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Stem rust (caused by Puccinia graminis f. sp. tritici Erikss. & E. Henn.), is a major
disease in wheat (Triticum aestivium L.). However, in recent years it occurs rarely in
Nebraska due to weather and the effective selection and gene pyramiding of resistance
genes. To understand the genetic basis of stem rust resistance in Nebraska winter
wheat, we applied genome-wide association study (GWAS) on a set of 270 winter
wheat genotypes (A-set). Genotyping was carried out using genotyping-by-sequencing
and ∼35,000 high-quality SNPs were identified. The tested genotypes were evaluated
for their resistance to the common stem rust race in Nebraska (QFCSC) in two
replications. Marker-trait association identified 32 SNP markers, which were significantly
(Bonferroni corrected P < 0.05) associated with the resistance on chromosome 2D. The
chromosomal location of the significant SNPs (chromosome 2D) matched the location
of Sr6 gene which was expected in these genotypes based on pedigree information.
A highly significant linkage disequilibrium (LD, r2) was found between the significant
SNPs and the specific SSR marker for the Sr6 gene (Xcfd43). This suggests the
significant SNP markers are tagging Sr6 gene. Out of the 32 significant SNPs, eight
SNPs were in six genes that are annotated as being linked to disease resistance in the
IWGSC RefSeq v1.0. The 32 significant SNP markers were located in nine haplotype
blocks. All the 32 significant SNPs were validated in a set of 60 different genotypes
(V-set) using single marker analysis. SNP markers identified in this study can be used in
marker-assisted selection, genomic selection, and to develop KASP (Kompetitive Allele
Specific PCR) marker for the Sr6 gene.

Highlights:

Novel SNPs for Sr6 gene, an important stem rust resistant gene, were identified and
validated in this study. These SNPs can be used to improve stem rust resistance in
wheat.

Keywords: genome-wide association study, linkage disequilibrium, marker-assisted selection, single marker
analysis, SNP validation, haplotypes
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INTRODUCTION

Stem rust (caused by Puccinia graminis f. sp. tritici Erikss. & E.
Henn.) is one of the most damaging diseases in wheat (Singh
et al., 2006). It occurred frequently in the United States from
the 1920s to 1960s and caused up to 50% yield losses (Leonard
and Szabo, 2005). In the central United States Great Plains, an
area from central Texas through central Nebraska, stem rust was
a major disease and caused significant reductions in the wheat
grain yield (Eversmeyer and Kramer, 2000). However, in recent
years, stem rust occurs rarely at Nebraska, in part due to the
effective selection for stem rust resistance by the USDA-ARS
and University of Nebraska–Lincoln (UNL) Wheat Improvement
Team for the past 60 years (Baenziger et al., 2001). The selection
was phenotypically performed with little additional information
on the genes existing in the germplasm and controlling the
resistance except for pedigree information and the use of different
pathotypes. Identifying genes controlling stem rust resistance
by molecular markers is useful to accelerate breeding programs
to improve stem rust resistance by identifying the genes, their
vulnerabilities, and being able to pyramid multiple genes in wheat
(Nisha et al., 2015).

With the advances in sequencing technologies, genotyping
methods that combine variant discovery and genotyping
in a single step are now being routinely used in plant
breeding research. Genotyping-by-sequencing (GBS) is one
such technique that involves the use of restriction enzymes
for targeted complexity reduction of the genome followed by
multiplexing and sequencing. Genotyping-by-sequencing can
generate numerous SNP markers covering a high percentage of
the genome in a cost-effective manner (Elshire et al., 2011; Poland
and Rife, 2012). Therefore, these genome-wide SNPs can be used
in genomic selection, genome-wide association study (GWAS)
and genetic diversity studies.

Association mapping (AM) is a powerful approach which
identifies polymorphisms near or within a gene of interest that
controls the phenotypic differences between genotypes (Soto-
Cerda and Cloutier, 2012). To perform AM, it is recommended
that 100–500 individuals and codominant SSR or SNP markers
are used (Kumar et al., 2011). Allele frequency distribution affects
the power of AM to detect an association at the functional
polymorphism level. Therefore, rare alleles, present in only a
few individuals, cause a problem in association analysis due to
their influence on the resolution power of mapping (Pearson and
Manolio, 2008). In order to remove the effect of the rare alleles in
AM, GBS derived SNPs can be filtered for at least 5% minor allele
frequency (Soto-Cerda and Cloutier, 2012).

Few specific SNPs have been published or used for marker-
assisted selection (MAS) for stem rust genes. Some exceptions
are Sr2 (Mago et al., 2011), SrCad (Kassa et al., 2016) and
Sr361 that have a SNP marker identified and used in MAS.
No SNPs have been identified to be associated with some
important stem rust resistance genes such as Sr6, Sr30, Sr38, and
Sr24. Linkage disequilibrium (LD) analysis between specific SSR
markers previously identified for stem rust resistance genes and

1http://maswheat.ucdavis.edu/protocols/sr36/

SNPs generated from GBS with known chromosomal positions
will be useful in identifying SNPs that are tightly associated with
the stem rust gene of interest. Of course, these linkages between
the detected SNPs and the target gene in diverse backgrounds will
need to be confirmed.

The objectives of this study were to (1) screen a nursery of 270
Nebraska winter wheat genotypes for their resistance to stem rust
race (QFCSC), the common race in the United States, (2) identify
SNP markers associated with stem rust resistance using GWAS,
(3) validate the SNPs associated with the resistance in another
Nebraska winter wheat nursery, and (4) determine whether
the markers identified in this study are located in genes and
examine their potential role in disease resistance using functional
annotations.

MATERIALS AND METHODS

Plant Materials
To identify the SNP markers associated with stem rust resistance,
a set of 270 winter wheat genotypes from the 2015 F3:6 nurseries
(Nebraska Duplicate Nursery – DUP2015, the preliminary yield
trial) were used. These genotypes were derived from 800 to 1000
crosses made among primarily Great Plains adapted genotypes
with a heavy emphasis on using lines adapted specifically to
Nebraska. These 270 genotypes were named as the association set
(A-set). To validate the SNP markers associated with resistance
in the A-set, a set of 60 genotypes from the 2015 F3:7 nurseries
(Nebraska Triplicate Nursery-TRP2015, the advanced yield trial)
were used and named the validation set (V-set). The TRP2015
nursery is derived from the selections from the DUP2014 nursery
and do not overlap with the DUP2015. The V-set genotypes
are selected and advanced from the DUP2014 nursery based on
the grain yield, grain volume weight, disease resistance, plant
height and maturity criteria (El-Basyoni et al., 2013). Three check
cultivars were included in the evaluation: ‘Robidoux’ (moderately
resistant to moderately susceptible to stem rust race QFCSC),
‘Freeman’ (moderately resistant to moderately susceptible to
stem rust race QFCSC), and ‘Goodstreak’ (moderately resistant
to stem rust race QFCSC).

Stem Rust Inoculation and Screening
Both sets (A-set and V-set) were evaluated for stem rust resistance
using the common stem rust race in Nebraska “QFCSC.” The
A-set was evaluated for its resistance in two replications; one
at the plant pathology greenhouses, University of Nebraska
Lincoln, UNL and the other at USDA-ARS at Kansas State
University (KSU). The V-set was evaluated for its resistance in
two replications also, one at the plant pathology greenhouses,
University of Nebraska Lincoln, UNL and the other at the USDA
Cereal Disease Laboratory, St. Paul, MN, United States. The
inoculation was performed at the seedling stage as described
by Jin and Singh (2006) with minor modifications. Capsules of
stored urediniospore were first removed from the freezer and
thawed for 30 min at room temperature. Then, they were mixed
with lightweight soltrol oil. Primary leaves of 10-day old seedlings
were inoculated by atomizing a urediniospores suspension until
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the leaves were completely covered. Inoculated seedlings were
placed in a transparent plastic mist chamber for 12 h in the dark
at 20◦C. Consequently, seedlings were placed on the greenhouse
bench at 20 ± 2◦C and a 16-h photoperiod for 2 weeks. The
resistance was scored based on the scale of 0–4 as described by
Stakman et al. (1962). Plants with an infection type (IT) score
0–2 were considered as resistant, and plants with IT scores 3–4
were considered as susceptible.

Statistical Analysis of Stem Rust
Resistance
Phenotypic data were converted from the Stakman et al. (1962)
scale to a linear scale (L-IT) as mentioned in Kumssa et al.
(2015) and Zhang et al. (2011) in order to convert the phenotypic
data from a qualitative to a quantitative scale for analyses. The
converted scores of stem rust resistance ranged from 0 (resistant)
to 9 (susceptible). In the converted scale, scores of resistant
genotypes ranged from 0 to 5 and those of susceptible genotypes
ranged from 6 to 9. For complex IT range scores such as, “;, 1, 2”,
only the lowest (“;”) and highest (“2”) IT scores were converted to
the linear scale and then averaged. In both nurseries, the analysis
of variance was performed with R software (R Core Team, 2017)
using the following model

Yij = µ + gi + rj + eij

where Yij is an observation of genotype i in replication j, µ is the
general mean; gi and rj are the main effects of genotypes (fixed
effects) and replications (random effects), respectively; eij is the
error. The broad sense heritability (H2) was calculated using the
following formula:

H2 = σ2
G/(σ2

G +
σ2

R
r

)

where σ2
G and σ2

R are the variance of the lines and the residuals
and r is the number of replicates within the experiment.

DNA Extraction
DNA was extracted from lines in the A-set and V-set for GBS
using BioSprint 96 DNA Plant Kits (Qiagen, Hombrechtikon,
Switzerland) from 2 to 3 leaves of 2-weeks-old seedlings. For
the SSR marker test, DNA from a bulk of six leaves of 5 days
old plants was extracted using DNAzol Reagent (Molecular
Research Center, Inc. Technical Bulletin 6). The tissue was
ground using liquid nitrogen then 300 µl DNAzol reagent
was added to this powder and left for 5 min at the room
temperature. A volume of 300 µl chloroform was added to
the previous mix and left at the room temperature for 5 min
before it was centrifuged using Fisher Scientific accuSpin Micor
17 centrifuge (Loughborough, United Kingdom) at 12000 × g
for 10 min. The washing process was done in three steps by
adding three different washing solutions as follows: (1) absolute
alcohol, (2) DNAzol + 75% Ethanol and (3) 75% alcohol
only. All genotypes were centrifuged using the Fisher Scientific
accuSpin Micor 17 centrifuge for 4 min at 5000 × g after
each washing step. The extracted DNA was then re-suspended
in 150 µl of TE buffer. DNA concentration was measured

using spectrophotometry (Gen5TM microplate reader and image
software with Take3TM micro-volume plates [BioTek, Winooski,
VT, United States]).

Genotype-by-Sequencing (GBS)
The DNA of both sets (A-set and V-set) were genotyped
using GBS by digesting the DNA with two restriction enzymes,
PstI and MspI (Poland and Rife, 2012). Pooled libraries were
sequenced using Illumina, Inc. NGS platforms. The FASTQ file
containing the raw data of sequence reads were processed for SNP
identification using TASSEL 5.0 v2 GBS pipeline (Bradbury et al.,
2007). Chinese Spring genome assembly from the International
Wheat Genome Sequencing Consortium (IWGSC) Reference
Sequence v1.0 was used as the reference genome. Raw sequence
data of the tested genotypes along with additional ∼3000
breeding lines from the University of Nebraska wheat program
were combined to increase the genome coverage and read depth
for SNP discovery in both nurseries. SNP markers identified were
filtered for minor allele frequency (MAF > 0.05), maximum
missing sites per SNP < 20% and maximum missing sites per
genotype < 20% (Belamkar et al., 2016). Heterozygous loci were
then marked as missing to obtain better estimates of marker
effects (Peter Bradbury, personal communication) and the SNP
markers were re-filtered using the same filtering criteria.

Population Structure
The analysis of population structure was performed on the A-set
using the Baysian model-based software program STRUCTURE
3.4 (Pritchard et al., 2000). For each run, burn-in iteration
was 100,000, followed by 100,000 Markov chain Monte Carlo
(MCMC) replications after burn-in. The admixture and allele
frequencies correlated models were considered in the analysis.
Five impended iterations were used in the STRUCTURE. The
hypothetical number of the subpopulation (k) extended from 1
to 10. The best k was identified according to Evanno et al. (2005)
using STRUCTURE HARVESTER (Earl and vonHoldt, 2012).

Genome-Wide Association Study (GWAS)
Stem rust resistance data of the A-set were used to identify
SNPs associated with the resistance. The association of the
SNP markers retained after quality-filtering and stem rust
measurements was carried out using TASSEL 5.0 software
(Bradbury et al., 2007) using a mixed linear model (MLM:

TABLE 1 | Analysis of variance for stem rust resistance in the association set
(A-set) of 270 genotypes and the validation set (V-set) of 60 genotypes.

A-set V-set

Source D.F. M.S. D.F. M.S.

Replications 1 20.15∗ 1 23.3

Genotypes 269 6.75∗∗ 59 13.40∗∗

Error 263 4.08 58 6.07

Total 533 118

Broad-sense heritability (%) 39.59 54.68

∗p < 0.05, ∗∗p < 0.01.
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FIGURE 1 | The infection response of the genotypes in the (A) association set (A-set, 270 genotypes) and (B) validation set (V-set, 60 genotypes) to infection with
the common stem rust race in Nebraska, QFCSC using the linear scale of Kumssa et al. (2015).

FIGURE 2 | Analysis of population structure using 35,216 SNP markers: (A) Estimated population structure of 259 winter wheat genotypes (k = 2). The y-axis is the
sub-population membership, and the x-axis is the genotypes. (B) Delta-k for different numbers of sub-populations as determined by Evanno et al. (2005).

Yu et al., 2006). The marker-trait association was tested against
Bonferroni corrections at a significance level of 5%. The allele
estimates of each marker determine the influence of the allele
on the phenotype. In the linear scale used for phenotypic
measurements, smaller values represent resistance and larger
values indicate susceptibility. Hence, alleles with a lower marker
effect score are effective alleles and are linked to increasing
resistance in the population. The phenotypic variation explained
by a marker (R2) was calculated for the significant SNPs using
TASSEL 5.0 (Bradbury et al., 2007). The Q–Q and Manhattan

plots of the GWAS were developed using ‘qqman’ R package
(Turner, unpublished).

For the significant SNP markers detected by GWAS, the alleles
associated with increased stem rust resistance were assigned a
value of 1 while those associated with decreased stem resistance
were marked 0 to perform a correlation analysis with the
specific Sr6 SSR marker. Linkage disequilibrium (r2) among the
significant SNPs and the specific SSR marker located on the same
chromosome was calculated by TASSEL 5.0 and visualized as a
heatmap using ‘LDheatmap’ R package (Shin et al., 2006).
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TABLE 2 | Association analysis of stem rust resistance using the mixed linear model (MLM) and the correlation between the significant SNPs and Xcfd43 markers which
tags Sr6.

SNP ID Chro. P-value Target allele(1) Allele effect(2) R2 (3) (%) Corre.Xcfd43

S2D_57511425 2D 2.49E-09 G:A −1.85 16.16 0.83

S2D_61759932 2D 3.92E-09 C:T −1.86 16.75 0.90

S2D_59551557 2D 4.46E-09 G:A −1.82 16.25 0.90

S2D_59658161 2D 6.27E-09 G:A −1.83 16.59 0.90

S2D_58726937 2D 6.38E-09 T:C −1.81 15.96 0.92

S2D_60028884 2D 7.45E-09 A:G −1.79 16.08 0.88

S2D_60028887 2D 7.45E-09 A:G −1.79 16.08 0.88

S2D_58806022 2D 9.09E-09 G:C −1.85 16.6 0.90

S2D_58740240 2D 2.11E-08 G:T −1.72 14.84 0.92

S2D_58892256 2D 2.23E-08 A:G −1.76 15.43 0.89

S2D_60546609 2D 2.26E-08 T:C −1.81 17.68 0.87

S2D_58725975 2D 3.58E-08 T:C −1.69 14.89 0.91

S2D_58725982 2D 3.58E-08 C:T −1.69 14.89 0.91

S2D_60546009 2D 3.65E-08 A:G −1.72 14.74 0.91

S2D_58776075 2D 3.97E-08 C:T −1.67 13.99 0.91

S2D_58726903 2D 5.81E-08 A:G −1.7 14.46 0.90

S2D_57322511 2D 7.96E-08 G:C −1.65 13.82 0.84

S2D_56248408 2D 1.07E-07 C:T −1.67 12.94 0.91

S2D_58775439 2D 1.08E-07 C:G −1.62 13.18 0.89

S2D_61284312 2D 1.41E-07 C:A −1.68 13.52 0.87

S2D_56298113 2D 1.57E-07 A:G −1.62 13.18 0.90

S2D_59653673 2D 2.15E-07 T:C −1.6 12.35 0.86

S2D_55920637 2D 2.43E-07 C:G −1.58 12.75 0.92

S2D_56190285 2D 2.45E-07 C:G −1.58 12.58 0.86

S2D_56190288 2D 2.45E-07 C:G −1.58 12.58 0.86

S2D_60963807 2D 2.67E-07 T:C −1.75 14.13 0.85

S2D_60963818 2D 2.67E-07 A:G −1.75 14.13 0.85

S2D_57151331 2D 3.38E-07 C:T −1.56 12.86 0.90

S2D_56445930 2D 4.95E-07 T:A −1.57 13.54 0.91

S2D_56445931 2D 4.95E-07 A:C −1.57 13.54 0.91

S2D_57359928 2D 7.50E-07 C:A −1.49 10.99 0.91

S2D_57151324 2D 9.88E-07 C:A −1.48 11.7 0.89

(1)The allele on the left increased the resistance. (2)The effect of left allele associated with increased resistance. (3)Phenotypic variation explained by marker. Highlighted
SNPs locate in haplotype block 81. In each SNP_ID, S2D referrers to chromosome 2D followed by the position of that SNP on the chromosome.

Haplotype Block Analysis
Haplotype block analysis was performed using Haploview 4.2
software (Barrett et al., 2005). The SNP data of the A-set was used
to calculate the pair-wise LD between SNPs. A cutoff of 1% was
used, meaning that if the addition of a SNP to a block resulted
in a recombinant allele at a frequency exceeding 1%, then that
SNP was not included in the block. The Haplotype blocks were
constructed using the four-gamete methods which create block
boundaries where there is evidence of recombination between
adjacent SNPs based on the presence of all four gametic types
(Wang et al., 2002).

Polymerase Chain Reaction (PCR)
Conditions
Polymerase chain reaction (PCR) for the available SSR primers
of the Sr6 gene (Xcfd43 and Xwmc453) was performed in 15 µl
volume with 2 µl 20 ng DNA template, 3 µl GoTaq flexi buffer

(without MgCl2), 0.3 µl 0.25 mM dNTPs, 1.20 µl 25 mM
MgCl2, 0.2 µl from 0.5 µ/µl GoTaq Flexi Taq Polymerase
(Promega, Madison, Wisconsin, USA) and 0.75 µl 10 pmol
from each primer. SSR marker products were separated in super
fine resolution (SFR) 3% Agarose gel. The differential line for
the Sr6 gene (ISr6-Ra CI 14163) was included in the SSR
test to identify the target band size for each primer. The SSR
products gel was scored visually and by using Gel Analyzer 2010
software.2

Single Marker Analysis (SMA) for Marker
Validation
Phenotypic data of the V-set, using the converted linear scale
(Kumssa et al., 2015), as well as genotypic data of markers
which were associated with stem rust in the A-set were used to
perform single marker analysis. The analysis was done by using

2http://www.gelanalyzer.com/
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FIGURE 3 | (A) Manhattan plot displaying SNP marker-trait association identified for stem rust resistance in GWAS using 259 winter wheat lines of the A-set. Redline
is significance threshold of 5% Bonferroni correction. (B) Quantile-Quantile (QQ) plot used to evaluate the performance of the mixed linear model used for of GWAS
for stem rust resistance using mixed linear model (MLM).

SAS Version 9 (SAS Institute Inc., 2013) following this model:

Y = µ + f (marker) + error,

where Y is equal to the trait value, µ is equal to the population
mean, and f (marker) is a function of the significant markers
(Francis et al., 2011).

Genes Containing Significant SNPs and
Their Annotations
To further investigate the GWAS results, we inspected whether
any of the significant SNPs were in genes identified and
annotated in the reference genome assembly (IWGSC Ref
Seq v1.0). The effect of the significant SNPs on annotated
genes was determined by using SnpEff (Cingolani et al., 2012).
Functional annotation of the genes harboring significant SNPs
were retrieved from the genome annotations provided by
IWGSC and examined for their association with stem disease
resistance.

RESULTS AND DISCUSSION

The analysis of variance revealed highly significant differences
among genotypes (Table 1), indicating our phenotypic assay
was successful. Such a high genetic variation found among
genotypes could be very useful for plant breeders to select the
most resistant genotypes to stem rust. Figure 1A represents
the response of the A-set to the most common Nebraska
stem rust race (QFCSC). The A-set was mostly resistant
(80% of the genotypes) with L-IT ranging from 0 to 5.
This result was expected because the previous generations
were screened for stem rust resistance and the selection was
made using stem rust resistance as one of the selection
criteria.

Association Mapping for Stem Rust
Resistance
Population Structure
The GBS generated a set of 35,216 SNPs after filtering for
minor allele frequency (MAF > 0.05), maximum missing
sites per SNP < 20% and maximum missing sites per
genotype < 20% (Belamkar et al., 2016) (Data are available
on doi: 10.6084/m9.figshare.5948416). This set of SNPs was
used in population structure analysis. After marking the
heterozygous loci as missing values and re-filtering the data,
23,053 SNPs and a set of 259 genotypes in the A-set nursery
and 60 genotypes in the V-set were used in our marker-trait
association studies. The 23,051 SNPs were used in the GWAS
analysis.

Population structure analysis was performed on the A-set
and two possible subpopulations were identified (Figure 2A). To
confirm this result, the number of suggested k was plotted against
the calculated 1k obtained from STRUCTURE software. A clear
peak was observed for k = 2 (Figure 2B). Therefore, a k value of
two was chosen to describe the genetic structure of the genotypes
used in this study. That the structure was found in the A-set was
expected due to the selection process for important agronomic
traits and different climatic zones in the Nebraska wheat breeding
program.

Genome-Wide Association Study and Linkage
Disequilibrium
Due to the presence of structure in our tested population,
MLM was used for GWAS. Association analysis identified 32
significant SNPs for stem rust resistance based on Bonferroni
correction (α = 0.05) (Table 2 and Figures 3A,B). Remarkably,
all the significant SNPs were located on chromosome 2D.
The phenotypic variation explained by each SNP marker (R2)
ranged from 11.70 to 17.68%. The R2 for all significant
SNPs indicates that these SNPs represented a major QTL

Frontiers in Plant Science | www.frontiersin.org 6 March 2018 | Volume 9 | Article 380

https://doi.org/10.6084/m9.figshare.5948416
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-00380 March 27, 2018 Time: 12:22 # 7

Mourad et al. Novel SNPs for Sr6 Gene in Wheat

associated with stem rust resistance. Allele C of SNP marker
S2D_57151324 had the lowest allele effect which is associated
with decreasing the symptoms of stem rust (−1.48), while
allele C in S2D_61759932 had the highest allele effect (−1.86)
associated with decreased the symptoms of stem rust. Among
all the 32 SNPs, S2D_61759932 showed the highest allele

effects (−1.86) with R2 of 16.75%. The pair-wise LD between
the 32 SNPs is illustrated in Figure 4. Highly significant LD
was found among these 32 significant SNPs identified based
on Bonferroni correction. This result indicated that the 32
SNPs may tag the same QTL and seem to be co-inherited
together.

FIGURE 4 | Linkage disequilibrium (LD) analysis in the association set (A-set): heatmap of LD between the significant SNPs detected by the mixed linear model
(MLM) (at a significance level of 5% Bonferroni correction) and SSR marker (Xcfd43) that predicts Sr6.

TABLE 3 | Gene models underlying significant SNPs and their annotations from the International Wheat Genome Sequencing Consortium reference genome assembly
v1.0 of the variety Chinese spring.

SNP ID Gene model Gene annotation Probable function

S2D_60028884 TraesCS2D01G108000.1 Heat shock 70 kDa protein Heat stress resistance

S2D_60028887

S2D_56445930 TraesCS2D01G104700.1 WRKY transcription factorPF0310 Abiotic and biotic stresses resistance

S2D_56445931

S2D_56248408 TraesCS2D01G104400.1 E3-ubiquitin-protein ligase

S2D_56298113 TraesCS2D01G104600.1 WRKY transcription factorPF0310 Abiotic and biotic stresses resistance

S2D_57359928 TraesCS2D01G106100.1 F-box domain containing protein

S2D_59551557 TraesCS2D01G107200.1 WEAK movement UNDER BLUE LIGHT-like protein Controlling Chloroplasts accumulate
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FIGURE 5 | Haplotype block analysis for chromosome 2D, (A) the 306 haplotype blocks on the whole chromosome, (B) the nine haplotype blocks containing the 32
significant SNPs associated with stem rust resistance. SNPs with red circles are significantly associated with stem rust resistance based on 5% Bonferroni correction.

Several previously identified stem rust resistance genes such
as Sr6, Sr46 and Sr32 are mapped to chromosome 2D.3 However,
based on the available pedigree information of the tested
populations, we expected to have the Sr6 gene and not to
have Sr32 and Sr46 genes in our materials. To confirm the
presence of the Sr6 gene in the tested population, specific SSR
markers (Xcfd43 and Xwmc453) were used in genotyping the
genotypes. Only the Xcfd43 marker presented clear amplification,
while Xwmc453 did not give good amplification. The result
of the Xcfd43 marker revealed that of the 270 genotypes,
123 (47%) were found to be containing the target allele
associated with the Sr6 gene. The correlation between the
specific SSR marker and each one of the significant SNPs
is presented in Table 2. The 32 significant SNPs revealed
high correlations with the specific SSR marker with r2 values
ranging from 0.83 for marker S2D_57511425 to 0.92 for markers
S2D_58726937, S2D_58740240 and S2D_55920637. This result
indicates that these SNPs were tightly linked to Sr6. A High
LD was found between the SSR marker (Xcfd43) and all
the significant SNPs (Figure 4). This high LD between the
specific SSR marker for the Sr6 gene and the significant SNPs
suggested (1) the SSR marker is highly co-inherited with the
32 SNPs, and (2) it is considered as a further support that
some of these significant SNPs could be a part of this gene.
Such high LD is very useful for marker-assisted selection. The
significant SNPs were removed from the marker data and the
AM was re-analyzed to find out if the LD among the 32
markers interferes with the effect of other SNPs with small
effects and associated with stem rust resistance. No significant
markers were associated with stem rust resistance. This result
is additional evidence of the power of GWAS performed in this
study.

To confirm that the significant 32 SNPs are identifying the
Sr6 gene, we inspected the location of the Sr6 SSR primer using

3http://maswheat.ucdavis.edu/protocols/StemRust/StemRustMap.html

the IWGSC RefSeq v1.0 marker mapping file4. The mapping
file released by the IWGSC includes location information for
previously mapped SSR markers. The sequence of the SSR marker
(Xcdf43) has been mapped to a scaffold that is currently not
included in any of the chromosomes and is placed along with
other scaffolds that lack location information in an “Unknown”
chromosome in the IWGSC RefSeq v1. Due to the high LD
between the Sr6 SSR marker and the significant SNPs as
well as the previous study that has placed the SSR marker
for Sr6 on chromosome 2D (Tsilo et al., 2010), we believe
the scaffold containing the Sr6 sequence can be placed on
chromosome 2D.

Genes Underlying Significant SNPs and Their
Functional Annotations
To further understand the association between the significant
SNPs and the stem rust resistance, we reviewed the
annotation of genes containing these SNPs and studied the
effect of the SNPs on the genes. Out of the 32 SNPs, eight
SNPs are located within genes: TraesCS2D01G108000.1
(two SNPs), TraesCS2D01G104700.1 (two SNPs),
TraesCS2D01G104400.1 (one SNP), TraesCS2D01G104600.1
(one SNP), TraesCS2D01G106100.1 (one SNP) and
TraesCS2D01G107200.1 (one SNP). Four of these eight
SNPs result in an amino acid change (missense variant), one
of the SNPs causes the loss of stop codon, and the rest of the
three are synonymous SNPs (Supplementary Table 1). The SNP
in the gene, TraesCS2D01G106100.1, results in loss of stop
codon and is the highest impact variant. The loss of stop codon
results in degradation of the transcript in the nucleus, and thus a
complete loss of function of the gene (Fasken and Corbett, 2005).
The functional annotation of some of the genes indicates their
potential involvement in fungal disease resistance (Table 3). For
example, TraesCS2D01G104700.1 and TraesCS2D01G104600.1

4https://wheat.pw.usda.gov/cgi-bin/graingenes/report.cgi?class=probe;name=
CFD43
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TABLE 4 | Single marker analysis (SMA) for the 32 significant SNPs from the
association set (A-set) and the Xcfd43 marker which predicts the presence of Sr6
in the validation set (V-set).

SNP ID P-value F-value (R2) (%) Corr. between
SNP and SSR

marker

S2D_55920637 0.0037 9.24∗∗ 15.09 0.40

S2D_56190285 0.0014 11.57∗∗ 20.10 0.46

S2D_56190288 0.0014 11.57∗∗ 20.10 0.46

S2D_56248408 <0.0001 26.94∗∗ 35.47 0.64

S2D_56298113 <0.0001 25.60∗∗ 32.99 0.57

S2D_56445930 <0.0001 27.00∗∗ 34.62 0.60

S2D_56445931 <0.0001 27.00∗∗ 34.62 0.60

S2D_57151324 <0.0001 27.00∗∗ 34.62 0.60

S2D_57151331 <0.0001 27.00∗∗ 34.62 0.60

S2D_57322511 <0.0001 19.55∗∗ 28.52 0.61

S2D_57359928 <0.0001 26.30∗∗ 34.03 0.60

S2D_57511425 0.0002 16.62∗∗ 25.33 0.56

S2D_58725975 <0.0001 22.90∗∗ 30.99 0.57

S2D_58725982 <0.0001 22.90∗∗ 30.99 0.57

S2D_58726903 <0.0001 26.60∗∗ 35.18 0.63

S2D_58726937 <0.0001 30.96∗∗ 38.72 0.64

S2D_58740240 0.0002 16.12∗∗ 23.66 0.50

S2D_58775439 <0.0001 25.60∗∗ 32.99 0.57

S2D_58776075 <0.0001 30.21∗∗ 37.20 0.65

S2D_58806022 <0.0001 30.52∗∗ 37.91 0.66

S2D_58892256 <0.0001 27.90∗∗ 36.28 0.59

S2D_59551557 <0.0001 26.60∗∗ 35.18 0.63

S2D_59653673 0.0002 16.46∗∗ 25.54 0.56

S2D_59658161 <0.0001 29.63∗∗ 36.30 0.62

S2D_60028884 <0.0001 22.90∗∗ 30.99 0.57

S2D_60028887 <0.0001 22.90∗∗ 30.99 0.57

S2D_60546009 <0.0001 24.77∗∗ 32.69 0.57

S2D_60546609 <0.0001 23.64∗∗ 36.57 0.56

S2D_60963807 0.0048 8.91∗∗ 18.22 0.51

S2D_60963818 0.0048 8.91∗∗ 18.22 0.51

S2D_61284312 <0.0001 26.63∗∗ 35.21 0.56

S2D_61759932 <0.0001 25.60∗∗ 32.99 0.57

Xcfd43 <0.0001 20.90∗∗ 27.18 —

R2 the phenotypic variation explained by the marker. ∗∗Highly significant association
between the SNP marker and the stem rust resistance in the V-set.

are WRKY transcription factors and the role of the WRKY
transcription factor family is well-known in biotic stresses
including disease resistance (Pandey and Somssich, 2009; Wang
et al., 2013; Phukan et al., 2016). The TraesCS2D01G104400.1
is an E3-ubiquitin-protein ligase and these genes have been
shown to contribute to resistance to fungal diseases such as
powdery mildew (caused by Blumeria graminis f. Sp. tritici)
(Zhu et al., 2015). The F-box domain containing protein
(TraesCS2D01G106100.1) was found to have an effect on disease
resistance in tomato (Solanum lycopersicum L.) and tobacco
(Nicotiana tabacum L.) (Maclean et al., 2008). In summary, many
of the genes underlying significant SNPs have been annotated as
being involved in disease resistance which further validated the
marker-trait associations identified in this study.

Haplotype Block Analysis
Haplotype block analysis revealed the existence of 306 haplotype
blocks on chromosome 2D (Figure 5A). The 32 significant
SNPs were located within nine haplotype blocks with numbers
77, 78, 79, 80 81, 83, 84, 85, and 86 (Figure 5B). Block
81 contains most of the significant SNPs (nine SNPs), while
the remaining markers were distributed in eight different
blocks (Figure 5B). All the 32 significant SNPs are located
on haplotype blocks adjacent to each other (on block number
77 through 86). This result indicated that these SNPs most
likely identify the same QTL. The haplotype blocks shed
light on genomic regions associated with the trait following
a GWAS study. For example, selecting the haplotype block
enriched with significant SNPs as compared to using individual
SNPs can reduce redundancy introduced by using all SNPs
(Mokry et al., 2014). Based on the GWAS and haplotype
block analysis, we recommend the significant SNPs located
in block 81 (Table 2) as the best targets for marker-assisted
selection to improve stem rust resistance in seedling winter
wheat.

Validation of the SNPs in the Validation Set (V-set)
To validate the association between the significant SNPs and stem
rust resistance, a set of 60 genotypes was evaluated for QFCSC
stem rust race in two replications. Highly significant differences
were found between the genotypes with no significant differences
between the replications (Table 1). Seventy-eight percent of the
genotypes were resistant with L-IT scores ranging from 0 to 5
which indicated the possibility of these genotypes to be used for
the validation purpose (Figure 1B).

Based on single marker analysis, all the significant SNPs
identified in the A-set had a strong significant association with
stem rust resistance in the V-set (Table 4). The F-values of the
significant SNPs ranged from 8.91 to 30.96. The R2 for the
significant SNPs ranged from 15.09 to 38.72% which indicates
that these SNPs explain the high percentage of the phenotypic
variation in the V-set.

To confirm that the 32 SNPs were good markers for the
Sr6 gene, the V-set was genotyped using specific SSR marker
for the Sr6 gene (Xcfd43). Thirty–seven percent (22 genotypes)
had the target band associated with Sr6. The correlation
between the SSR marker and the significant SNPs (Table 4)
ranged from 0.40 to 0.64. The LD between the SSR and
the significant SNPs (Figure 6) was low. This result was
explained by the high percentage of the missing SNPs in the
V-set with a range extending from 6.78 to 28.81% (Figure 7).
The high percentage of missing loci reduced the correlation
and LD values. The significant association between the 32
SNPs and stem rust resistance in the V-set is evidence that
these SNPs are very useful for a future breeding program
to improve stem rust resistance in winter wheat where Ug99
pathotypes are not present. Validation of QTLs associated
with target traits is one of the main steps of maker-assisted
selection. The advantage of the V-set is that it represents
a different genetic background from that used for GWAS
(A-set). Generally, the 32 SNPs associated with stem rust
resistance especially those that are located in block 81
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FIGURE 6 | Linkage disequilibrium (LD) analysis in the validation set (V-set): heatmap of LD between the significant SNPs detected by the mixed linear model (MLM)
(at significance level of 5% Bonferroni correction) and SSR marker Xcfd43 that predicts Sr6.

FIGURE 7 | Histogram of the percentage of missing loci for each significant SNP (identified in the association set) in the validation set.
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(nine SNPs) could be converted to Kompetitive Allele Specific
PCR (KASP) for the Sr6 gene.

CONCLUSION

In conclusion, our study for the first time identified 32 novel
SNPs associated with Sr6 which is an important gene providing
resistance to a wide range of stem rust races (MCCFC, QCCSM,
QFCSC, RCRSC, GFMNC, and TPMKC). The SNPs associated
with stem rust in this study can be considered for MAS. However,
the nine SNPs located within the same haplotype block and
explain relatively high phenotypic variation are probably most
promising. The reasons supporting this conclusion are (I) the
high LD and correlation found between these SNPs and the
Xcfd43 marker (predicts the Sr6 gene) and (II) the validation
of the association between these SNPs and the Sr6 gene with
highly significant p and R2 values in a set of lines with different
genetic backgrounds. These novel SNPs should be very useful for
improving stem rust resistance.
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