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Agronomists have used statistical crop models to predict yield on a

genotype-by-genotype basis. Mechanistic models, based on fundamental physiological

processes common across plant taxa, will ultimately enable yield prediction applicable

to diverse genotypes and crops. Here, genotypic information is combined with multiple

mechanistically based models to characterize photosynthetic trait differentiation among

genotypes of Brassica rapa. Infrared leaf gas exchange and chlorophyll fluorescence

observations are analyzed using Bayesian methods. Three advantages of Bayesian

approaches are employed: a hierarchical model structure, the testing of parameter

estimates with posterior predictive checks and a multimodel complexity analysis. In all,

eight models of photosynthesis are compared for fit to data and penalized for complexity

using deviance information criteria (DIC) at the genotype scale. The multimodel

evaluation improves the credibility of trait estimates using posterior distributions. Traits

with important implications for yield in crops, including maximum rate of carboxylation

(Vcmax) and maximum rate of electron transport (Jmax) show genotypic differentiation.

B. rapa shows phenotypic diversity in causal traits with the potential for genetic

enhancement of photosynthesis. This multimodel screening represents a statistically

rigorous method for characterizing genotypic differences in traits with clear biophysical

consequences to growth and productivity within large crop breeding populations with

application across plant processes.

Keywords: A/Ci curves, Bayesian models, Brassica rapa, chlorophyll fluorescence, multimodel analysis,

phenotyping, photosynthesis

INTRODUCTION

Maintaining food security for the world’s rapidly growing population is a paramount challenge
for science. Classic and modern genomic breeding programs represent one of the major tools for
increasing food supply to counter this Malthusian dilemma. The success of breeding programs
in part depends on the ability to quickly identify beneficial phenotypic traits in breeding
populations (Sadras et al., 2013). Experimentation and modeling assists trait identification while
producing insights into plant physiology and crop productivity (Sinclair and Seligman, 1996;
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Hammer et al., 2006). Mechanistic modeling using known or
theorized ecological, biochemical and biophysical principles
further advance understanding through connecting yield to
causal traits (Laisk and Nedbal, 2009; Tardieu, 2010). These
mechanistic models of plant physiology use statistical tools to
estimate trait variation by organizing phenomenological data
into meaningful mathematical representations of enzymatic and
protein activity responsible for plant processes (DeWitt, 1965;
von Caemmerer, 2000; Patrick et al., 2009;McDowell et al., 2013).
In this way models can estimate valuable phenotypic information
through specifying physiologically meaningful trait values from
data.

Photosynthesis is a primary target for selective enhancement
in crops (Long et al., 2006; Singh et al., 2014; Furbank et al.,
2015) and the mechanisms of photosynthesis are well-studied
with models used to characterize assimilatory strategies across
taxa (Wullschleger, 1993; Patrick et al., 2009; Gu et al., 2012).
For these reasons, photosynthesis was chosen as a target for
multimodel phenotyping. Modeling of photosynthesis evolves
as theory tests data in attempts to replicate the pathway of
enzymatic and protein responses responsible for carbon fixation,
light harvesting, and electron transfer (DeWitt, 1965; Farquhar
et al., 1980, 2001; von Caemmerer, 2000; Yin et al., 2009). At
each stage of model development simplifying assumptions are
made regarding the behavior of these pathways. For example,
assumptions are made in regard to the degree of trait response
to temperature fluctuation or regarding the relative resistance
change in the CO2 pathway from the atmosphere to the site
of carboxylation (Medlyn et al., 2002a; Pons et al., 2009).
Such assumptions affect modeling efforts in three key ways.
First, assumptions accommodate unknowns and can shift model
emphases from mechanistic processes to empirical relationships.
Second, assumptions impact model complexity, forcing modelers
to assess the performance of models ranging in complexity
(Knorr and Heimann, 2001; Martre et al., 2015). Third,
assumptions can influence the uncertainty of trait estimates
(Mackay et al., 2012). Uncertainty quantification is therefore
necessary when making claims of trait differentiation. More
broadly, uncertainty quantification can inform the cyclical
process of model improvement by repeatedly testing updated
theory against data (Box, 2001).

A number of theoretical developments with empirical support
have identified the critical factors limiting leaf-level CO2

assimilation (A). Generally, the limiting factors are divided into
two major classes: diffusional and biochemical. Diffusional limits
can be further subdivided into a stomatal limitation that is
imposed by guard cell control over stomatal conductance and a
mesophyll limitation regulating CO2 and H2O transport between
the intracellular space and the site of carboxylation (Cc) (Ethier
and Livingston, 2004; Grassi and Magnani, 2005; Niinemets
et al., 2009a; Damour et al., 2010). Limits on photosynthesis
imposed by mesophyll conductance (gm) have been shown to
be of a similar magnitude to gs limitation (Grassi and Magnani,
2005). However, uncertainty remains in understanding the limits
gm imposes across taxa and environments as all methods of
estimating gm rely on models sensitive to parameterization
(Pons et al., 2009; Gu and Sun, 2014; Théroux-Rancourt and

Gilbert, 2017). The leaf biochemical limitations controlling
A are summarized by two primary factors, Ribulose-1,5-
bisphosphate carboxylase/oxygenase (RuBisCO) limited A (Ac)
and regeneration of ribulose biphosphate (RuBP) limited A
(AJ). Ac follows the Michaelis–Menten enzymatic kinetics for
RuBisCO. This requires amongst other parameters the estimation
of the maximum rate of carboxylation (Vcmax). AJ is coordinated
by the electron transport rate (ETR) across photosystems II
and I (PSII, PSI), which produces ATP and NADPH needed
for the Calvin carboxylation cycle (von Caemmerer, 2000).
Measurements of chlorophyll fluorescence have been used as
proxies for ETR limited AJ (Genty et al., 1989; Baker, 2008).
A carbon metabolism limitation or triose phosphate utilization
(TPU) limitation has also been identified (Sharkey et al., 1985).
Beyond the major diffusional and biochemical limitation, studies
have sought to better understand the influence temperature has
on photosynthetic performance (Bernacchi et al., 2001; Medlyn
et al., 2002a; Patrick et al., 2009). Temperature influence can
be modeled using an activation energy (Ei) parameter following
an Arrhenius function (von Caemmerer, 2000). Both diffusional
and biochemical limitations are temperature-responsive using
these modeling methods (Bernacchi et al., 2001, 2002; Leuning,
2002; Kattge and Knorr, 2007). In total, the inclusion or absence
of these limitations, constraints or assumptions regarding leaf
biochemistry and biophysics results in models of varying
complexity.

Progressively, each incremental change in model form
represents an alternative view of how the photosynthetic
machinery behaves. A multimodel framework can test for the
strengths and weaknesses of these alternative views. Information
criteria such as Akaike Information Criteria and Bayesian
correlate Deviance Information Criterion (DIC) provide metrics
for evaluating model adequacy through combining terms of
both the goodness of fit and model complexity (Akaike, 1998;
Spiegelhalter et al., 2002). A recent statistical argument suggests
that multimodel analyses are a superior method, compared to
null hypothesis approaches, to test mechanisms against data
(McElreath, 2016). Climate models leverage the multimodel
approach for generating estimates of regional temperature
change (Tebaldi et al., 2004) and these climate model ensembles
have been used in crop prediction models (Ruane et al.,
2017). Hydrological work also embraces Bayesian multimodel
approaches to both inform groundwater estimates and sampling
schema (Xue et al., 2014).

The current state of the art in photosynthesis models seeks
to capture known and theoretical biophysical processes of
the diffusional limitations and the light and light-independent
reactions responsible for observed variation across environments
and taxa (van der Tol et al., 2009; Yin et al., 2009).
Concurrently modelers aim to parameterize at finer evolutionary
scales (Yin et al., 2001; Patrick et al., 2009; Yamori et al.,
2014). The broad division of models between C-3 and C-4
plants represents a critical improvement in this context (von
Caemmerer, 2000). The C-3/C-4 evolutionary shift resulted in
mechanistic differences requiring unique modeling frameworks
for successfully understanding these two broad assimilatory
systems. But approaches ignore model structural differences
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when considering variation among closely related individuals.
Here we argue that multimodel analysis can assist in testing
for variation across evolutionary context, as the structure,
distribution, abundance, and therefore behavior of critical
enzymes and proteins should be conserved in closely related
populations relative to evolutionarily distant ones. Of relevance
to crop breeding and highly outcrossing wild species, allelic
combinations from two parents may lead to physiological
responses beyond the range expressed by the parents due to
transgressive segregation (Rieseberg et al., 1999). In these cases,
identifying genetic controls over biophysical traits and processes
across the species as a whole may be more complicated. Even
so, instances of transgressive segregation explore phenotypic
space that may be acted upon by natural or artificial selection
(Rieseberg et al., 2003). In such cases genotypic differences may
require genotype-specific behaviors and allow for reduced model
complexity by eliminating the need for particular parameters. For
example, it may be unnecessary to account for gm-limitation if
all experimental genotypes have uniformly high gm relative to gs.
Therefore, when probing for trait variation within a genetically
variable species, it is important to explicitly test if genotype- or
species-level model forms are preferred. Overall, our aim was a
robust complexity analysis ofmultiple leaf photosynthesismodels
for evaluation of photosynthetic differences of different allelic
combinations.

MATERIALS AND METHODS

Overview
Model evaluation should not only considerer fit because
increasing complexity often improves fit but may not increase
predictive power. Therefore, checking models for both fit and
parsimony should occur iteratively (Box, 1976; Spiegelhalter
et al., 2002). To avoid unnecessarily high dimensionality,
statistical measures have been developed that penalize complexity
as part of a model selection strategy (Akaike, 1998; Spiegelhalter
et al., 2002; Plummer, 2008). In the screening tool developed here,
the complexity associated with three leaf level modifications of
photosynthesis models was quantified: temperature constraints,
gm limitation, and derivational form of ETR.

Bayesian methodologies are well-suited for parameterization,
uncertainty analysis and multimodel evaluation (Gelman et al.,
2004; Kruschke, 2010). These methods have wide application in
plant ecology and physiology (Ogle and Barber, 2008; Patrick
et al., 2009; Mackay et al., 2012; Gou et al., 2017). While
many Bayesian studies have focused on just one or two of
these beneficial features; often parameterization and uncertainty
analysis (Zhu et al., 2011; Gou et al., 2017), we sought to leverage
all three features. Additionally, Bayesian methodologies can be
tested in hierarchical structures whereby multiple datasets can
be combined to inform parameterization at different levels, such
as among taxa or genotypes, spatial scales or other known
sampling characteristics (Gelman et al., 2004). Here, a simple
two level hierarchical structure is adopted, where individual and
genotypic level traits are estimated. This analysis is summarized
in Figure 1 as a five-part trait-screening methodology; four of
these five parts are presented in detail here. First, experimental

data, described later in the Plant Physiological Measurements
section, is collected across genotypes and/or within treatments;
the data set presented here is across genotypes under unstressed
growth conditions. Second, alternative models are constructed
in an effort to challenge commonly held yet non-definitive
assumptions regarding the process of interest; here multiple
photosynthesis models are established using curves of CO2

assimilation (A) vs. intercellular CO2 concentrations (Ci) (A/Ci).
Third, observation data is passed into competing models using
a sampling scheme designed to produce Bayesian posteriors.
Fourth, the posterior distributions of each model are examined,
in order to identify traits with genotypic differentiation and
to evaluate genotypic differences in light of model complexity.
Fifth, findings are summarized to develop future experimental-
modeling iterations. In sum, potentially beneficial traits are
identified, areas for model improvement are considered, and
resultant posterior distributions are used to update trait priors for
subsequent evaluation. At the same time, new experimentation
can be considered based on findings and genetic analysis of
trait estimates may support classic or molecular breeding based
on candidate genes. Ultimately, this multimodel analysis aims
at critically evaluating trait differences within the population
under investigation and represents an important step in linking
phenome to genome, here demonstrated on the vital processes of
carbon assimilation and light harvesting.

Study Site and Genotypes
Data were obtained from experiments undertaken in the
summers of 2012 and 2013 at the University of Wyoming
Research and Extension Center Field Complex (41.32N,
105.56W) in Laramie WY, USA. Details of the experiment are
given in Aston et al. (in prep). We included six genotypes
of B. rapa: four crop accessions [oilseed, subsp. Pusa Kalyani
cgn06834 (oil); turnip, subsp. Maiskaja cgn06710 (tur); Chinese
cabbage, subsp. Pekinensis cgn13942 (cab); broccoletto subsp.
Quarantina cgn06825 (bro)] and two recombinant inbred lines
(RILs) (r46 and r301). Crop accession seeds were obtained from
the Wageningen University and Research Center for Genetic
Resources. The RILs, r46 and r301, are the F8 offspring of a
cross between the IMB211 genotype derived from the Wisconsin
Fast PlantTM population and the R500 genotype, an oilseed
long cultivated in India. The two RILs, full siblings, were
selected based on the expression of transgressive segregation
for intrinsic water use efficiency (WUE) identified in earlier
research (Edwards et al., 2011, 2012). Plants were germinated in
a greenhouse and after two weeks transplanted to a rain shelter in
the field where they were grown under well-watered conditions.
All measurements were taken on days 25–28 after planting.

Plant Physiological Measurements
Infrared leaf gas exchange (IRGA)measurements (Li-6400XT, Li-
Cor, Lincoln, NE, USA) were taken to measure A/Ci response
with a constant irradiance of 2,000 µmol m−2 s−1 for CO2

concentrations of ∼50, 100, 200, 300, 400, 500, 600, 800, 1,000,
1,250, 1,500, and 2,000 µmol mol−1. IRGA measurements
monitor fluxes of both CO2 and H2O allowing for direct
measurement of A and transpiration (E) with indirect means
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FIGURE 1 | Workflow for multimodel Bayesian phenotyping. Box 1: Experimental design across varietals and/or treatments; here focus was on A/Ci curves from six

B. rapa genotypes. Box 2: Alternative models constructed for testing assumptions regarding the process of interest; here eight photosynthesis models with trait priors

established from literature (Tables 1–4). Box 3: Bayesian sampling for generating posterior distributions across all models X individuals, here executed in rjags

(Plummer, 2014). Box 4: Posterior distributions evaluated using posterior predictive checks (Figures 2–4), genotypic model complexity compared using DIC (Table 5),

and posterior trait distributions of each model scrutinized using boxplots (Figures 5–8) and high-density interval (HDI) analysis (Table 6). Box 5a: Model evaluation

and updating along with updating of prior distributions for population. Box 5b: Genomic analysis of identified traits and classic or molecular breeding for establishing

next test population (Figure 9). * indicates steps competed in this study.

of assessing gs and Ci. CO2 response curves were measured
between 10:00 and 16:00 h on fully expanded, mature leaves with
leaf temperature maintained near 22◦C and relative humidity
maintained within 10% of ambient. A steady state was achieved
at each CO2 increment prior to each gas exchange observation.
Temperature and vapor pressure deficit averaged 21.1◦C (±3.0)
and 2.01 kPa (±0.4), respectively. Chlorophyll fluorescence
measurements were taken in conjunction with each gas exchange
observation. Chlorophyll fluorescence observations measure
the re-radiated near infrared light by the leaf. Fluorescence
serves as one means, albeit small, of dissipating excess light
energy (Maxwell and Johnson, 2000). Fluorescence yield is
used to quantify the amount of light energy transferred from
excited photosystem II to primary quinone acceptors, such
as plastoquinone, driving downstream photosynthetic light
reactions (Baker, 2008). This is done using a saturating flash
followed by a dark pulse to measure Fm

′ – Fs/Fm
′, where Fs

is steady state fluorescence yield and F
′
m is maximum light-

adapted fluorescence yield. Fm
′ –Fs/Fm

′ is commonly referred
to as effective quantum yield of PSII (φPSII) (Genty et al.,
1989). A simple method using φPSII to estimate total flux
of the electron transport chain based on fluorescence (Jf )

(µmol m−2 s−1) is described in Equation (3.5) of Table 2.
Equation (3.5) makes assumptions regarding the partitioning of
light between photosystems (f ) (0.5) and the fractional value
of light absorptance by leaf photosynthetic pigments (αleaf )
(0.85). In total 31 individual A/Ci curves were tested in the
analysis (six r301, six r46, five bro, five cab, three oil, and six
tur).

Bayesian Modeling Approach
A Bayesian model is comprised of three sets of probability
statements (Gelman et al., 2004; Kruschke, 2010; Ogle and
Barber, 2011). First, prior statements represent a statistically

sound and repeatable method of summarizing known
information, in this case regarding plant photosynthesis
physiological traits (Ogle and Barber, 2008). The second
probability statement is the likelihood function(s) expressing
the probability that a given model could have generated
a particular set of data. The final probabilistic statements
are the posterior distributions describing the strength of a
model once data have been tested as well as the degree of
uncertainty in parameterization. Here 31 A/Ci curves were
independently evaluated using a suite of eight models following
this approach. The data, parameters, and predictions made
by these eight models are described in Table 1, with model
equations identified in Table 2. Each model has a coded
name based on the assumptions therein (Table 3). The model
and implementation codes used for analysis are provided
at https://github.com/jrpleban/Bayes_Farquhar_Models_2_
level_Hierarchy. Priors on parameters are shown in Table 4.
We have chosen to estimate some parameters often set as
constants (Kc, Ko) to evaluate a given model’s ability to discern
traits expected to be conserved in this population. A literature
survey for each parameter was used to provide statistical
distributions for parameter priors. Many parameters have
ample data across taxa, such as for Jmax25, allowing a normal
distribution of priors (Wullschleger, 1993). When a trait’s
distribution was more uncertain, broad priors were used, such as
for φJ .

All models assumed that observations of A (An) (µmol m−2

s−1) followed a normal distribution:

An ∼ N(Aexp, τ ) (1)

where Aexp is the expected photosynthetic rate, τ is precision
(1/σ2) describing the variability in measurement error. A
hierarchical design nested individual plant parameters within
the genotypic populations. This nested design was used for all
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TABLE 1 | List of abbreviations used for observations, predictions, and parameters of eight photosynthesis models.

Abbreviation Definition Units Models using

OBSERVATIONAL DATA

An CO2 assimilation rate observed µmol m−2 s−1 All

Ci Intercellular CO2 partial pressure observed Pa CiCc Models

Ca Ambient CO2 partial pressure observed Pa CaCc Models

T Leaf temperature observed ◦C Temp Models

P Pressure observed Pa All

gs Conductance to CO2 from atmosphere to intercellular space observed µmol m−2 s−1 CaCc Models

O Ambient O2 (assumed 21% atmosphere) Pa All

Q Photosynthetically active radiation observed µmol m−2 s−1 All

φPSII Quantum yield of photosystem II based on Chlorophyll fluorescence e− photon−1 Jf Models

Jf Electron transport rate from Chlorophyll fluorescence (Equation 3.5) µmol m−2 s−1 Jf Models

PROCESS MODEL PREDICTIONS

Aexp Expected CO2 assimilation rate µmol m−2 s−1 All

Ac Rubisco limited rate of CO2 assimilation µmol m−2 s−1 All

Aj Electron transport limited rate of CO2 assimilation µmol m−2 s−1 All

Jm Rate of electron transport following Equation (3.6) µmol m−2 s−1 Jm models

PROCESS MODEL CONSTANTS

R Universal gas constant (8.314 J K−1 mol−1) J K−1 mol−1 All

αleaf Absorptance of leaf photosynthetic pigments (0.85) unitless All

f Partitioning of energy between PSII and PSI (0.5) unitless Jf Models

PROCESS MODEL PARAMETERS IDENTIFIED BY BAYESIAN ESTIMATION

Rd (Rd25) Respiration rate in the dark (standardized to 25◦C) µmol m−2 s−1 All

Γ * (Γ *25) CO2 photocompensation point (standardized to 25◦C) Pa All

Kc (Kc25) Michaelis-Menten constant for Rubisco for CO2 (standardized to 25◦C) Pa All

Ko (Ko25) Michaelis-Menten constant for Rubisco for O2 (standardized to 25◦C) kPa All

Ei’s (Kc, Ko, Rd , Vcmax , Γ * , Jmax , gm) Activation energy used in Arrhenius function KJ mol−1 Temp Models

gm (gm25) Mesophyll conductance to CO2 (standardized to 25◦C) µmol m−2 s−1Pa−1 CiCc Models

Vcmax (Vcmax25) Maximum rate of carboxylation (standardized to 25◦C) µmol m−2 s−1 All

Jmax (Jmax25) Maximum rate of electron transport (standardized to 25◦C) µmol m−2 s−1 Jm models

φJ Quantum yield estimate using Equation (3.6) e− photon−1 Jm models

θJ Curvature factor photosynthetic light response curve unitless Jm models

Equations described in Table 2. Model coding described in Table 3.

eight photosynthesis models with each model and genotype run
independently. Parameters undergoing individual and genotypic
estimation employed normal distributions following:

µYi ∼ N(µYgeno, τYgeno) (2)

where µYi is individual level parameters means, µYgeno are
genotypic parametersmeans and τYgeno is the genotypic precision
(1/σ2). Table 4 shows the parameters estimated at both the
individual and genotypic level as well as those only estimated
genotypically. The choice of parameters estimated at genotypic
level considered both evolutionary constraints for Kc and Ko

(Galmes et al., 2005) and an analysis of trait variance using
a suite of non- hierarchical models for Ei ′s (data not shown).
The variance priors for individual level parameters used weakly
informed gamma distributions. A weakly informed Folded-
Cauchy distribution (implemented as a truncated t-distribution
with one degree of freedom) was used to describe prior
distribution for process model variance structure (τ ) (Gelman,

2006). This was centered at 0, set at the range of [0,∞) with a
standard deviation of 2.5.

Photosynthesis Models
Within plant physiology and earth system science the Farquhar,
von Caemmerer and Berry model of photosynthesis (FM) stands
out for its mechanistic, principally biophysical/biochemical, basis
for modeling C3 photosynthesis (Farquhar et al., 1980; von
Caemmerer, 2000). FM, developed at the leaf scale, originally
proposed two rate limiting factors controlling A by finding the
minimum of RuBisCO limited A, Ac, and RuBP regeneration
limited A, AJ (Farquhar et al., 1980), with a gm limitation added
subsequently (Ethier and Livingston, 2004). A triose phosphate
utilization limitation (TPU) of A (Sharkey et al., 1985) was
considered using a similar quadratic structure. Results showed
TPU affecting A at greater than 93.6 µmol m−2 s−1, above the
maximum An (70.3 µmol m−2 s−1) found in our data, and
therefore a TPU limitation was not included.
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TABLE 2 | List of equations used in eight photosynthesis models.

Equation No. Equation Description (models using equation)

3.1 Aexp = min(Ac,Aj )
Expected CO2 assimilation rate

as minimum of 2 limiting factors (All)

3.2 Ai = −b+
√
b2−4ac
2a

General quadratic form for

solving Ac,Aj (All)

3.3a

a = −1
gm

b = Vcmax−Rd
gm

+ Ci + Kc(
1+O
Ko

)

c = Rd (Ci + Kc(
1+O
Ko

)

Ac solution using intercellular CO2 (Ci )

and mesophyll conductance (gm)

(CiCc_Jf, CiCc_Jm, CiCc_Jf_Temp,

CiCc_Jm_Temp)

3.3b

a = −1
gs

b = Vcmax−Rd
gs

+ Ca + Kc(
1+O
Ko

)

c = Rd (Ca + Kc(
1+O
Ko

)

Ac solution using ambient CO2 (Ca) and

stomatal conductance (gs) (CaCc_Jf, CaCc_Jm,

CaCc_Jf_Temp, CaCc_Jm_Temp)

3.4a

a = −1
gm

b =
Ji
4 −Rd
gm

+ Ci + 2Ŵ∗

c = Rd (Ci + 2Ŵ∗)− Ji
4 (Ci − Ŵ∗)

AJ solution using Ci and gm

(CiCc_Jf, CiCc_Jm, CiCc_Jf_Temp,

CiCc_Jm_Temp)

3.4b

a = −1
gs

b =
Ji
4 −Rd
gs

+ Ca + 2Ŵ∗

c = Rd (Ciobs + 2Ŵ∗)− Ji
4 (Ca − Ŵ∗)

AJ solution using Ca and gs

(CaCc_Jf, CaCc_Jm, CaCc_Jf_Temp,

CaCc_Jm_Temp)

3.5 Jf = F ′m−Fs
F ′m

fQαleaf

Chlorophyll fluorescence derivation of

electron transport rate (ETR) (Jf ) (CiCc_Jf,

CaCc_Jf, CiCc_Jf_Temp, CaCc_Jf_Temp)

3.6

a = θJ

b = −(Q ∗ φJ ∗ αleaf )− Jmax

c = QφJ ∗ Jmax

Quadratic roots for whole chain ETR (Jm)

(CiCc_Jm, CaCc_Jm, CaCc_Jm_Temp,

CiCc_Jm_Temp)

3.7 P = P25exp[
Ei (T−298)
298RT ]

Arrhenius temperature response for

parameter (P) (CiCc_Jf_Temp, CiCc_Jm_Temp,

CaCc_Jf_Temp, CaCc_Jm_Temp)

Modeling equations are presented in Table 2, and all
approaches used the general quadratic form of FM, Equation
(3.2). All models predicted both Ac and AJ but varied in their
inclusion of three components: (1) the use of a temperature
constraint on model parameters, (2) the inclusion or absence of
a gm limitation, and (3) the derivation for estimating AJ. This 23

design leads to eight modeling formulations when accounting for
all combinations. First a subset of models included a temperature
constraint on parameters, others differed in the inclusion or
absence (assuming infinite) of a gm limitation (Equations 3.3 a
or b and 3.4 a or b), and finally a subset used two alternative
characterizations of ETR, following either Equation (3.5) or (3.6)
(Table 2). Models were developed on all combinations of these
three assumptions (Table 3). Models with a gm limitation were
coded CiCc, while infinite gm models were coded CaCc. Models

using Equation (3.5), fluorescence derived ETR, were coded with
a Jf, and models using Equation (3.6) to derive ETR were coded
with a Jm. Models with a temperature constraint on parameters
had an added Temp in model identifier.

Mesophyll conductance has been demonstrated to limit A and
has been integrated into the FM (Ethier and Livingston, 2004;
Flexas et al., 2008). Increasingly, gm is being shown to impact
photosynthesis under stressful conditions (Flexas et al., 2008;
Niinemets et al., 2009b; Tomás et al., 2014). It is, however, still
common practice to assume an infinite gm (Thornton et al., 2005;
Kattge et al., 2009) due to limited knowledge of its interspecific
variation and dynamics as well as the challenges and costs
associated with some estimation techniques (Niinemets et al.,
2009a; Gu and Sun, 2014; Hanson et al., 2016). Here we integrated
a gm limitation in four models using a curve fitting approach
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TABLE 3 | Coding of eight photosynthesis models based on three contrasting assumptions with the total number of structural parameters in each model.

Model Temperature constraint on

parameters

gm limitation

estimated

ETR derived using Equation

(3.5)

ETR derived using

Equation (3.6)

Number of structural

parameters

CiCc_Jf X X 6

CiCc_Jm X X 9

CaCc_Jf X 5

CaCc_Jm X 8

CiCc_Jf_Temp X X X 12

CiCc_Jm_Temp X X X 16

CaCc_Jf_Temp X X 10

CaCc_Jm_Temp X X 14

TABLE 4 | Prior probability distributions of parameters used in eight photosynthesis models.

Parameter Prior distribution dnorm

(mean, precision)

Prior type Citation(s)

Egm Dnorm (49.6, 0.1) Broadly informed (geno) Ethier and Livingston, 2004; Sharkey et al., 2007; Patrick et al., 2009; Zhu et al., 2011

EJmax Dnorm (46.1, 0.01) Broadly informed (geno) Leuning, 2002; Medlyn et al., 2002a; Sharkey et al., 2007; Patrick et al., 2009; Zhu et al.,

2011

EKc Dnorm (70.4, 0.5) Broadly informed (geno) von Caemmerer, 2000; Ethier and Livingston, 2004; Sharkey et al., 2007; Patrick et al.,

2009; Zhu et al., 2011

EKo Dnorm (36.0, 0.5) Broadly informed (geno) von Caemmerer, 2000; Ethier and Livingston, 2004; Sharkey et al., 2007; Patrick et al.,

2009; Zhu et al., 2011

ERd Dnorm (63.9, 0.1) Broadly informed (geno) Bernacchi et al., 2001; Ethier and Livingston, 2004; Sharkey et al., 2007; Zhu et al., 2011

EVcmax Dnorm (65.4, 0.5) Broadly informed (geno) Leuning, 2002; Medlyn et al., 2002a; Sharkey et al., 2007; Patrick et al., 2009; Zhu et al.,

2011

E
Γ * Dnorm (26.8, 0.5) Broadly informed (geno) von Caemmerer, 2000; Ethier and Livingston, 2004; Sharkey et al., 2007; Patrick et al.,

2009; Zhu et al., 2011

gm(25) Dnorm (2.5, 0.025) Broadly informed (ind) Ethier and Livingston, 2004; Sharkey et al., 2007; Patrick et al., 2009; Zhu et al., 2011

Jmax(25) Dnorm (171,0.000308) Well-informed, C3 crops (ind) Wullschleger, 1993

Kc(25) Dnorm (27.24, 0.5) Broadly informed (geno) von Caemmerer, 2000; Sharkey et al., 2007; Patrick et al., 2009; Zhu et al., 2011

Ko(25) Dnorm (30400,1.0 × 10−5) Broadly informed (geno) von Caemmerer, 2000; Sharkey et al., 2007; Patrick et al., 2009; Zhu et al., 2011

Rd(25) Dnorm (1.17, 1) Broadly informed (ind) Zhu et al., 2011

Vcmax(25) Dnorm (90, 0.000625) Well-informed, C3 crops (ind) Wullschleger, 1993

Γ *
(25)

Dnorm (3.86,10) Broadly informed (ind) von Caemmerer, 2000; Sharkey et al., 2007; Patrick et al., 2009; Zhu et al., 2011

θJ Dnorm (0.8, 10) Broadly informed (ind) Lambers et al., 2008

φj Dnorm (0.4, 10) Broadly informed (ind) Lambers et al., 2008

Descriptions of parameters are given in Table 1. Prior distributions are based on summaries of literature listed in citations. Distributions are described as broadly informed from data on

C3 species, well-informed from data on C3 crops. Prior type indicates the traits hierarchical level as genotypic estimation only (geno) or genotype and individual plant level (ind). Prior

distributions for individual level traits describe genotype level mean.

following Equations (3.3a) and (3.4a) (Pons et al., 2009). In a
subset of these gm itself was given a temperature dependency
(Bernacchi et al., 2002).

Chlorophyll fluorescence measurements are widely used
in plant physiological investigations, including for the
quantification of photosystem II (PSII) operating efficiency
and fluorescence derived φPSII (Genty et al., 1989; Maxwell
and Johnson, 2000). There remains considerable uncertainty
in using the fluorescence derivation of ETR (Equation 3.5) for
describing AJ (Maxwell and Johnson, 2000; Baker, 2008). Here
we tested the utility of fluorometry calculated ETR based on two
assumptions. First, leaf absorptance (αleaf ), assuming αblue and
αred of 0.92 and 0.87 respectively, was used to establish absorbed
photosynthetically active photon flux density (Q) (He et al.,

2007). Second, the partitioning of energy between photosystem
I (PSI) and PSII (f) was assumed equal at 0.5. Because of the
limitations in using fluorometry derived ETR when no alternate
electron routes are included, we also considered a classically
derived empirical model to estimate ETR, following Equation
(3.6) (von Caemmerer, 2000). This formulation required the
parameterization of Jmax, φJ and a light response curvature
parameter (θJ).

Temperature dependencies have been developed and
demonstrated for RuBisCO activity, mediated by the Michaelis-
Menten enzymatic constants Kc and Ko, as well as Vcmax, Rd,
Γ ∗, gm, and Jmax (Bernacchi et al., 2002; Medlyn et al., 2002a).
For models that assume a temperature constraint, we used
an Arrhenius style temperature response function, Equation
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(3.7) (Bernacchi et al., 2002; Medlyn et al., 2002b; Patrick
et al., 2009). This simple model required the estimation of one
temperature response parameter (Ei) representing the activation
energy. Estimates of temperature dependency were made for six
parameters in total (Vcmax, Jmax, Rd, Γ ∗, gm, Kc, and Ko) with
EVcmax, ERd, EΓ ∗ , EKc, and EKo estimated in all Temp models,
EJmax, estimated in Jm_Temp models, and Egm estimated
CiCc_Temp models.

Model Computation
We used Gibbs Sampling, a Markov Chain Monte Carlo
(MCMC) method, to generate the posterior distributions
of parameters (θ) and errors (Gelman and Rubin, 1992;
Kruschke, 2010). Sampling was conducted with rjags within
the R Foundation for Statistical Computing (Plummer, 2014;
R Development Core Team, 2014). After a burn in period
of 200,000 iterations, four independent MCMC chains were
run for 250,000 iterations for each model by genotype. Each
chain was sampled every 20th frame yielding 50,000 samples
per model per genotype. Across models, a univariate potential

scale reduction factor (
√

R̂) provided a convergence diagnostic
for each parameter. A multivariate potential scale reduction

factor (
√

R̂M) provided a single convergence metric for the
entire model (Brooks and Gelman, 1998). In all we evaluated
eight alternative model structures on 31 individuals from six
genotypes of B. rapa resulting in 248 unique parameterizations
of A/Ci response. Diagnostics of the four-chain convergence
were conducted using visual inspection of trace and density
plots demonstrating chain convergence in similar sample space.

Chain convergence diagnostic tools
√

R̂ and
√

R̂M did not exceed
the recommended maximum of 1.2, with maximums across all
individuals and models of 1.06 and 1.01 for the univariate and
multivariate convergence statistics respectively.

Model Scoring Metric
To quantitatively compare model results for each individual,
genotype, and species, we used the Deviance Information
Criterion (DIC), a Bayesian analog to Akaike Information
Criterion (Spiegelhalter et al., 2002). DIC considers all models
to be conceptually equal and acts purely as a model scoring
metric not an analytical evaluation of model functional form
(Gelman et al., 2004). DIC is calculated by combining a deviance
term and a complexity penalty term (Spiegelhalter et al., 2002).
The Bayesian model deviance (D (θ)) is based on the residuals
between the model and the data, computed with

D (θ) = −2 log [p (Y|θ)]+ 2 log
[

f (Y)
]

(3)

where Y is observed data, θ represents all parameters for the
model, p (Y|θ) is the likelihood function defined by the model,
and f (Y) is a standardizing term remaining constant for all
models and therefore having no influence model comparison.
The Bayesian deviance alone is not a strongmodel discrimination
metric as higher dimensional models could be favorably biased.
DIC attempts to account for this bias with a parameterization
penalty (Spiegelhalter et al., 2002; Plummer, 2008). The penalty,
plug-in deviance (pD), from the Spiegelhalter derivation is pD =

D(θ) − D(θ), where D(θ) is posterior mean of the deviance

using all parameters samples of sequence and D(θ) is deviance
evaluated at the posterior mean of the all parameters. In the
calculation of DIC the posterior distribution of D (θ) is used to
express mean deviance following

DIC = D(θ) + 2pD. (4)

D(θ) and D(θ) are easily calculated fromMCMC output through
the monitoring of D (θ) of all simulated values. 1DIC is
calculated as the difference between model DIC score and
the genotype minimum DIC score. No significant 1DIC has
been universally accepted, however differences of ten are often
employed (Spiegelhalter et al., 2003) and used here.

Parameter Variability
We evaluated full model sets of trait posteriors through the
development of multiple posterior predictive checks; using
the posterior trait distributions to simulate A, Aexp, while
considering the uncertainty in posterior distributions (Kruschke,
2013). Two methods were then used to compare posterior trait
distributions. First, boxplots of posterior parameter distributions
were compared across genotypes and against the prior probability
distributions. Second, high-density intervals (HDIs) were used
at eight percentiles (50, 60, 70, 80, 85, 90, 95, and 99%). HDI
is a Bayesian posterior comparison metric identifying portions
of the posterior distributions having a higher probability density
than regions outside that interval (Kruschke, 2010). To describe
the relative credibility of trait variance the differences in the
posterior mean distributions were taken for all traits within a
givenmodel (Kruschke, 2013). This difference was then evaluated
for intersection with zero at the eight percentiles listed above. The
maximumHDI percentile of the posterior trait differences, which
did not intersect with zero, was used to describe degree of credible
trait variance between two genotypes. This HDI differencing test
was conducted across all genotypes and traits within each model.

Model Sensitivity Analysis
To evaluate consistency in model performance a sensitivity
analysis was conducted. The entire analysis was rerun after
adding Gaussian noise with a mean of 0.0 and standard deviation
of 2.0 µmol m−2 s−1 to the An data. This was chosen to
mimic instrumentation error of IRGA observations. All statistical
analysis was conducted in the in R software environment (R
Development Core Team, 2014).

RESULTS

Model Performance
Posterior parameter distributions were used to predict Ac and
AJ for each model to compute Aexp at individual and genotypic
levels. The genotype level mean standard error of Aexp for
all models was 2.75 µmol m−2 s−1 with a minimum of 0.9
µmol m−2 s−1 for r46 in the CiCc_Jm model and a maximum
of 7.29 µmol m−2 s−1 for tur in the CiCc_Temp_Jf model.
The A/Ci observations (An vs. Ci or Ca) of the modeled
data are shown along with 95% genotypic credible intervals
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FIGURE 2 | Comparison between observed CO2 assimilation (An) and estimated assimilation for eight photosynthesis models of B. rapa, var. bro, including a single

individual level estimate. Each plot shows An for a select bro individual (filled-circle) and An for all other bro data (open-circle). The Bayesian 95% credible intervals

(vertical lines) are shown at individual level (thin-line) and genotypic (thick-line). Models differ in three assumptions: (A–D) have no temperature constraint on

parameters while (E–H) use an Arrhenius style temperature constraint on model parameters, (A,C,E,G) use an estimate of ETR derived from Equation (3.5) based on

chlorophyll fluorescence, (B,D,F,H) estimate ETR from Equation (3.6), (A,B,E,F) predict mesophyll conductance limitations using intercellular CO2 observations while

(C,D,G,H) assume infinite mesophyll conductance using ambient CO2 observations.

(CI) for bro along with 95% individual CI for selected bro
individual (Figure 2). Individual level CI’s fell mostly within
genotypic CI in Figure 2, with the exception of CaCc Jf
models where individual CI’s fell below genotypic at high CO2

availability.
Genotypic posterior trait distributions were used to construct

95% CIs on Aexp. Figure 3 shows the A/Ci observations (An

vs. Ci or Ca) for all r46 and r301 individuals with the 95%
CI for each model. A narrower range in 95% CIs was found
in models assuming infinite gm for r46 and r301 (Figure 3) as
well as crop accessions (data not shown). Models estimating
ETR using fluorescence (Jf models) showed lower overall 95%
CIs on A than Jm models in all genotypes except r46. This
is seen in the larger number of points beyond the upper CI
limit for r301 in Figures 3A,B; this same result was also found
across crop accessions (data not shown). Finally, to evaluate
genotypic vs. species level parameterization, an accession level
parameterization was developed and used to predict the RILs
A/Ci response (Figure 4). Data from both RILs, most noticeably
r301, fell outside the 95% accession based CI (Figure 4).

Model Structural Comparison
Genotypic model DIC scores were used to compute 1DIC
along with genotype pD’s (Table 5). For the species, the
CaCc_Jm_Temp and the CaCc_Jm models were top tier models
for four of the six genotypes, with the exceptions being cab and
r301. CiCc_Jm, CaCc_Jf, and CaCc_Jf_Temp were each included
in one genotypes’ top-tier, r301, oil and oil, respectively. CiCc_Jf,
CiCc_Jf_Temp, and CiCc_Jm_Temp failed to have a 1DIC of
less than 10 across genotypes. The pD’s were consistently highest
in models deriving ETR using Eqn 3.6 relative to fluorescence
derived ETR (Equation 3.5). pD’s were also consistently higher
in models assuming a gm limitation relative to infinite gm.

Parameter Differentiation
Genotypic posterior trait distributions were compared using
posterior boxplots and an analysis of HDI’s. Trait distributions
showed some parameters with high probability of genotypic
variation, including Jmax, Vcmax, Γ ∗, and EVcmax, and traits
with limited probability of variation, including Ko, φJ and θJ
(Figures 5–8). Vcmax, Γ ∗, Rd, Kc, and Ko were the five traits
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FIGURE 3 | Comparison between observed CO2 assimilation (An) and predicted 95% credible interval (CI) for eight models of two B. rapa genotypes (r46, r301).

Each plot shows An for both r46 (open circles) and r301 (closed circles) and Bayesian 95% CI for two models one with temperature constraint (dotted lines) the other

without (solid lines), using genotype level posterior trait distributions. (A) Models shown incorporated an estimate of mesophyll conductance (gm) and used chlorophyll

fluorescence (Equation 3.5, Table 2) to characterize electron transport rate (ETR). (B) Models assumed an infinite gm and used Equation (3.5) to characterize ETR.

(C) Models shown incorporated an estimate of gm and used Equation (3.6) to characterize ETR. (D) Models assumed an infinite gm and used Equation (3.6) to

characterize ETR. Smoothed CI’s using Loess fit to present multiple models together.

FIGURE 4 | Examples of errors from non-genotypic parameterization for two B.rapa genotypes. (A) Observation points of r46 (open circles) and r301 (plus) with 95%

(light gray) and 70% (dark gray) credible interval for CiCc_Jm_Temp model using combined parameter distributions from agricultural accessions (bro, cab, oil, tur). (B)

Observation points of r46 and r301 with 95% and 70% credible intervals for CaCc_Jm_ Temp model using combined posterior parameter distributions of accessions.

estimated in all eight models. Vcmax showed genotypic variance
in all models with r46 notably lower than other genotypes in all Jf
models (Figures 5, 7). Γ ∗ also showed genotypic variance across
models with lower estimates in gm limited models (Figures 7, 8)
than infinite gm models (Figures 5, 6). Rd showed genotypic

variance in five of the eight models, most pronounced in models
CaCc_Jf and CaCc_Jf _Temp (Figure 5), while the only variance
seen in Kc was in the CaCc_Jm model, with r46 differing from
oil (Figure 6). The temperature activation energies (Ei’s) showed
limited probability of genotypic variance with two exceptions.
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TABLE 5 | Genotype DIC increment with respect to genotype minimum (1DIC) with mean effective number of parameters (pD) for eight models.

Genotype 1DIC (pD)

Model r301 r46 bro cab oil tur

CiCc_Jf 165.0 (11.5) 129.6 (9.7) 45.1 (13.4) 115.6 (12.0) 50.5 (5.7) 113.4 (8.9)

CiCc_Jm 0 (20.8) 68.4 (28.7) 32.9 (12.7) 17.8 (16.0) 27.3 (8.9) 21.3 (53.0)

CaCc_Jf 138.5 (9.1) 85.1 (6.5) 13.2 (5.4) 81.1 (5.2) 0 (7.9) 96.8 (8.1)

CaCc_Jm 68.1 (16.4) 0 (12.4) 0 (12.9) 0 (9.0) 23.3 (11.5) 31.4 (20.1)

CiCc_Jf_Temp 210.2 (7.0) 129.1 (5.6) 64.5 (11.5) 156.0 (8.5) 45.2 (10.7) 182.7 (6.5)

CiCc_Jm_Temp 17.6 (17.0) 54.8 (15.8) 24.4 (11.4) 39.1 (29.3) 21.2 (13.4) 15.1 (24)

CaCc_Jf_Temp 134.9 (10.1) 98.7 (5.5) 17.0 (8.2) 81.3 (12.9) 5.8 (9.4) 70.0 (6.3)

CaCc_Jm_Temp 60.4 (16.6) 9.9 (13.8) 0.6 (8.8) 15.3 (19) 18.3 (7.5) 0 (14.3)

Bolded are models with top-tier 1DIC scores for respective genotypes using 1DIC threshold of 10.

EVcmax for r46 was lower relative to other genotypes in the
CiCc_Jf_Temp model and estimates in r46 and cab were also
lower in the CiCc_Jm_Temp models (Figure 8) EJmax also
showed variance in models CiCc_Jf_Temp and CiCc_Jm_Temp
(Figure 8). Amongst the ETR traits modeled using Equation (3.6)
only Jmax showed genotypic variation, this was found across all
Jm based models (Figures 6, 8), the variation was dominated by
higher estimates for r301.

To describe the magnitude of genotypic trait variance, the
differences in posterior parameter distributions among genotypes
were computed for each model. These differences were then
evaluated at eight HDI percentiles for overlap with zero;
the maximum HDI interval not overlapping with zero was
selected as the probability of variance. Jmax, Vcmax, Γ ∗, and
EVcmax were found with a probability of variance at 95%
HDI (Figure 9). At 80% EJcmax and gm show differences, at
70% Rd showed differences and at 50% HDI Kc emerges as
variable (Figure 9). At 50% HDI half of the 16 traits estimated
showed variance. To summarize the posterior trait distributions
across models Table 6 lists maximum HDI percentile of traits
differences. Of note in Table 6, Jmax is classified as highly
variable, differences found at <90% HDI, in all Jm based
models. The variability in Jmax is dominated by the contrast
between the two RILS, with r46’s median posterior between 50-
100 µmol m−2 s−1 <r301’s (Figures 6, 8). Variance in Vcmax

is dominated by differences in r46 relative to other genotypes;
most notable in the CiCc_Jf, CaCc_Jf models (Figures 5,
7).

Sensitivity Analysis Results
Gaussian noise with mean of 0.0 µmol m−2 s−1 and standard
deviation of 2.0µmolm−2 s−1 was added to theAn data, followed
by a re-analysis. The resultant posterior parameter distributions
were wider in some cases and some shifts in median estimates
were seen, but no systematic trends were identified in these
shifts. For example, in traits that play critical roles in the A/Ci

response, the Jmax noisy genotypic level median estimate was 2.2
µmol m−2 s−1 greater compared to the original analysis and for
Vcmax the noisy median estimate was 4.4 µmol m−2 s−1 less than
original analysis in the CiCc_Jm_Temp model. This is illustrated
in comparing Figures 10A,C with Figures 10B,C.

DISCUSSION

Multimodel Approach
We show here that a multimodel based approach improves
phenotypic information discovery in three critical ways.
First, our trait analysis using a set of models identified
potential genotypic differences requiring further investigation
and revealed model components needing reevaluation (Table 5).
Second, the Bayesian parameterization scheme revealed an
expected trait hierarchy (Table 6). Finally, the multimodel
approach provided greater confidence in estimates of trait
variation among genotypes (Figure 9).

Performance of Models Based on
Assumptions
The complexity analysis assessed the influence of factors not
addressed experimentally (i.e., temperature) and of physiological
mechanisms (i.e., gm and ETR derivation) not yet characterized
in the population under study. While a single preferred model
structure was not identified using1DIC, we were able to evaluate
the relative performance of model assumptions employed. First,
DIC strongly favored derivation of ETR, and therefore AJ , from
Equation (3.6) (Table 5), as Jm based models were in the top
tier in seven cases, while Jf models were rated as top-tier only
two times and only for oil. This confirms previously identified
limitations and illustrates the need to consider alternate e−

paths when using fluorometry to characterize AJ (Baker, 2008;
Yin et al., 2009). Fluorometry estimates all PSII e− excitation
at the beginning of the e− transport chain; using this to
estimate the assimilatory outcome of e− transport does not
distinguish e−’s used for photosynthetic linear electron flow
and the alternative pathways of e− transport (Miyake, 2010).
The biological relevance of these alternate pathways lies in the
reduction of photooxidative stress (Foyer and Shigeoka, 2011),
specifically the protection of PSII from heat and light stress
(Miyake, 2010). Interestingly oil showed a preference for CaCc_Jf
based models (Table 5). The divergence of oil from the other
genotypes may be due to diminished flow to alternate pathways
or a unique f. The parameter differentiation of oil reflects
the allelic composition of that genotype, and warrants further
investigation. An expanded genotypic sample may enable model
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FIGURE 5 | Boxplots (median, quartiles, minimum, maximum) of posterior

distributions of all parameters in CaCc_Jf_Temp model, which are described in

Table 1 and priors for each parameter (Table 4).

modification for investigating alternate e- flow and f (Laisk and
Loreto, 1996; Yin et al., 2009; Livingston et al., 2010).

Second, the combination of chlorophyll florescence derived
ETR and gm-limitation (CiCc_Jf and CiCc_Jf_Temp) was not
selected as a top tier model by any of the genotypes (Table 5),
this shows the overall preference for both Equation (3.6)
derivation of ETR and infinite gm. Interestingly, the preference
for infinite gm models based on 1DIC emerged even though
gm as a trait was shown to vary in this population (Figure 8
and Table 6). A debate persists on the response of gm to
environmental conditions (Flexas et al., 2007; Tazoe et al., 2011)

FIGURE 6 | Boxplots (median, quartiles, minimum, maximum) of posterior

distributions of all parameters in CaCc_Jm model, which are described in

Table 1 and priors for each parameter (Table 4).

with possible mechanisms governing gm behavior including
anatomical components, biochemical changes such as aquaporin
expression, and chloroplast surface area adjustment (Flexas et al.,
2006; Chaumont and Tyerman, 2014; Tomás et al., 2014). Each
of these may be variable within plant populations, and while both
limited and ∞ gm were viewed favorably here, further modeling
work should aim for integration of gm limitation, particularly
in plants under stress and in those with intrinsically low gm.
The addition of gm limitation increased model complexity
relative to ∞ gm counterparts, pD’s in Table 5, in most cases,
with cab and oil showing exceptions with slightly reduced or
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FIGURE 7 | Boxplots (median, quartiles, minimum, maximum) of posterior

distributions of all parameters in CiCc_Jf model, which are described in

Table 1 and priors for each parameter (Table 4).

similar pD’s in ∞ gm models. The failure of gm-limitation to
improve model performance in all cases may have been expected
given the lack of environmental stress and an attendant lack
of strict plant regulation of gm. If water, heat and/or salinity
stress were imposed, then the increased model complexity
associated with dynamic gm may in fact have been necessary
to accurately represent the A/Ci response (Grassi and Magnani,
2005; Niinemets et al., 2009b; Tomás et al., 2014).

Third, the addition of temperature constraints had limited
influence on model performance as in most cases temperature
limited models and their counterparts were not discriminated by
1DIC; four of six genotypes had both temperature constrained
and the unconstrained alterative in there top-tier (Table 5).
From an empirical perspective, this is promising as it indicates
that the instrumentation and methodology used distinguished
trait differences among the genotypes despite any temperature
differences among trials or throughout the A/Ci measurement
period. Temperature constraints have been universally advocated
and biochemically justified for informing parameterization
(Berry and Bjorkman, 1980; von Caemmerer, 2000; Bernacchi
et al., 2001; Yamori et al., 2014). Trait evaluation over greater

FIGURE 8 | Boxplots (median, quartiles, minimum, maximum) of posterior

distributions of all parameters in CiCc_Jm_Temp model, which are described

in Table 1 and priors for each parameter (Table 4).
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FIGURE 9 | Illustration of trait potential for variation in represented B. rapa population along with prospective mechanistic underpinnings. The total number of

instances where HDI percentile difference for a trait did not intersect with zero across eight models at eight HDI percentiles. At each percentile, the parameters

identified with credible interval differences are listed as well as indication if the difference was between RILs (r46 and r301) (r), between RILs and an agricultural

accession (ra) or between two agricultural accessions (a). Zero credible interval differences were observed at 99% HDI. References for hypothesized genes (italics) and

enzymes in subscript as follows: 1, Foyer et al. (2012); 2, Masclaux-Daubresse et al. (2010); 3, Hauser et al. (2015); 4, Yamori et al. (2012); 5, Araujo et al. (2012); 6,

Häusler et al. (1999); 7, Hanba et al. (2004); and 8, Song et al. (2014).

temperature ranges may identify where these two model classes
(temperature constrained vs. unconstrained) differ in suitability.

Genotype Level Parameterization
We found differing degrees of genotypic trait variation based
on evaluation of posterior distributions revealing a hierarchical
structure of photosynthetic trait variation (Figures 5–8 and
Tables 6). Using an HDI percentile analysis Ko(25), φJ , θJ , and Ei’s,
other than EVcmax and EJmax did not show genotypic variability
(Table 6). Lack of variability in Ko(25) reflects the limited
mutational landscape for RuBisCO proteins (Studer et al., 2014)
even while selection promotes diversification of other traits. The
emergence of Kc(25) as variable in two models was surprising
for this reason and points for the need to reconsider the prior
distributions of this trait in future analysis Non-variable results
also support trait conservation for temperature dependencies

with the possible exception of EVcmax and EJmax (Sharkey et al.,
2007). For these temperature dependencies, Medlyn et al. (2002a)
used A/Ci curves at different temperatures to establish Ei’s; such
an approach could confirm results found here. The non-variable
results for estimates of φJ and θ J can be explained potentially by
the lack of light variation in the A/Ci dataset. At saturating light
conditions variation in Jmax would be expected while the light
conditions would not serve as strong drivers of ETR response
for low light traits φJ and θJ (Figures 6, 8). An analysis using a
combined A/Ci and light response (LR) curve approach (Patrick
et al., 2009) should inform estimates of φJ and θ J (Evans et al.,
1993). Better integration of chlorophyll fluorescence data may
also improve the models ability to identify genotypic variation in
ETR traits. The degree of variation found in this population for
Jmax andVcmax was striking, particularly as Jmax showed variation
beyond the data provided as prior (Figure 10) (Wullschleger,
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TABLE 6 | Summary of genotypic trait variability using differencing of high density intervals (HDI).

Dot-pattern indicates traits not in a given model. White indicated no emergence of HDI difference at 50% HDI. Number indicates at which HDI percentile did the difference in posterior

distributions no longer overlap with zero. Color coding from dark for largest HDI percentile (95) to light for smallest (50).

1993). Variability in Γ ∗ puts in question the continued use
of constants for describing Γ ∗, and supports the observation
that complex diffusion pathways and potential environmental
feedbacks complicate the estimation of Γ ∗ (Hanson et al.,
2016).

Based on our analysis of this population, Jmax, Vcmax, and
Γ ∗ have a high probability of variation as multiple models
described them as variable at high HDI percentiles (Figure 9
and Table 6). Although we sampled the range of extreme
crop phenotypes found in B. rapa (including cabbages with
high leaf allocation, turnips with dramatic root allocation, and
brocoletto and oilseed types with predominant reproductive
allocation), trait distinction was highest between the two RILs,
which were full siblings (Figures 5–8). While the parents differ
in key photosynthetic traits (Edwards et al., 2011), the even
greater phenotypic difference expressed between these two RILs
must arise from transgressive segregation in WUE (Edwards
et al., 2012) and reflects either novel additive effects of allelic
combinations or novel epistasis (Rieseberg et al., 1999, 2003). In
contrast to the highly differentiated RIL traits, crop accessions
may vary more in biomass partitioning than photosynthetic
traits, reflecting the targets of selection during domestication and

diversification (Edwards et al., 2016; Yarkhunova et al., 2016).
The fact that phenotypes are more readily distinguished between
RILs (full siblings) than among crops highlights the opportunity
for genetic characterization of these traits in experimental
genotypes.

Our results illustrate the need for a genotypic
parameterization scheme (Figure 3) while offering targets
(Figure 9) for further genetic dissection. We therefore propose
genomic and transcriptomic analysis to further understanding
of the factors controlling observed trait distinction among
identified targets. The differentiation between RILs for many
traits suggests that the existing RIL population derived
from a cross between an oilseed (R500) and a rapid cycling
genotype (IMB211) would be an effective one in which to
begin the genetic dissection of traits underlying variation in
A. RIL populations developed from crosses between R500
× turnip, R500 × cabbage, and R500 × brocoletto that are
under development will provide additional segregating lines
for the genetic dissection of A within this crop following a
process similar to one in Zea mays (Dell’Acqua et al., 2015).
Breeding efforts focused on the mechanisms underlying
variations in Jmax25 and Vcmax25 constitute the best targets for
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FIGURE 10 | Comparison of posterior parameter distributions of two B. rapa genotypes (r46, r301) for two photosynthetic traits, maximum rate of carboxylation

(Vcmax ) and maximum rate of electron transport Umax). (A,C) Show combined posterior distributions of all models for Vcmax and Jmax respectively using

observational data and prior on parameters based on Wullschleger (1993) for C3 crops. (B,D) Show combined posterior distributions of all individuals and models for

Vcmax and Jmax , respectively using observational data with 2.0 µmol m−2 s−1 random noise added to assimilation data and using same Wullschleger (1993) prior.

increasing A and thereby yield in agricultural crops (Long et al.,
2006).

Method Limitations
The curve-fitting method of gm estimation does not have
the benefit of using alternative gm measurement techniques
based on other data types (Pons et al., 2009; Tazoe et al.,
2011; Hanson et al., 2016). Estimation of gm based on
combined fluorometry/gas exchange methods should consider
the consequences of alternative electron pathways forAJ , because
differences between linear electron transport and total electron
transport may not be entirely accounted for through gm alone
(Yin et al., 2009). State of the art methods propose a dynamic
gm responding to variations in both CO2 partial pressure and
light using variable ETR rates from chlorophyll fluorescence
and/or online discrimination methods (Tazoe et al., 2011; Gu
and Sun, 2014). Introduced here is a methodological approach
that addresses uncertainty and enables rapid screening. Dynamic
gm models could be incorporated into the screening tool given
appropriate data to address uncertainty associated with online
discrimination techniques. A fully integrated photosynthesis
model using linear electron flow and total electron flow from
gas exchange and fluorometry observations coupled to online
discrimination data may help resolve concerns related to gm

estimation (Pons et al., 2009; Tazoe et al., 2011; Gu and Sun,
2014).

Partitioning of energy between PSI and PSII (f ) was assumed
0.5, an assumption that does not hold in all cases (Laisk and
Loreto, 1996). This assumption complicates the understanding
of variation in AJ; if the assumption is valid, then mechanics of
PSII light harvesting appear to be different in oil relative to others,
however if invalid, then oilmay in fact have different photosystem
partitioning relative to other genotypes. f could have been made
a parameterized trait but lacking meaningful data we choose
to set f constant. Finally, we lack independent validation of
parameters. Many parameters (Rd, Γ ∗, φJ) can be estimated
independently through alternative gas-exchange methodologies
(Laisk et al., 2002, 2007; Hanson et al., 2016), while others (Kc,Ko)
can be evaluated using in-vitro methodologies (von Caemmerer
et al., 1994). Such parameter validation would provide an
alternate means of assessing model suitability and could be
integrated into a Bayesian framework. The practical implications
of proposed trait validation, including gm mentioned above,
on large populations remain problematic monetarily and
logistically.

Finally, alternatives to DIC could be considered in future
multimodel comparison studies, such as the widely Applicable
Information Criteria (Watanabe, 2010). DIC relies heavily on the
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mean of the posterior distribution presenting some bias against
posteriors with skewed distribution, potentially a problem for
posteriors here including gm, but these alternate scoring metrics
are not ready implemented in rjags currently (Watanabe, 2010;
Gelman et al., 2014).

Implications
Our modeling of phenotypic variation helps clarify how allelic
variation impacts the expression of biophysical traits (Figure 1).
Three improvements along the pipeline from large breeding
populations to selection of genotypes with enhanced yield and
stress response were identified. Two of these improvements
support the use of multiple model approaches for discovering
important information content not available in single model
analysis. First comparison of multiple models was critical in
determining differentiation of traits among genotypes. For
example, the CiCc_Jm_Temp model, which is similar to a
commonly utilized method (Sharkey et al., 2007), did not identify
Rd as variable based HDI analysis, yet six of the remaining seven
models did. Further, CiCc_Jm_Temp found gm25 to be variable at
80% HDI, the highest gm variation found. Given finite resources
for further investigation, our approach supports quantifying the
genetic architecture of Rd within this population (Figure 9) while
an approach solely relying on CiCc_Jm_Temp would support
scrutiny of gm. The demonstrated uncertainty in trait estimates
also supports focused model improvement and/or modified
experimentation. Second, potential genotypic differences were
revealed using complexity analysis, which would not have
been observed in single-model analysis. Specifically, complexity
analysis demonstrated ETR differences in this population as
some genotypes wholly selected Jm based models while others
oil selected an alternative ETR derivation (Table 5; Figures 5–8).
Pitting competing models against one another allowed specific
genotypic responses to emerge and identified model components
in need of revision. Moreover, testing competing mechanistic
models is superior to null hypothesis testing using frequentist
statistical approaches (McElreath, 2016). Finally, the posterior
trait distributions represent knowledge to be preserved as one
expands models. The Bayesian updating procedures of the
sensitivity analysis provides a way to codify this knowledge.
Information preservation further informs our understanding of
plant physiology and should embolden modelers attempting to
link traits relevant to plant productivity to genes. Vcmax, Jmax,

and gm are hypothesized to underline genetic variation in A for

13 lines of Ozyzo sativa (Gu et al., 2012), as was similarly shown
here for Vcmax & Jmax. Indeed, both genotypic and evolutionarily
conserved parameters have been advocated for crop models (Yin
et al., 2004; Bertin et al., 2009; Gu et al., 2014). We can think of
these as having a hierarchical organization in which genotypic
parameters are clearly distinguished from conserved parameters.
This hierarchy should be continually informed by both modeling
output such as those provided here and through phylogenetic
analysis of genomes when possible (Galmes et al., 2005).

CONCLUSIONS

The integration of data from six genotypes into eight
photosynthesis models allowed for a comprehensive exploration
of trait space occupied by this population.We found considerable
variability in key photosynthetic traits of a globally important
agricultural crop while revealing a hierarchical structure of
trait variation. Because photosynthesis represents one of the
major processes governing plant growth and development,
the genotype level screening described here using competing
mechanistic models can inform our understanding of the links
between observed variances and genetic controls. Bayesian
methodology, emerging as a powerful tool in plant sciences,
permits the explicit incorporation of prior information,
propagation of uncertainty from measurements to models
and offers a way to improve phenotyping methods while
incorporating new data and theory.
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