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Ryegrass single plants, bi-parental family pools, and multi-parental family pools are

often genotyped, based on allele-frequencies using genotyping-by-sequencing (GBS)

assays. GBS assays can be performed at low-coverage depth to reduce costs.

However, reducing the coverage depth leads to a higher proportion of missing data,

and leads to a reduction in accuracy when identifying the allele-frequency at each

locus. As a consequence of the latter, genomic relationship matrices (GRMs) will be

biased. This bias in GRMs affects variance estimates and the accuracy of GBLUP for

genomic prediction (GBLUP-GP). We derived equations that describe the bias from

low-coverage sequencing as an effect of binomial sampling of sequence reads, and

allowed for any ploidy level of the sample considered. This allowed us to combine

individual and pool genotypes in one GRM, treating pool-genotypes as a polyploid

genotype, equal to the total ploidy-level of the parents of the pool. Using simulated

data, we verified the magnitude of the GRM bias at different coverage depths for

three different kinds of ryegrass breeding material: individual genotypes from single

plants, pool-genotypes from F2 families, and pool-genotypes from synthetic varieties. To

better handle missing data, we also tested imputation procedures, which are suited for

analyzing allele-frequency genomic data. The relative advantages of the bias-correction

and the imputation of missing data were evaluated using real data. We examined a

large dataset, including single plants, F2 families, and synthetic varieties genotyped

in three GBS assays, each with a different coverage depth, and evaluated them for

heading date, crown rust resistance, and seed yield. Cross validations were used to

test the accuracy using GBLUP approaches, demonstrating the feasibility of predicting

among different breeding material. Bias-corrected GRMs proved to increase predictive

accuracies when compared with standard approaches to construct GRMs. Among the
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imputation methods we tested, the random forest method yielded the highest predictive

accuracy. The combinations of these two methods resulted in a meaningful increase of

predictive ability (up to 0.09). The possibility of predicting across individuals and pools

provides new opportunities for improving ryegrass breeding schemes.

Keywords: Perennial ryegrass, sequencing depth, genomic relationship matrix, family pools, genotyping by

sequencing, missing value imputation, genomic prediction

INTRODUCTION

Perennial ryegrass (Lolium Perenne L.) is the most valuable
forage species in the temperate regions of northwest Europe,
America, South Africa, Japan, Australia, and New Zealand
(Humphreys et al., 2010). Traditionally, ryegrass breeding
programs use recurrent selection based on genetic merit
estimated from recorded phenotypes. This system results in a
moderate genetic gain of about 7% per decade (Hayes et al., 2013).
Efforts to reshape ryegrass breeding programs by introducing
marker information, led to the conclusion that markers in
candidate genes for complex traits generally explains only a
small proportion of observed variance (Hayes et al., 2013),
thus limiting the efficacy of marker-assisted selection (MAS)
approaches (Jannink et al., 2010).

Genomic prediction (GP) (Meuwissen et al., 2001) allows
one to perform selection based on genomic estimated breeding
values (GEBVs) derived from dense genome-wide DNAmarkers.
Recently, Fè et al. (2015, 2016) proposed GP as an effective
way to use high-density marker information to overcome the
limitations of MAS in ryegrass breeding. Fè et al. (2015,
2016) performed GBLUP-GP analysis on bi-parental family-
pools and reported medium- to high-predictive ability (PA)
for both disease resistance and quantitative agronomic traits.
The bi-parental families were genotyped using a genotyping-by-
sequencing (GBS) assay, which proved to be an efficient way
to genotype ryegrass pools of heterogeneous individuals (Byrne
et al., 2013). At each SNP locus of each sample, GBS provides
a number of sequence-reads classified into two sets: sequences
carrying the reference allele (SR) and sequences carrying the
alternative allele (SA). The sum of SR and SA. is the coverage depth
or the total number of sequences (ST). The ratio between SA and
ST gives an estimate of the true allele-frequency for the sample
at the SNP locus. Such a frequency can be used as an SNP score,
and for family pools, it should be interpreted as an estimate of the
proportion of alternative alleles across all the individuals within
the pool.

One premise of using GP in breeding programs is that

samples can be genotyped at a lower cost than phenotyping
them (Meuwissen et al., 2001; Goddard and Hayes, 2007).
Increasing sample multiplexing is a straightforward way to

reduce sequencing costs, but it results in a reduction of coverage

depth (ST) (Elshire et al., 2011). However, reducing ST in
ryegrass family pools leads to a decline in the accuracy of

the allele-frequency estimate (Ashraf et al., 2016). In addition,
(Ashraf et al., 2016) showed that genomic relationship matrices

(GRM) calculated by using low-ST SNPs, are biased toward

higher diagonal values, resulting in underestimates in genomic
heritability. This bias in diagonal values is a consequence of over-
estimating inbreeding and underestimating heterozygosity at low
ST. A method to correct this bias is needed in order to utilize
low-ST genomic data for GBLUP-GP.

Reducing coverage depth also increases the fraction of
missing data. This has been reported to be one of the main
problems working with GBS data (Beissinger et al., 2013).
Imputation of missing genotypes has been shown to be an
effective approach for both increasing power in association
studies (Marchini and Howie, 2010) and mitigating losses in
accuracy in GP (Poland et al., 2012; Rutkoski et al., 2013).
Several highly-accurate methods have been developed to assign
allelic states to missing values in genotype data (reviewed by
Marchini and Howie, 2010). However, these methods require
using a high-quality reference genome (with chromosome-
scale pseudomolecules), which is still not available for ryegrass.
Efficient, haplotype-independent imputation methods exist, such
as those implemented in Linkimpute (Money et al., 2015, 2017);
however, such methods were developed for standard marker
coding as counts of alleles, and so cannot be applied to pool
allele-frequencies. The unavailability of a high-quality, reference
genome for ryegrass (with chromosome-scale pseudomolecules)
and our need to code markers as allele-frequencies, means that
we must find alternative, haplotype-independent, imputation
strategies for use in ryegrass.

Although GP has reportedly succeeded in ryegrass, additional
studies are needed to determine how to efficiently use GP
in breeding programs. Ryegrass breeders typically follow the
following steps to develop new varieties: (1) parental individuals,
selected from elite varieties, are crossed to generate F1 progenies,
(2) seeds from each F1 are multiplied in isolation to generate
F2 families that are then phenotyped in several replicates as
family pools, (3) single plants (SPs) from selected F2 families
are evaluated as individual genotypes, (4) synthetic varieties
(SYNs) are constructed by polycrossing several SPs from the best
performing F2 families (generally between 6 and 10 parents), (5)
SYNs are maintained and evaluated as family pools, and after
selection, (7) the best-performing SYNs are submitted for official
testing (Detailed reviews of breeding methods for grasses are
presented by Vogel and Pedersen, 1993; Hayes et al., 2013). In the
present work, we considered data for all three kinds of breeding
material (SPs, F2-families, and SYNs). Careful considerations on
steps to be improved by GP are still needed. One important
contribution would be to develop procedures that are capable
of predicting the performances of individuals from the pools.
In particular, because certain phenotypes cannot be measured
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in individuals, it would be useful to predict individual SP from
pool-data on F2-families and/or SYNs. This would increase the
efficiency of selecting new SYN parents. Therefore, the objectives
of this study were to:

(1) Derive a method for calculating GRM, using allele-
frequencies for various kinds of family-pools, and for
quantifying the factors that bias GRM diagonal elements
(including low ST).

(2) Derive a method to correct for biased GRM diagonal
elements (due to low ST).

(3) Compare haplotype-independent methods for imputing
missing genotypes scored as continuous allele-frequencies.

(4) Test the effectiveness of imputation strategies and bias
correction on predictive ability within and across different
breeding materials.

MATERIALS AND METHODS

Genomic Data Simulation and Expected
GRM
Genomic data were simulated for every ryegrass breeding
material considered: single plants (SPs), F1 and F2 families, and
synthetic varieties (SYNs). The simulated genomic data were
used to calculate genomic relationship matrices (GRM). Various
genomic data were produced to: (1) define the magnitude of
unbiased GRM diagonal elements for individuals and various
types of pools, (2) quantify the effects of factors influencing the
GRM diagonal elements (such as small population size, number
of contributing parents, inbreeding within the family-pools, and
low ST), and (3) test a method to correct for biases due to low ST.
To do this, genomic data were simulated as follows:

(1) We generated 5,000 independent SNP markers for 300
parent pairs (parents were assumed to be unrelated) with
an allele-frequency (p) sampled from a β-distribution with
parameters α = 2 and β = 8.

(2) We created 300 F1 family-pools by simulating crosses
between each parent pair. Various F1 family-pool sizes were
tested, ranging from 5 to 100 individuals.

(3) We generated 300 F2 families, each created by simulating
crossings between pairs of randomly selected F1 individuals
(within the same F1 family pool). Each of the F2 individuals
created by crossing two F1 plants was considered to be a
single plant (SP). Pools of all the SPs originating from the
same F1 family crosses were considered to be members of
the same F2 family. Various F2 family population sizes were
tested, ranging from 5 to 100 individuals. The genotypes of
SPs belonging to the same F2 family were then averaged to
generate F2-family allele frequencies.

(4) We generated 300 SYNs, each generated by crossing 8 SPs
randomly selected from different F2 families. (None of the
crossed SPs were selected from the same F2 family.) We used
8 SPs because this was the average number of parents used to
generate the SYNs in our real data (introduced later). The
number of individuals generated by each cross was set to
50. This is because the results of F1 and F2 families showed
that 50 individuals were enough to avoid allele drift due

to small population size. Then the genotypes of individuals
belonging to the same SYN were averaged to generate SYN
allele frequencies.

Following this simulation procedure, true allele frequencies (p)
were created for F2 families, SPs and SYNs. Allele-frequency data
(ranging between zero and 1.0) were continuous for pools of F2
families and SYNs (resulting from average genotypes of several
individuals), while data were discrete for individual SPs (equal to
either zero or 1.0 for the two contrasting homozygous genotypes,
and 0.5 for the heterozygous genotype).

For each breeding material, the simulated, true allele
frequencies (p) were used to produce estimated allele frequencies
(p̂) for ST values ranging from 1 to 100. This was done by
random sampling ST reads, wherein P(SA) = p and P(SR) =

1–p. Estimated allele-frequencies were calculated as p̂ = SA/ST.
(Missing values were not considered in the simulation.) GRM
were computed using true allele frequencies and estimated allele
frequencies at different ST values. We also computed GRM
corrected for low ST inaccuracies, using the method described
later.

Plant Material and Phenotyping
The phenotypic data we used were derived from a standard
diploid ryegrass breeding program conducted at DLF Seeds A/S
(Store Heddinge, Denmark). Three different kinds of breeding
material, commonly produced in ryegrass breeding programs,
were present:

(1) SPs: 1,225 single plants, produced in 2014 from 50 different
F2 families.

(2) F2 families: 1,791 bi-parental F2 families, phenotyped and
genotyped as pools, produced between 2000 and 2012.

(3) SYNs: 127 multi-parental, synthetic families obtained by
crossing from 6 to 10 randomly-selected single plants from
superior F2 families, phenotyped and genotyped as pools.

For F2 families and SYNs, phenotypic measurements were based
on replicated sward plots for each family, for which only family
means were recorded. For SPs, individual phenotypes were
obtained. The following agronomic traits were considered:

(1) Heading date (HD), defined as days after May 1, in which
plants start showing at least one spikelet per tiller. HD is
available for all breeding material.

(2) Crown rust resistance (CRR), measured by visual scoring
during the period of maximum infection. The scale ranged
from 1 (plant completely covered by rust) to 9 (no rust
symptoms). CRR is available for all breeding material.

(3) Seed yield (SY), expressed in g m−2. This trait was scored
only for F2 families and SYNs.

The phenotype data for F2 families and the SYNs were scored
over several years across different locations. All fields were
organized into trials that were further divided into plots. Detailed
descriptions of phenotyping strategy and field design are given in
Fè et al. (2015, 2016).

SP fields were organized by sowing groups of 50 SPs collected
from the same F2 family in separate rows (There were no
replicates of the genotype). The score for CRR was collected in
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2014 in Les Alleuds (France). The SPs were sown during spring
and the CRR was scored in September after a natural crown rust
attack. Heading date (ear emergence date) was assessed in 2014
in Store Heddinge, Denmark. SPs were sown during late summer
and scored during the following season.

Plant Genotyping
Sequence data were produced using GBS approach, with the
methylation-sensitive restriction enzyme ApeKI to target the low
copy fraction of the genome. Sampling and library preparation
followed the protocol described by Byrne et al. (2013). F2 families
and SYNs were genotyped based on a pooled sample from the
family.

Plant materials were genotyped in three rounds by using
an Illumina HiSeq2000 (100 bp single-end) genome sequencer.
Different multiplexing set-ups were used in these three assays:

Assay 1: consisting of 16 libraries containing maximum 64
samples per library. Each library was sequenced using four lanes
(995 F2 families were included in this assay).

Assay 2: consisting of 14 libraries containing maximum 96
samples per library. Each library was sequenced using four lanes
(all 1,225 SPs and 39 SYNs were included in this assay).

Assay 3: consisting of 16 libraries containing maximum 64
samples per library. Each library was sequenced using four lanes
(796 F2 families and 89 SYNs were included in this assay).

The sequencing data from the three assays were aligned
against a draft sequence assembly to produce common SNP calls
for all the samples (sensu Byrne et al., 2015). Markers with a
missing rate above 0.5, and aMAF lower than 0.01 were excluded.
A total of 897,426 SNP frequencies distributed across 26,384
scaffolds were available for further analyses.

Imputation Methods
Three methods were used to impute missing SNP data: mean
imputation (MNi), k nearest neighbor imputation (kNNi), and
random forest imputation (RFi). Imputation was carried out
scaffold by scaffold for kNNi and RFi. ForMNi, eachmissing data
point xij for pool i marker j was replaced with the mean xij of
the non-missing values for marker j of other individuals or pools.
For kNNi, each missing data point was imputed by replacing
it with the weighted average of the data points at the k closest
markers (Troyanskaya et al., 2001). Specifically, for each marker
j, all other markers were first sorted according to the Euclidean
distance to marker j. Each marker was included twice, both in the
original and flipped state (1 minus the pool or individual allele
frequency), to ensure that markers in strong negative linkage
disequilibrium were also considered to impute the marker under
analysis. Subsequently, for each row i of marker j, the weighted
average of the k closest markers at row i were used to estimating
the marker value at data point xij. The weight of each marker
was assigned 1/d2 where d was the Euclidean distance between
marker j and the marker to be weighted. The k parameter was set
to k= 6 after testing the accuracy of the imputation for each data
set.

For RFi, missing marker values were estimated using
a random forest regression algorithm (Breiman, 2001) as
implemented in the R package “random Forest” (Liaw and

Wiener, 2002). Random forest is a machine-learning algorithm
that uses a group of decision trees to determine a classification
or to predict a value for a new instance. RFi starts by first
imputing all missing marker values usingMNi. Subsequently, the
algorithm estimates and updates missing markers as follows: (1)
for the first marker j, a group average of 100 regression trees
were grown (for each regression tree, the algorithm generated
a bootstrap sample of non-missing individuals and a random
sample of markers), (2) missing values for marker j were
predicted as group averages of the 100 trees applied to the other
markers, (3) the imputed marker j was updated on the marker
matrix, (4) steps one to three were repeated for all the markers,
and (5) steps one to four were repeated with new imputed
markers, for a maximum of 10 iterations or until the difference
between the newly-imputed and the last-imputed dataset began
to diverge.

The imputation accuracy for MNi and RFi was estimated
by masking 0.1% of observed values for each marker with
missing values. After imputing these data points, the accuracy
was described using R2 defined as:

R2 = 1−

∑

j

(

xjtrue− xj imputed
)2

∑

j

(

xjtrue− mean (x)
)2

(1)

where j was iterated across all the masked values. Ten replicates
of this simulation were carried out on 10% of randomly-selected
scaffolds.

GRM Calculation and Bias Correction
GRM calculations were based on VanRaden (2008), adapted to
use allele frequencies (ranging between 0 and 1) rather than
allele-variants. First, allele frequencies were arranged in a matrix
Fij, with i indexing the samples and j indexing the markers.
The matrix was then centered by the mean SNP frequencies
(Mj = Fj – Fj). When working with allele-frequencies, the mean
of all allele-frequency samples at a given SNP is equivalent to
the minimum allele frequency (MAF or p̂). M was then used to
compute G, as follows:

G = MM′/σ 2
G (2)

where σ 2
G is a scaling parameter, corresponding to the sum of the

expected SNP variance across genotypes, as computed by Ashraf
et al. (2014):

σ 2
G =

1

n

∑m

j=i
p̂j

(

1− p̂j
)

(3)

where m equals the number of markers, p̂j equals the frequency
of the jth marker, and n represents the ploidy number of the
breeding material under analysis. The average genotype of a
family pool can be considered to be polyploidal genotype with
a ploidy level equal to the sum of the ploidy number of the
parents used to generate it (a conceptual demonstration of this
assumption is shown for F2 families by Ashraf et al., 2014).
Ploidy levels of 2, 4, and 16 were considered for SPs, F2 families,
and SYNs, respectively. Using this scaling factor, the expected
diagonal element of G is equal to one plus the inbreeding

Frontiers in Plant Science | www.frontiersin.org 4 March 2018 | Volume 9 | Article 369

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Cericola et al. Genomic Prediction Using GBS Data

coefficient. When the GRM includes different breeding materials,
we used n = 4, so that diagonal elements were scaled relative to
the F2 families.

Because SNP frequencies are estimated by sequencing a finite
number of reads (ST), they are affected by binomial samplings
that increase the variance of SNP frequencies (σ 2

G). This extra
variance can be derived using a normal approximation for the
binomial distribution, as described in the following equations.
The number of alternative alleles observed for each pool at each
SNP is distributed as (normal approximation):

SA ∼ N
(

ST p , ST p
(

1− p
))

(4)

where ST is the number of observed reads and p is the true
marker frequency. The observed allele-frequency estimate (p̂)
from sequence reads is obtained by dividing SA by ST. The
sampling distribution of p̂ at a specific locus in a pool with a true
allele frequency p can be described as:

p̂ ∼ N
(

p, p
(

1− p
)

/ST
)

(5)

The binomial error variance for the genotype estimate is
therefore p

(

1− p
)

/ST , while the expected binomial variance
(σ 2

Bin) is:

E
[

p
(

1− p
)

ST
]

=
1

ST

(

E
[

p
]

− E
[

p2
])

=
1

ST

(

p−
1

n
p

(

1− p
)

− p2
)

=
1

ST

(

1−
1

n

)

p
(

1− p
)

(6)

which converges to zero as ST increases.
For instance, the binomial error variance for a diploid F2

family will be 3
4
p(1−p)

ST
. The same conclusion was reported by

Ashraf et al. (2014) using a different derivation. Equation 6
generalizes the expression to any ploidy or any number of
contributing parents.

When the GRM is computed, the diagonal element obtained
represents the sum of squared allele-frequencies over the total
number of SNPs (m). This diagonal is inflated because it includes
the binomial variances of all the allele frequencies. The expected
binomial variance from all m SNPs due to low sequencing depth
(σ̂ 2

Bin) of the family pool i is equal to:

σ̂ 2
Bini

=
∑m

j=1

(

1−
1

ni

)

p̂j
(

1− p̂j
)

/STij

=

(

1−
1

ni

)

∑m

j=1
p̂j

(

1− p̂j
)

/STij (7)

where p̂j is the observed allele frequency for SNP j, n is the
assumed ploidy number of the pool, and STij is sequencing depth
for pool i and SNP j.

The observed marker variance (σ 2
G) of the pool i is equals to:

σ̂ 2
Gi

=
1

ni

∑m

j=1
p̂j(1− p̂j) (8)

This variance is inflated due to binomial variance. The inflation
(ω) can be defined for each sample as the fraction of the total
marker variance that is due to binomial sampling, and is equal to:

ωi =
σ̂ 2
Bini

(

σ̂ 2
Bini

+ σ̂ 2
Gi

)

=

(

1− 1
ni

)

∑m
j=1 p̂j

(

1− p̂j
)

/STij

1
ni

∑m
j=1 pj(1− pj)+

(

1− 1
ni

)

∑m
j=1 p̂j

(

1− p̂j
)

/STij

=
ni − 1

STi + ni − 1
(9)

which is derived by substituting σ̂ 2
Bini

of Equation 7 and σ̂ 2
Gi

of Equation 8, and by defining an average ST (ST) for each
individual across all SNPs. Equation 9 shows that the inflation
in genomic variance (due to binomial sampling) does not
depend on allele frequency, rather it only depends on the
ploidy number and the average ST (coverage depth) of the
sample. Corrected GRM values were calculated by scaling down
the diagonal elements of each individual according to ωi as
follows:

Dci = Dbi(1− ωi) (10)

where Dbi is the ith element of the biased
diagonal element in G, while Dci is the corrected
element.

Statistical Models and Cross-Validation
Schemes
The phenotypic data were analyzed using linear mixed models.
Genomic information was incorporated by the Genomic Best
Linear Unbiased Prediction (GBLUP) method (Habier et al.,
2007; VanRaden, 2008). We adopted the following model:

y = 1µ + Xt+ Z1i+ Z2l+ e (11)

where y is a vector with phenotypic observations, µ is the overall
mean, 1 is a vector of ones, X is the design matrix of fixed effects,
and t is the vector of trial effects nested within location and year,
Z1 and Z2 represent design matrices of random factors, i is a
vector of genomic breeding values where i ∼ N(0, Gσ 2

i ) where
G is the genomic relationship matrix, l is a vector of interaction
effects of genotype by location by year where l ∼ N(0, Iσ 2

ily
), and

e is a vector of random residuals where e∼ N(0, Iσ 2
e ).

Variance components were estimated using the restricted
maximum likelihood method, using the software package
DMU (Jensen et al., 1997; Madsen and Jensen, 2013). We
compared models using GRMs calculated with genotype datasets
imputed using three methods (MNi, kNNi, and RFi) with
or without correction for diagonal bias. First, the phenotypes
were corrected for fixed effects by running each model on
the full dataset. Then, genomic estimated breeding values
(GEBVs) were determined by masking phenotypes by using
two different cross-validation procedures: a leave-one-out and
an across-set cross-validation. In the leave-one-out procedure,
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one sample per iteration was excluded from the model training
data and then the GEBV of the missing data point was
predicted using the data from all other samples. In the across-
set validation procedure, the genotypes belonging to each
of the three different breeding materials (SPs, F2 families,
and SYNs) were left out and GEBV of these data points
then were predicted using the other two sets. The predictive
abilities (PA) were computed as the Pearson’s correlation
coefficient between the phenotype corrected for the fixed effects
(averaged across replicates for each sample) and the predicted
GEBVs.

RESULTS

Analysis of Simulated Data
SNP datasets were simulated to study the diagonal elements
of genomic relationship matrices (GRM) for the three different
ryegrass breeding materials (individuals and two types of
pools). The GRM diagonal elements reflected the variance
of family pools and were affected by at least four factors:
(1) genetic drift due to small population size in the pools,
(2) the number of contributing parents of the family pool,
(3) the extent of inbreeding created in the F1 multiplication
of the family pool, and (4) inaccuracies in the allele-
frequency estimates due to low ST values for the genomic
data.

We simulated different F1 and F2 family population sizes
to investigate genetic drift effects when small population
sizes are used (due to deviation from the Hardy-Weinberg
(HW) equilibrium). GRM data were computed using
true allele frequencies. An increase in GRM diagonal
elements due to small population size was detectable
(Figure 1). However, we found that around 50 individuals
per family were sufficient to maintain the HW-equilibrium.
Because breeding populations are typically much larger
than 50 individuals, the effect of small population size
was not further investigated and all simulations were
produced using a population size of 50 individuals per
family.

GRM values were also computed using simulated, true allele
frequencies to investigate differences in the diagonal elements
for different breeding materials. The average GRM diagonal for
the single plants (SPs, coming from the F2 families) was equal
to 1.25 (Figure 2), reflecting an inbreeding coefficient of 0.25.
This result can be explained by the fact that SPs in F2 are
generated by crossing F1 full sibs with an average co-ancestry of
0.25. However, the average GRM diagonals for the F2 families
and for the SYNs were equal to 1.0, reflecting that there is
no inbreeding effect on the mean family genotypes, i.e., the
variance of means between the F2 families and the SYNs is
not affected by the inbreeding within the families and SYNs.
A theoretical derivation for the SPs and F2 family variances
is given in Appendix I, based on standard quantitative genetic
theory. This theoretically verifies the results for SPs and pools
with two parents, accounting for both inbreeding and genetic
drift.

FIGURE 1 | The average GRM diagonal elements observed for F2 families, as

a function of the population size of the F1 and the F2 families.

GRMs were also calculated using observed allele frequencies
at each ST. The resulting averages of the diagonal elements are
reported in Figure 2. A large inflation of the GRM diagonal was
observed for a low ST. Moderate inflation was still observed at
a rather high ST, and the difference between the expected and
observed inbreeding coefficients remained substantial until ST
was about 50. Diagonal elements of the GRM (calculated using
observed allele-frequencies) were also corrected for binomial
sampling error due to low ST, as described in Equation 9. The
average corrected diagonal elements are displayed in Figure 2.
They showed no inflation at all the ST values we considered.

Real Data Analysis
For practical application, we considered the three breeding
materials, SPs (individuals), F2 families (pools), and SYNs
(pools), genotyped in three different assays (using different
multiplexing sequencing parameters) to investigate the relevance
of bias correction and missing data imputation on the GRM
values.

The three assays exhibited different ST scores and different
missing data fractions. Specifically, for Assay 1 ST was 12.6 and
its missing fraction was 20.4%; for Assay 2, ST was 3.3 and its
missing fraction was 58.5%, while for Assay 3, ST was 13.4 and its
missing fraction was 9.7%.

GRM Bias Correction and Missing Genotype

Imputation
In Figure 3, the diagonal elements of GRMs are displayed as
a function of the average sample ST across all markers. This
figure shows diagonal elements before (Figure 3A) and after
(Figure 3B) the bias correction was performed. As described
above, based on simulated data and use of pool frequencies
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FIGURE 2 | Result of the simulation study. Diagonal elements of GRM at different coverage depths (ST ) are denoted before (Db: orange) and after (Dc: blue) correcting

for low ST bias. The red-dashed lines represent the diagonal element of the GRM calculated with true allele frequencies.

FIGURE 3 | The diagonal elements of GRMs plotted against sample averages for coverage depths (ST ). Different breeding materials are colored as follow: biparental

F2 families (green dots), multiparental synthetic varieties (blue dots), and single plants (red dots). (A) Shows GRM diagonal elements before low ST-bias correction; (B)

shows GRM diagonal elements after low ST-bias correction.

without error, the expected average diagonal value for F2 families
is 1.0. In the real data, the average diagonal value for F2 families
observed before correction was 1.81, and the diagonal elements
were not randomly distributed around the mean, showing a
correlation with the sample ST (Figure 3A, green dots). After
correction, the average diagonal value decreased to 1.35 and the
diagonal elements were randomly distributed around the mean
(Figure 3B, green dots).

The expected average diagonal value of an SP would be 1.25,
if scaled according to its own ploidy level. However, in our study,

the GRMs were scaled to the ploidy level of F2 families, which
is twice the ploidy level of the SPs. With this different scaling,
the expected average diagonal value of SPs would be 2.5. In
the real data, the observed average diagonal value of SPs before
bias correction was 3.17, while it declined to 2.47 after the bias
correction.

The expected average diagonal value of an SYN would be
1.0, if scaled according to its own ploidy level. However, the
GRMs in our study were scaled to the ploidy level of F2
families, while SYNs were pools of genotypes derived from a
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polycross of 6 to 10 SPs. Therefore, SYNs have an assumed
ploidy between 3-and-5 times higher than the F2 families and
the expected average diagonal value for SYNs with this different
scaling should be between 0.33 and 0.20. The observed average
diagonal elements of the GRM were divided in two groups, the
first (SYNs genotyped in Assay 2 with low ST scores), showed an
average value of 3.46, while the second group (SYNs genotyped
in Assay 3 with high ST scores) showed an average value of 1.38
(Figure 3A, blue dots). After correction for depth bias, all the
diagonal elements of SYNs clustered together with an average
value of 0.38 (Figure 3B, blue dots).

Accuracies associated with imputing missing SNPs were
calculated as R2 between the observed and imputed values and
were: 0.5, 0.73, and 0.77 for MNi, kNNi, and RFi, respectively.
The computation time required for calculating kNNi was
relatively short (2.7 h for the full genomic dataset) on a standard
computer, whereas the RFi computation required about 110 times
more processing time.

Accuracies of Genomic Predictions
Predictive abilities (PAs) of GBLUP-GP were evaluated by cross
validation using GRMs calculated using SNP data imputed with
each of the three imputation methods (MNi, kNNi and RFi),
and with and without correction for low ST scores. Results are
presented for the leave-one-out cross validation strategy within
each breeding material (Figure 4) and for the across-set, cross-
validation procedure (Figure 5). Using GRM corrected for low
ST bias yielded higher PAs for each of the three breedingmaterials
and for each of the three traits, regardless of the cross-validation
strategy used. The RFi imputation was the method that led to
the most accurate estimates for breeding values, followed by
the kNNi and the MNi imputation methods. The highest PAs
were observed when the RFi-imputed data were used together
with a correction for low ST scores. We observed larger PAs in
scenarios that used MNi imputations than in scenarios where no
corrections were made.

When using the leave-one-out cross-validation procedure, the
largest PA (predictive ability, correlation of GEBV with corrected
phenotype) was for predicting crown rust resistance in F2 families
(PA range: 0.399–0.444), for predicting heading date for synthetic
varieties (PA range: 0.719–0.813), and for predicting heading date
for single plants (PA range: 0.703–0.742). In the across-set cross-
validation procedure, the largest PA was for seed yield for F2
families (PA range: 0.379–0.445), seed yield for synthetic varieties
(PA range: 0.348–0.492), and heading date for single plants (PA
range: 0.52–0.574).

The leave-one-out procedure yielded the highest PAs for
single plants and F2 families, while the across-set cross-validation
procedure yielded the highest PAs for synthetic varieties. Finally,
we observed that the correction for low ST bias had a larger
positive effect on PA than the effect of imputation strategy.

DISCUSSION

In our study, simulations were performed to depict the expected
inbreeding of various ryegrass breeding materials (individual
single plants, biparental F2 families and multiparental synthetic

varieties as pools) and to quantify bias introduced in estimating
inbreeding when low sequence depth (ST) GBS assays were used.
We also derived methods for correcting for bias in genomic
relationship matrices (GRM) that were calculated using genomic
data at low ST. These simulations yielded unbiased estimates of
the relative inbreeding level for different breeding materials.

Phenotypic and genotypic data for the different breeding
materials were obtained from a commercial breeding program
and were used to show the effectiveness of the proposed bias
correction method to increase the predictive ability (PA) in cross
validation. We showed that several ryegrass breeding materials
could be combined into one unbiased GRM. Predictions of
each breeding material were successfully carried out, based on
information from the other types of breeding material.

Correction for Bias in GRM
Genotyping by sequencing (sensu Elshire et al., 2011) is a
simple and robust genotyping approach that has been proposed
to estimate allele frequencies in populations and family-pools
(Byrne et al., 2013). The cost of plant phenotyping is relatively
low compared to the costs of various genotyping approaches.
Therefore, replacing some field evaluations with genotyping is
only attractive when genotyping is also inexpensive. From this
perspective, GBS is becoming advantageous because its cost
per unit is low and it is continually declining. Furthermore,
GBS can be made especially cost-effective when coverage depth
is low (Barabaschi et al., 2015). However, if the depth of
coverage is low, GBS will also produce a high amount of
missing data (Beissinger et al., 2013). A low coverage depth (ST)
also decreases the accuracy of allele-frequency estimates in the
samples considered, which introduces biases that negatively affect
heritability estimates, mapping, and genomic prediction (Ashraf
et al., 2014).

Ashraf et al. (2014) showed that estimates of allele effects in
association studies are biased downwards when allele frequencies
are used that contain estimation errors due to low ST. Ashraf
et al. (2016) were also the first to report that diagonal elements
of GRMs are inflated when genotyping SNPs with low ST. This
finding was confirmed in our study and can be explained by
inflated diagonals in the GRMs that falsely indicate a high
amount of inbreeding in the analyzed samples. Moreover, the
simulations presented in our work showed that bias was high at
low ST, but still detectable at medium-to-high coverage depths
(∼50).

Measuring error at low ST represents a limitation to the
routine use of genetic markers in ryegrass breeding schemes
because: (1) low-ST assays are often planned to minimize the
costs, (2) different breeding materials, which are differently
affected by the magnitude of sequencing errors, will often have
to be included in the same genomic prediction analysis, and
(3) new rounds of genotyping assays, which may differ in their
coverage depth, will have to be used every year. One important
outcome of our work is that we were able to develop a method
that can efficiently remove bias due to measuring errors in
allele frequencies (even at very low coverage depths) and can be
extended to all the different breeding materials (individuals and
various pools) used in the ryegrass breeding pipeline.
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FIGURE 4 | Predictive ability (PA) estimated with the leave-one-out cross-validation strategy. Result obtained by using three different imputation strategies (mean

imputation MNi, k-nearest-neighbor kNNi, and random forest RFi) and two bias correction procedures for the allele-frequencies estimates (biased diagonal Db and

corrected diagonal Dc), for three different traits (heading date HD, crown rust resistance CRR, and seed yield SY) in F2 families (pools), SYNthetic varieties (pools) and

Single Plants.

FIGURE 5 | The predictive ability (PA) estimated with the across-set cross-validation procedure. Result obtained by using three different imputation strategies (mean

imputation MNi, k-nearest-neighbor kNNi, and random forest RFi) and two bias-correction procedures for the allele-frequencies estimates (biased diagonal Db and

corrected diagonal Dc), for three different traits (heading date HD, crown rust resistance CRR, and seed yield SY) in F2 families (pools), SYNthetic varieties (pools) and

Single Plants.
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Increasing multiplex sequencing can be a successful strategy
for reducing the cost or for increasing the number of genotyped
samples that will enter the training population. Several studies
have shown that the size of the training population is more
important for predictive abilities, than the bias and missing data
due to low coverage (Bassi et al., 2015). Finding the balance
between cost and the size of the training set will be one of the
principal challenges hindering future implementation of genomic
prediction in ryegrass breeding programs.

We found that PA increased when bias-corrected GRMs were
used. Also, in almost all cases, the bias-correction in the GRM
provided a greater improvement in PA, than the improvements
obtained from replacing the simple mean imputation with more
advanced methods for imputation of missing genotype data.
This indicates that bias due to low depth of coverage was
more important than the loss of information resulting from an
increased amount of missing data associated with a low depth of
coverage.

Imputation of Missing Genotype Data
In the procedure of VanRaden (2008) for building GRMs,
missing genotype data is replaced with the mean value of
the non-missing genotypes, which we called mean imputation
(MNi) method. Other, more advanced, imputation methods
can be applied, but because our data consisted of allele
frequency estimates on pools of individuals, and because there
is no high-quality reference genome for ryegrass, we could
only consider haplotype- and map-independent methods. We
compared the k-nearest-neighbor (kNNi) and the random-forest
(RFi) imputation methods as alternatives for MNi, and we found
that there were two main advantages in using the kNNi and RFi
methods: they were both map-independent and they could be
relatively accurate.

The main factors that affect imputation accuracy of RFi and
kNNi are the minor allele frequency (MAF) of the markers,
the degree of relatedness between samples, and the linkage
disequilibrium (LD) between markers (Rutkoski et al., 2013).
Several studies have shown that SNP datasets with low MAF are
easier to impute. This is because, at low MAF, missing markers
can be quite accurately inferred just by using the most-frequent
allele in the dataset (Hickey et al., 2012; Rutkoski et al., 2013).
Moreover, the presence of closely-related samples in the dataset
allows one to impute a missing marker data point by using
information from markers more related to it, thus increasing the
accuracy of the imputation (Hickey et al., 2012; Rutkoski et al.,
2013).

Our study was conducted on ryegrass breeding material
that consisted of groups of related samples sharing one or
two parental lines. Moreover, this material had already been
subjected to several rounds of selection, which may have reduced
the variance in marker frequencies, resulting in rather low
MAFs. These two elements enabled us to obtain adequate
imputation accuracies. The ryegrass LD has been shown to
decay after a few hundred bp, no matter what breeding material
is used (Fè et al., 2015). Short-ranging LD has been related
to less accurate imputation performances in several studies
(Hickey et al., 2012; Rutkoski et al., 2013). This is because

there is a reduced chance of using highly-correlated markers
to aid imputation of missing data-points. Despite the low LD
in ryegrass, the high marker density in our panel ensured
that at least a proportion of them were close enough to be
highly correlated, permitting us to obtain high imputation
accuracies.

Another important finding of our study was the improved
PAs we obtained after using both RFi and kNNi imputation
procedures, compared to the standard MNi imputation.
Although the gain in PA due to the choice of imputation
strategy was not as large as the one resulting from our bias
correction, a gain was still observed in all the different scenarios
we examined. This result should promote the routine use
of one of these two imputation methods (over standard
MNi) to increase PA, by only adding a limited computing
cost.

Genomic Prediction
The PAs we obtained demonstrate that using the genomic
prediction approach for ryegrass breeding is very promising.
Similar genomic prediction performances were reported for F2
families by Fè et al. (2015, 2016). However, we showed that it
was possible to predict the breeding values of F2 families, single
plants, and synthetic varieties and still ensure medium to high
PAs, both by using data from the same breeding material, as well
as from using the other kinds of breeding material as training
data.

The potential for obtaining genomic-estimated breeding
values (GEBV) for both individuals and pools was a key
finding of ours that should lead to improvements in ryegrass
breeding programs. For instance, it will be possible to accurately
select single plants and generate synthetic varieties based on
GEBVs of single plants. Phenotypic scores of SPs are difficult
to generate for some key traits (e.g., yield-related traits),
which can only be measured in plots consisting of several
plants (Vogel and Pedersen, 1993). A precise evaluation of SP
performances for these traits would require cloning each SP
and use test-cross procedures (Hayes et al., 2013). However,
cloning and maintaining a SP for the time needed to complete
the evaluation of the test crosses is often considered too costly
and too time-consuming. Therefore, SPs are often randomly
selected from highly-performing F2 families, assuming that the
performance of the F2 family reflects the SP’s performance.
Using SP GEBVs will increase the accuracy of SP selection
for these traits that cannot be directly measured on single
plants. Additionally, using SP GEBVs could allow a reduction
in the generation interval required in breeding scenarios, for
instance, because the phenotypic evaluation of F2 families could
be avoided.

Although the predictive abilities (PAs) of SPs was considerably
lower than the PAs observed for pools (F2 families and SYNs),
the PA for a SYN resulting from crossing selected SPs would be
higher. This is because the predicted breeding value of a SYN
would be the average of the predicted breeding values of the SP
parents of the SYN, and as explained previously, this average
is more accurate due the averaging of the Mendelian-sampling
genetic components in the SPs’ breeding values.
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CONCLUSIONS

The methods we reported in this paper allowed us to gain better
insight into using GBS data genomic prediction in different
ryegrass breeding material (individual single plants, pools of F2
families and synthetic varieties). A bias was proven to affect
the genomic relationship matrices (GRM) when low-to-medium
sequencing depth (ST) GBS data were used, and this was verified
via simulation. There was a bias introduced that was related to
an overestimate of the inbreeding coefficient, resulting in inflated
diagonal elements of the GRM. We presented a method for
correcting this bias in GRMs, which proved to work correctly in
simulated data.

The same bias is observed by using real genotypic data
for ryegrass. Correcting this bias and applying haplotype-
independent imputation methods greatly increased the PA of
the approach. We expect this result will allow breeders to use
low ST genomic data, which will reduce the genotyping cost
per sample. This approach would also reduce the economic
effort associated with the use of genomic prediction, and
potentially increase its effectiveness by increasing the number
of the genotypes that can be included in training data
sets.

We provided a method for calculating a GRM that can
accommodate various types of ryegrass breeding material, in
particular to combine indivuals and pools. This GRM allowed

us to accurately predict BV across data sets. This finding can
potentially reshape the ryegrass breeding industry. In particular,
it will allow breeders to accurately predict the breeding value of

complex traits for single plant parental lines, without the need for
phenotypic testing.
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