also recently
demonstrated by our team on a smaller population in Central
America (Navarro et al., 2017).

It should be noted that although GS was the most efficient
technique at selecting resistant germplasm, it does have
limitations, including a higher cost of genotyping than single-
marker testing and the need for phenotypic data from a training
population. In this way, GS can be thought of as a tool most
useful in a mature breeding program for which ample data
have already been generated. Single marker selection and early
phenotypic evaluation, on the other hand, are most useful at the

early stages of germplasm development, where the elimination
of very susceptible types can be eliminated from the pool before
resources are spent on field-testing them. Ultimately, the right
tool for the right job will lead to the best results when combatting
Moniliophthora spp. diseases in cacao.

CONCLUSION

Resistance to Moniliophthora diseases in cacao is an important
trait that may be improved via MAB. In a study of three
related populations of cacao, several markers were identified
for disease resistance and productivity via GWAS, but these
were not consistent across populations, perhaps due to their
distinctive germplasm structure. Genomic selection was used to
predict phenotypes using each site as a training population for
the remaining two; prediction accuracies varied between training
populations and traits. Finally, a simulation of a screening
selection was made wherein the top 10% of individuals in
two populations were made with the GWAS marker data and

Frontiers in Plant Science | www.frontiersin.org 10 March 2018 | Volume 9 | Article 343

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-00343 March 16, 2018 Time: 15:37 # 11

McElroy et al. GS GWAS Cacao Disease

GS using the largest population as a training population. The
predictive accuracy was much higher when using GS than
single-marker selection or early phenotypic selection, which
demonstrates its effectiveness as a technique for selecting
superior disease-resistant germplasm in tropical perennials.
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