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Molecular Reconstruction of an Old
Pedigree of Diploid and Triploid
Hydrangea macrophylla Genotypes

Peter Hempel "2, Annette Hohe "? and Conny Trdnkner ™

" Leibniz Institute of Vegetable and Ornamental Crops, Erfurt, Germany, ? Faculty of Landscape Architecture, Horticulture and
Forestry, University of Applied Sciences Erfurt, Erfurt, Germany

The ornamental crop species Hydrangea macrophylla exhibits diploid and triploid levels
of ploidy and develops lacecap (wild type) or mophead inflorescences. In order to
characterize a H. macrophylla germplasm collection, we determined the inflorescence
type and the 2C DNA content of 120 plants representing 43 cultivars. We identified
78 putative diploid and 39 putative triploid plants by flow cytometry. In our collection
69 out of 98 flowering plants produced lacecap inflorescences, whereas 29 plants
developed mophead inflorescences. Surprisingly, 12 cultivars included diploid as well
as triploid plants, while 5 cultivars contained plants with different inflorescence types.
We genotyped this germplasm collection using 12 SSR markers that detected 2-7
alleles per marker, and identified 51 different alleles in this collection. We detected 62
distinct fingerprints, revealing a higher genetic variation than the number of cultivars
suggested. Only one genotype per cultivar is expected due to the vegetative propagation
of Hydrangea cultivars; however we identified 25 cultivars containing 2-4 different
genotypes. These different genotypes explained the variation in DNA content and
inflorescence type. Diploid and triploid plants with the same cultivar name were
exclusively mix-ups. We therefor assume, that 36% of the tested plants were mislabeled.
Based on the “Wadenswil” pedigree, which includes 31 of the tested cultivars, we
predicted cultivar-specific fingerprints and identified at least 21 out of 31 cultivars by SSR
marker-based reconstruction of the “Wadenswil” pedigree. Furthermore, we detected 4
putative interploid crosses between diploid and triploid plants in this pedigree. These
interploid crosses resulted in diploid or/and triploid offspring, suggesting that crosses
with triploids were successfully applied in breeding of H. macrophyila.

Keywords: genotype identification, gene bank, interploid crosses, microsatellite, SSR, fingerprint, ornamental
crop

INTRODUCTION

Hydrangea macrophylla (THUNB.) SER. is an economically important crop of the upmarket segment
of ornamentals. H. macrophylla cultivars are famous for their rich foliage and impressively
large, colorful inflorescences. Inflorescences can be divided into the lacecap (wild type) and
the mophead (hortensia) type, according to the position and number of decorative flowers
in the inflorescence. The lacecap inflorescence develops mainly non-decorative flowers, while
several decorative flowers are present at the margin of the inflorescence. In contrast, the
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mophead inflorescence develops more decorative flowers, which
are distributed over the complete inflorescence (Uemachi and
Okumura, 2012). H. macrophylla originates from Japan and
has been bred to create attractive ornamental pot plants
and for landscaping in temperate regions worldwide. As for
many ornamental crops, Hydrangea plants are commercially
propagated through clones via cuttings. Mostly, the method of
clone breeding is applied, where new varieties are selected in
the F; generation, followed by vegetative propagation. Thus,
most cultivars possess a distinctive, predominantly heterozygous
genotype. In addition, some varieties were obtained by
mutant selection (Guérin, 2002). The fluctuation of established
Hydrangea varieties is slow. For instance, varieties like ‘Mariesii’
(1879), ‘Madame Emile Mouillere’ (1909), ‘Libelle’ (1964) or
‘Blaumeise’ (1979) are still on the market.

Several famous lacecap cultivars such as ‘Libelle and
‘Blaumeise’ were derived from a systematic breeding program
performed at the Experimental Station for Fruit Production,
Viticulture and Horticulture in Wadenswil, Switzerland
(nowadays Agroscope Changins-Wiadenswil Research Station,
ACW). This program had started in 1952 by crossing the
mophead cultivar “T6di’ with a lacecap wild type. It ended
in 1987 after the release of 26 lacecap cultivars. In 1990, the
complete pedigree of these lacecap cultivars was published
(Meier, 1990). This pedigree, subsequently named “Wiadenswil”,
is a unique documentation of 36 years of systematic Hydrangea
breeding. Noteworthy, all “Widenswil” lacecap cultivars
are based on one lacecap ancestor. The inflorescence type
is a monogenic, dominant-recessive trait (Uemachi and
Okumura, 2012). Thus, we propose that all “Wadenswil” lacecap
cultivars carry at least one lacecap allele from the wild type
ancestor.

The “Wiadenswil” pedigree includes diploid and triploid
cultivars (Zonneveld, 2004; Jones et al., 2007). Diploid H.
macrophylla varieties contain 2n = 2x = 36 chromosomes,
while triploid varieties possess 2n = 3x = 54 chromosomes.
Thereby, the 2C DNA content of H. macrophylla ranges from
3.85 to 4.97 pg for diploid varieties and from 6.48 to 7.27 pg
for triploid varieties (Cerbah et al., 2001; Zonneveld, 2004; Jones
et al, 2007; Girtler et al., 2013; Alexander, 2017). Triploid
hydrangeas develop larger organs and floral structures than
diploids (Alexander, 2017). Furthermore, they are regarded
to be more robust against biotic and abiotic stresses and
are desired in breeding for cultivar selection. However, little
is known about breeding triploid hydrangeas. As observed
in other species, triploids can be generated through somatic
fusion, sexual hybridization between reduced and unreduced
gametes of diploid parents or sexual hybridization between a
diploid and a tetraploid parent (Wang et al, 2016). To our
knowledge, natural tetraploids of H. macrophylla have not been
identified until now, although tetraploid H. macrophylla plants
can be generated by artificially induced autoploidization as
shown for the diploid cultivars Adria’ and ‘Libelle’ (Giirtler
et al., 2013). Recently, the production of triploid hydrangeas
via unreduced male gametes was described (Alexander, 2017).
Crosses between the diploid cultivars ‘Princess Juliana' and
‘Trophee’ as well as Zaunkonig’ and ‘Princess Juliana™ resulted

in triploid and diploid F; plants, while the reciprocal cross
and a cross with ‘“Zaunkonig' as male parent resulted in
only diploid offspring. Alexander (2017) hypothesized that the
triploids resulted from sexual autopolyploidy, which was most
likely caused by genotype-specific production of unreduced male
gametes.

It is unknown whether interploid crosses between diploid and
triploid hydrangeas can be used to develop triploid varieties.
As observed in other species, triploids tend to be sterile and
seedless due to meiotic errors (Sattler et al, 2016; Wang
et al., 2016). Due to this, triploids are usually excluded from
systematic breeding programs. However, DNA content data
of “Widenswil” cultivars (Zonneveld, 2004; Jones et al., 2007)
revealed, that triploid hydrangeas have been developed in
breeding to a considerable extent. Apparently interploid crosses
between diploid and triploid genotypes have been successfully
performed, although probably unwittingly. In order to prove
this assumption, we collected 1-6 plants of 43 H. macrophylla
cultivars from different sources. We determined their DNA
content and inflorescence type to characterize this germplasm
collection. We found several cultivars that included diploid
and triploid plants or plants that showed either the lacecap or
mophead inflorescence type. In order to clarify these mixes,
we performed an SSR marker analysis. Within this study, we
present (i) a systematic DNA content screening of 120 plants that
represent in total 43 cultivars, including nearly all “Wadenswil”
cultivars, (ii) a genotype identification based on SSR marker
fingerprints, and (iii) a cultivar-specific genotype identification
based on the molecular reconstruction of the “Wadenswil”
pedigree.

MATERIALS AND METHODS

Plant Material

We studied 1-6 plants of 43 cultivars, resulting in 120 plants
(Table 1). This collection included 1-5 plants of 26 “Wadenswil”
lacecap cultivars and 1-6 plants of “T6di, ‘Bodensee;, ‘Enziandom),
‘Gldrnisch, and ‘Hornli, which were used as crossing partners
to develop “Wadenswil” cultivars (Meier, 1990). No plants were
found for the crossing partners ‘Speer, Nr. 1703, Nr. 1192,
and Nr. 254. In addition, we included 11 cultivars with 1
to 6 plants, which were already available in Europe before
the “Widenswil” breeding program started (Mohring et al,
1956). Finally, we included ‘Bela, which was assumed to be
a spontaneous, somatic mophead mutant of the “Widenswil”
cultivar ‘Blaumeise’ (Guérin, 2002). Forty-seven plants were
provided by the Botanical Garden Pirna-Zuschendorf of the
Dresden University of Technology, a member of the German
Gene Bank for Ornamental Plants. Seventy-three plants were
provided by Kétterheinrich-Hortensienkulturen.

Plants were cultivated in 17 cm pots filled with Einheitserde®
CL Hortensien blau on tables in a frost-free greenhouse of
the Leibniz Institute of Vegetable and Ornamental Crops in
Erfurt, Germany, without additional light supply. Plants were
fertilized with Universol® blue 0.1% (Everris International BV)
and irrigated as necessary. At the beginning of July all plants were
pruned.
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Phenotyping

The inflorescence type was recorded in 2016 and 2017, when
the plants were in full bloom. Hydrangea plants show a distinct
inflorescence type: If decorative flowers are present only at the
periphery of the inflorescences, then the plant is recorded as
lacecap. If all non-decorative flowers are covered by decorative
flowers, then the plant is recorded as mophead.

Flow Cytometry

2C DNA content was determined by flow cytometry according
to Dolezel et al. (2007) with slight modifications. We used Pisum
sativum L. ‘Ctirad” with a 2C DNA content of 9.09 pg as internal
standard. About 0.3 and 0.9 cm? of young leaves of sample and
standard were chopped with a razor blade for 30-60 s in a plastic
petri dish containing 1ml Galbraith’s buffer (45mM MgCl,,
20 mM MOPS, 30 mM sodium citrate, 0.1% (v/v) Triton X-100,
pH 7) freshly supplemented with 50 jLg/ml propidium iodide,
50 pg/ml RNAse A and 1% (w/v) PVP 25. The homogenate
was mixed by pipetting, passed through a 30 wm CellTrics filter
(Partec) and analyzed using a Partec CyFlow Space analyzer
with a 488 nm blue solid state laser at a flow rate of 0.1 pl/s.
Data analysis was performed using the software FloMax version
2.70 (Quantum Analysis GmbH). For each sample-standard-
mixture, about 10,000 nuclei were analyzed, which yielded about
5,000 nuclei per sample. High quality peaks were determined at
CV < 4%. The 2C DNA content of each sample was calculated
in relation to the 2C DNA content of the standard as follows:
2C DNA content sample = mean fluorescence value of sample
*9.09 pg / mean fluorescence value of P. sativum.

Chromosome Counting

Based on flow cytometric data, 3 diploid and 2 triploid plants
were selected for chromosome counts. Root tips were incubated
in 2mM 8-hydroxyquinoline for 3h at room temperature and
fixed in 3:1 ethanol:acetic acid for at least 24 h. Subsequently,
the root tips were washed 10 min in aqua dest. and macerated
for 40 min at 37°C in an enzymatic solution containing 4%
cellulose R10 (Duchefa), 1% pectolyase Y-23 (Duchefa), 75 mM
KCI and 7.5mM Na,EDTA at pH 4. Afterwards, the root tips
were washed in aqua dest., transferred onto a slide, covered with
6 l 45% acetic acid and carefully squeezed under a cover slip.
Then, the cover slip was removed by freezing the slide in liquid
nitrogen. After drying the slides, chromosomes were stained with
DAPI using VECTASHIELD® HardSet™ Antifade Mounting
Medium with DAPI (VECTOR Laboratories, Inc.) according
to the manufacturer’s protocol. Chromosomes were visualized
using a fluorescence microscope with 360 nm excitation and
460 nm emission filter. Chromosome counts were made from 5
metaphase cells per examined cultivar.

DNA Extraction and Marker Analysis

Genomic DNA was extracted from young leaves. About 100 mg
shock-frozen leaf samples were homogenized using Precellys®24
with the Cryolys® cooling module (Bertin Technologies S.A.S.).
DNA was isolated using the DNeasy® Plant Mini Kit (QITAGEN)
according to the manufacturer’s protocol. DNA was eluted

with aqua dest. DNA concentration was measured using the
NanoDrop 2000c (Thermo Scientific).

We used 11 Simple Sequence Repeat (SSR) markers that
were already used to estimate the genetic diversity for the
genus Hydrangea (Rinehart et al, 2006; Reed and Rinehart,
2007). The characterization of these SSR loci based on 114
H. macrophylla taxa was published by Reed and Rinehart (2007).
In addition, we developed one SSR marker based on an RNAseq
contig sequence published by Chen et al. (2015). These SSR
markers detected between 2 and 7 alleles per locus in our
germplasm collection, on average 4.25 alleles per locus. The
marker information and corresponding primer sequences are
given in Table 2. All primers were obtained from Metabion
International AG. Polymerase chain reaction (PCR) assays
were done in a total volume of 12.5 pl containing 5 ng
DNA, 1x PCR buffer including MgCl, (Metabion International
AG), 0.2mM dNTPs (Metabion International AG), 0.2 M
unlabeled forward and reverse primers, additionally 0.004 pM
primer labeled with IRD700 or 0.006 uM primer labeled with
IRD800 (Metabion International AG), and 0.02 U mi-Taq DNA
polymerase (Metabion International AG). The PCR conditions
were 3 min at 94 °C, 35 cycles of 30s at 94 °C, 30s at
60 °C and 30s at 72 °C, and finally 5 min at 72 °C.
PCR fragment lengths were determined by polyacrylamide gel
electrophoresis according to Borchert and Gawenda (2010).
For this, we mixed 5 pl IRD 700 PCR product, 5 pl IRD
800 PCR product and 90 l pararosaniline loading dye and
separated PCR fragments together with a 50-700 bp sizing
standard (LI-COR Biosciences) on a 6.5% KBF" gel matrix (LI-
COR Biosciences) using a LI-COR 4300 DNA analyzer (LI-COR
Biosciences). Data analysis was performed with the software
program SAGA 3.3 (LI-COR Biosciences). PCR fragment
lengths were determined in relation to the 50-700 bp sizing
standard (LI-COR Biosciences). For each genotype, SSR marker
alleles were recorded in a binary code as 1 (present) and 0
(absent).

RESULTS

Variability of Phenotype and Ploidy Level
We studied 120 plants that belonged to 43 cultivars
according to their labels (Table 1). These cultivars included
all 26 “Wadenswil” lacecap cultivars as well as “Todi,
‘Bodensee, ‘Enziandom), ‘Gldrnisch, and ‘Hornli, which
were used as crossing partners to develop “Widenswil”
lacecap cultivars (Meier, 1990). Furthermore, this collection
included 11 cultivars available prior to the “Widenswil”
breeding program and also ‘Bela, an assumed spontaneous
mophead mutant of ‘Blaumeise’ (Guérin, 2002). All
cultivars were represented by 1-6 plants from different
sources.

Firstly, we recorded the inflorescence type. In total, 69 plants
developed lacecap inflorescences, while 29 plants produced
mophead inflorescences (Table1). The inflorescence type of
the remaining 22 plants was not determined, because these
plants did not flower. Interestingly, 5 cultivars (namely ‘Fasan)
‘Miicke, ‘Pfau, ‘Flamingo, ‘Nikko Blue’) contained plants that
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150/147/143/138/135
180/177/172/152/143/134/128

60

CGTTGAATTCTTGGTTACAGGC
CCTGAGAGTACGTACAGCAG

A042

60
60
61

GGTCTTCGGAAAACTCACATTC
CTCCAGTTCCTTGATAGCATG

AO41

(ATC)10

STAB137_1382
STAB227_2282

#09
#10

#11

61

AO054

AO53

(TTC)12

STAB305_3062

132/129/126/120/118
125/119/116/113/107/101

CACGATGGACCCATAAAAGGC 61

AOB6

CTAACTAGATCCAGACCAACAAC

AOB5

(CAG)s

STAB241_2422

61

GCTTCTAG GTCAACAGCAG

AO58

61

GGAGACAATATTTCGTTCCAGTG

AO57

(TTC)1o

#12

aMarker developed by Reed and Rinehart (2007), modified in this study by choosing other primer binding sites.
b Marker developed in this study based on a RNAseq contig sequence published by Chen et al. (2015).

produced either lacecap or mophead inflorescences (Figure 1).
These varying inflorescence types may be the result of mixed
plants or spontaneous mutations at the inflorescence locus.

Secondly, we determined the 2C DNA content of all plants by
flow cytometry, in order to identify diploid and triploid plants. In
total, we detected 78 plants, whose 2C DNA content ranged from
3.95 to 4.61 pg with an average of 4.42 % 0.10 pg. For 39 plants,
we measured 2C DNA contents from 6.47 to 6.81 pg, on average
6.61 £ 0.09 pg (Table1). We counted 36 chromosomes for
‘Blauling, ‘Bodensee;, and ‘Libelle, whose 2C DNA content ranged
from 4.40 to 4.45 pg. In contrast, 54 chromosomes were counted
for ‘Blaumeise’ and ‘Bela®” with 2C DNA contents of 6.50 and
6.59 pg, respectively. In addition, Jones et al. (2007) reported 36
chromosomes for “Veitchii’ and 54 chromosomes for ‘Nachtigall’
and ‘Taube, whose 2C DNA contents was determined with 4.22,
6.51, and 6.57 pg, respectively. Thus, our Hydrangea collection
included 78 putatively diploid and 39 putatively triploid plants.
However, aneuploids cannot be excluded, because flow cytometry
allows only an approximation of chromosome numbers.
Surprisingly, 12 out of 43 cultivars included diploid as well as
triploid plants.

SSR Fingerprinting Identified up to Four

Different Genotypes Within One Cultivar
Cultivars of H. macrophylla are vegetatively propagated.
Therefore, all clones of a cultivar have the same genotype and
should display the same chromosome number and inflorescence
type. In order to test whether these varying plants have identical
genotypes, we performed an SSR marker analysis using 12
polymorphic SSR markers. These markers detected 2-7 different
alleles per marker and gave in total 51 different alleles within
the 120 plants (Table1). Using these 12 SSR markers, we
identified 18 cultivars whose plants showed a unique, cultivar-
specific SSR marker fingerprint. However, 25 out of 43 cultivars
comprised 2-4 different genotypes based on the SSR marker
fingerprints. In total, we detected 62 distinct genotypes (Table 1),
although only 43 genotypes (one genotype per cultivar) were
expected.

Our 12 SSR markers were unable to differentiate between
‘Blaumeise’ and ‘Bela’ nor ‘Kardinal’ and ‘Rotdrossel’. This result
was expected for ‘Blaumeise’ and ‘Bela, because ‘Bela’ is a
mophead mutant of ‘Blaumeise, which we confirmed now at
molecular level. It is unlikely that any of our used SSR markers
is able to detect this specific mutation. Thus, ‘Blaumeise’ and
‘Bela’ have an identical SSR marker fingerprint, but ‘Blaumeise’
develops lacecap inflorescences whereas ‘Bela’ produces mophead
inflorescences. In contrast, ‘Kardinal’ and ‘Rotdrossel’ should
display different genotypes as they originated from different
crosses. The screened plants of ‘Kardinal’ and ‘Rotdrossel’ may
belong to the same genotype and the other cultivar is missing
in our collection. Alternatively, the marker number could be too
low to detect genotype-specific polymorphisms. The probability
that ‘Kardinal’ and ‘Rotdrossel’ show the identical fingerprint
is P = 2.291E-06 based on the frequency of the 12 different
SSR marker fingerprints within the triploid genotype pool
analyzed in this study. Furthermore, all plants of ‘Kardinal” and
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‘Miicke*

SSR fingerprint

6.49 pg | ‘Blaumeise’

FIGURE 1 | Examples of plants that varied in inflorescence type, 2C DNA content or SSR marker fingerprint.

6.54 pg | ‘Bela’

‘Rotdrossel’ have a very similar plant phenotype. To confirm
the hypothesis that all plants of ‘Kardinal’ and ‘Rotdrossel’
belong to the same genotype, more plants and markers should
be analyzed.

For 13 genotypes, we detected up to 3 alleles at various
marker loci. Three alleles at one locus indicate triploidy, which
we confirmed for 11 out of 13 genotypes by flow cytometry.
However, the genotypes G25 and G45 showed 3 alleles at marker
loci 7 and 5, respectively, but 2C DNA contents of 4.41 and
4.45 pg, which suggests diploidy. Since we also detected these
alleles independently in other plants, they were not rejected
as unspecific PCR fragments, but might indicate duplicated
chromosomal regions.

Reconstruction of the “Wadenswil”

Pedigree on Molecular Level

All plants of a cultivar that varied in their inflorescence type or
DNA content displayed different genotypes. Moreover, different
genotypes were also detected between plants showing the same
inflorescence type and ploidy level, e.g., ‘Bergfink’ or ‘Eisvogel’
(Table 1), therefore several plants must be labeled incorrectly. In

order to identify the correct plant of a cultivar, we reconstructed
the “Widenswil” pedigree at molecular level. Based on the
published “Wadenswil” pedigree (Meier, 1990), which is shown
with slight modifications in Figure 2, we started the molecular
reconstruction from the initial cross W31. We followed the
inheritance of marker alleles from known parental genotypes to
descendants or by predicting putative parental genotypes from
known descendant genotypes based on two criteria: If a marker
locus of a descendent is heterozygous, both parents (diploid or
triploid) must contain at least one of these alleles. If a marker
locus of a descendent is homozygous, both parents must contain
at least this certain allele. For example, ‘Libelle’ was derived from
cross W31 and is parent in cross W45 and W74. We detected
two genotypes for ‘Libelle, showing the SSR marker fingerprints
GO1 and G33, respectively. Only the allele configuration of G33
fitted into cross W31 with alleles derived from ‘“T6di’ (fingerprint
G57), into cross W45 as parent of ‘Blauling’ (fingerprint G07) and
into cross W74 as back-cross parent of ‘Elster’ and ‘Bachstelze,
while several marker alleles of GO1 failed. GO1 was also detected
as SSR marker fingerprint of ‘Bachstelze’. Thus, we assume that
‘Libelle” with fingerprint GOl was misnamed and is actually
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‘Bachstelze’. In cross W45, none of the four different ‘Enziandom’
genotypes contributed to alleles of ‘Blduling. We assume that
either the correct ‘Enziandom’ is missing in our collection or that
‘Enziandom’ was not the crossing parent in W45. Furthermore,
we were able to predict some allele configurations of the parental
genotype based on our criteria. This predicted genotype can be
used to identify the correct crossing partner in W45. Using this
method, all cross combinations were analyzed. The complete
molecular reconstruction of the “Widenswil” pedigree is shown
in Figure 2. We were able to assign the genotypes of 18 out of 26
“Wiadenswil” cultivars. For ‘Fasan) ‘Rotschwanz, ‘Flamingo’, and
‘Miicke’ we could reduce the number of genotypes to two possible
candidates, which both fitted into the pedigree. The SSR marker
fingerprints of ‘Kardinal’ and ‘Rotdrossel’ fitted to both pedigree
positions. Here, more plants and markers must be analyzed
to identify the cultivar-specific genotype and fingerprint. In
contrast, none of the SSR marker fingerprints, which were
detected for different plants of ‘Enziandom), ‘Papagei, and ‘Taube,
fitted to the corresponding predicted allele configuration in the
“Wiadenswil” pedigree. Thus, the right genotypes of these three
cultivars are missing in our collection.

Differing Ploidy Levels Within a Cultivar Are

due to Mix-up

We detected 12 out of 43 cultivars that included diploid and
triploid plants. To prove, whether these diploids were derived
from triploid precursors, we compared the allele configurations
of triploid and diploid plants with the same cultivar name. If
a chromosomal re-organization took place, all alleles of diploid
plants would be present in the corresponding triploid precursor.
However, none of the 12 cultivars that included diploid and
triploid plants fulfilled this condition. Instead, we were able to
assign several of these plants to other cultivars based on their
SSR marker fingerprint, which then matched perfectly with the
corresponding ploidy level (Table 1). Thus, all differing plants
were mislabeled.

Interploid Crosses Within the “Wadenswil”

Pedigree
In total, we detected at least 45 diploid and 15 triploid
genotypes based on our marker analysis. 25 diploid and 7 triploid
genotypes were attached to the “Widenswil” pedigree (Figure 2).
Our analysis identified cross W51 as an interploid cross
between triploid ‘Moéwe’ and diploid ‘Glarnisch’. Furthermore,
the predicted genotypes of W44/4 and W55/29 contained up
to 3 alleles at various marker loci, which suggests polyploidy.
W44/4 and W55/29 were used as crossing partners in crosses
W55, W71, and W79, which reveals 3 further interploid crosses
in the “Widdenswil” pedigree. These crosses resulted in diploid
or/and triploid offspring. Based on these findings, we assume
that interploid crosses with triploids were successfully applied in
Hydrangea breeding, resulting in diploid and triploid offspring.
In addition, crosses W38, W44, and W81 also gave triploid
offspring. The mechanism that caused triploidy remains unclear,
because most of the crossing partners and their DNA content are
unknown.

DISCUSSION

By genotyping a set of 120 H. macrophylla plants with 12 SSR
markers, we identified 25 out of 43 cultivars that included 2-4
plants with different SSR marker fingerprints that varied also
with regard to DNA content and inflorescence type. In total,
we detected at least 62 distinct genotypes instead of 43 expected
ones. Approximately 36% of these plants carried a wrong cultivar
name. Based on the published “Widenswil” pedigree of lacecap
hydrangeas, we were able to predict cultivar-specific SSR marker
fingerprints and retrieved 18 out of 26 “Wadenswil” cultivars.
Thus, genotyping allowed reducing the total number of plants to
the extent of almost 52%, while 19 extra genotypes were identified
in our germplasm collection.

Our study confirmed that genotyping with SSR markers is
a powerful tool to identify and differentiate between cultivar-
specific genotypes in clonally propagated plant species. Plants
with the same genotype can be reduced to decrease the number
of plants in germplasm collections. In contrast, plants with
differing genotypes can be separated in the case of mix-ups,
and can be assigned to the correct cultivar. This would be
beneficial especially for gene banks. Gene banks conserve and
document genetic resources and provide material and data to
maintain genetic- and biodiversity (www.croptrust.org). The
ability to sort and correct stock using SRR markers would be
incredibly beneficial for gene banks. Around the world, about
1,750 gene banks hold more than 7.4 million seeds or plant
tissues from thousands of crop species (Gruber, 2017). In October
2016, Hydrangea collections became part of the national Gene
Bank for Ornamental Plants in Germany (Spellerberg, 2017).
However, plant conservation is expensive and storage capacities
are limited. To organize gene banks efficiently, redundancies in
plant collections and misnamed plants must be avoided.

Hydrangea is a vegetatively propagated crop and each cultivar
possesses a specific genotype that can be represented by only
one plant. However, a strong mix-up of plants was detected in
our plant collection, which partially represents two independent
Hydrangea collections. Several mix-ups were clearly detectable by
phenotype, for instance differing inflorescence types, but most
were not obvious due to phenotypic similarity resulting from the
close relationship of some Hydrangea cultivars. For example, the
siblings ‘Blaumeise, ‘Eisvogel, and ‘Nachtigall’ are half-siblings
of ‘Rotkehlchen, while ‘Elster’ and ‘Bachstelze’ are backcross
progenies of ‘Libelle’ (Meier, 1990). If the cultivar-specific
differences are too small and outstanding characteristics are
missing, cultivar identification by phenotype alone is critical and
mix-ups can occur especially for old cultivars out of commercial
production. Redundancies and mix-ups were also observed in
germplasm collections of other species (Hokanson et al., 1998;
Lund et al., 2003). Thus, we strongly recommend to document
plants not only by phenotype but also by genotype, in order
to identify mixed, to eliminate wrong and to reduce redundant
plants. Furthermore, we propose to do plant descriptions only
after genotype identification and to add these phenotypic and
genotypic data to a public accessible data base.

For genotyping, the marker system and number of markers
have to be individually chosen for each species according to the
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genetic diversity within the germplasm collection. In our plant
collection, 12 SSR markers, which detected in total 51 different
alleles, distinguished 62 out of putative 64 genotypes. SSR
markers are very suitable to detect duplicates or misnamed plants
(Hokanson et al., 1998; Lund et al., 2003). They are convenient
for the genotyping of germplasm collections due to their
locus-specific, co-dominant inheritance, high reproducibility and
utilization in high throughput. Moreover, they are relatively
cheap and data handling is easy. However, only a low number
of loci are considered and the information about genetic
diversity remains low. In times of next generation sequencing,
resequencing of whole genomes and genotyping-by-sequencing
are increasingly widespread and affordable (Lin et al., 2014;
Cheng et al, 2016; Varshney et al, 2017). Although highly
interesting with regard to genome-wide association analysis and
pre-breeding research, genotyping-by-sequencing might be over-
dimensioned for simple genotype identification. The number of
markers used in this study is relatively low. However, genotype
differentiation depends not only on the number of markers but
also on the number of detected alleles and the allele frequencies
within the germplasm collection. For systematic genotyping of
Hydrangea gene bank collections, the marker number has to
be established and this depends on the genetic diversity of the
plant collection. This study provides a foundation for future
Hydrangea genotype analyses using SSR markers. Although SSR
markers seem to be old-fashioned in times of next generation
sequencing, they fulfill the requirements of easy and reliable
genotype identification nicely.

Based on the reconstruction of the “Widenswil” pedigree,
we identified four putative interploid crosses, which produced
diploid or/and triploid progenies even in top-select quality.
Thereby, triploids were used as seed and pollen parents.
Crosses with triploids are considered to be difficult due to
meiotic errors. Triploids are often sterile as observed for
citrus, banana and watermelon (Wang et al, 2016), or they
produce aneuploid gametes as observed in maize. Crosses
between triploid and diploid maize plants resulted in aneuploid
oftspring with differing chromosome numbers and insufficient
phenotype compared to the diploid and triploid parental plants
(McClintock, 1929). In contrast to maize, cross experiments of
triploid and tetraploid rose plants indicated that triploid roses
were able to produce haploid and diploid male and female
gametes (Van Huylenbroeck et al., 2005). The 2C DNA contents
of verified “Wédenswil” cultivars gave no significant indication
for aneuploidy, although we have DNA content variations in
flow cytometric measurements in the range of + 1 chromosome.
However, this variation might be caused by natural variations in
DNA content (Cerbah et al., 2001) or the technical error of flow
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