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Several anthropogenic activities including mining, modern agricultural practices, and
industrialization have long-term detrimental effect on our environment. All these factors
lead to increase in heavy metal concentration in soil, water, and air. Soil contamination
with heavy metals cause several environmental problems and imparts toxic effect
on plant as well as animals. In response to these adverse conditions, plants evolve
complex molecular and physiological mechanisms for better adaptability, tolerance, and
survival. Nowadays conventional breeding and transgenic technology are being used
for development of metal stress resistant varieties which, however, are time consuming
and labor intensive. Interestingly the use of microbes as an alternate technology for
improving metal tolerance of plants is gaining momentum recently. The use of these
beneficial microorganisms is considered as one of the most promising methods for safe
crop-management practices. Interaction of plants with soil microorganisms can play a
vital role in acclimatizing plants to metalliferous environments, and can thus be explored
to improve microbe-assisted metal tolerance. Plant-associated microbes decrease
metal accumulation in plant tissues and also help to reduce metal bioavailability in
soil through various mechanisms. Nowadays, a novel phytobacterial strategy, i.e.,
genetically transformed bacteria has been used to increase remediation of heavy metals
and stress tolerance in plants. This review takes into account our current state of
knowledge of the harmful effects of heavy metal stress, the signaling responses to metal
stress, and the role of plant-associated microbes in metal stress tolerance. The review
also highlights the challenges and opportunities in this continued area of research on
plant–microbe–metal interaction.

Keywords: bioavailability, heavy metals, microbes, remediation, stress, tolerance

INTRODUCTION

Heavy metal stress has become a major concern in various terrestrial ecosystems worldwide.
Nowadays extensive industrialization imparts detrimental effects on soil as well as on crop
productivity by accumulating heavy metals (Shahid et al., 2015). Damage to soil texture, i.e., pH of
soil, presence of different elements, and accumulation of heavy metals cause direct and/or indirect
reduction of plant growth by adversely affecting various physiological and molecular activities of
plants (Panuccio et al., 2009; Hassan et al., 2017). Heavy metals such as Zn, Cu, Mo, Mn, Co,
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and Ni are essential for crucial biological processes and
developmental pathways (Salla et al., 2011; Shahid et al., 2015).
However, these metals along with four other highly toxic heavy
metals including, arsenic (As), lead (Pb), cadmium (Cd), mercury
(Hg), Cr, Al, and Be can reduce crop productivity to a great extent
when their concentration rises beyond supraoptimal values
(Xiong et al., 2014; Pierart et al., 2015). These toxic elements
cause morphological abnormalities, and metabolic disorders that
lead to yield reduction in plants (Amari et al., 2017). These
abnormalities also give rise to the production of reactive oxygen
species (ROS), e.g., superoxide anion radical (O2−), H2O2, and
hydroxyl radical (OH−), resulting in disruption of the redox
homeostasis of cells (Gill and Tuteja, 2010; Pourrut et al.,
2011; Ibrahim et al., 2015; Shahid et al., 2015). This redox
status misbalance is known to be a major cause of heavy metal
toxicity in plants. Earlier studies reported the negative impact
of accumulation of heavy metals in food crops on human
health (Nabulo et al., 2011; Uzu et al., 2011; Shahid et al.,
2015). To withstand heavy metal stress and metal toxicity, plants
have evolved numerous defense mechanisms viz reduced heavy
metal uptake, sequestration of metal into vacuoles, binding
to phytochelatins/metallothioneins, and activation of various
antioxidants (Shahid et al., 2015).

To decipher regulatory networks involved in response to
heavy metal tolerance in plants, various omics approaches such
as transcriptomics, proteomics, and metabolomics are being
routinely used (Singh et al., 2016). In combination with different
functional genomic approaches, the abovementioned omics
approaches help to develop improved varieties with enhanced
abiotic stress tolerance (Mosa et al., 2017). Several quantitative
trait loci (QTLs) and candidate genes have been identified for
zinc, iron, and Cd tolerance in various plant species which can
be utilized for crop improvement by marker-assisted selection
or QTL pyramiding (Courbot et al., 2007; Meyer et al., 2016;
Zhang et al., 2017). Several previous studies have also reported
improvement in heavy metal stress tolerance of plants by genetic
engineering (Eapen and D’Souza, 2005; Farinati et al., 2010;
Verma P.K. et al., 2016; Verma et al., 2017). Further, since
plant breeding and genetic engineering is a labor intensive and
time consuming process, there is a need to develop newer
strategies or techniques that would be helpful for sustained crop
production and productivity under heavy metal stress. Plant-
associated microbes could be used as an alternate strategy for
sustainable agricultural production. Numerous plant-associated
microbes namely, bacteria and fungi are known to exhibit
plant-growth promoting traits under heavy metal stress. These
microbes impart favorable effects on plants via several direct and
indirect mechanisms such as biofilm formation, siderophores,
exopolysaccharide, and phytohormones production (Tiwari et al.,
2016, 2017b). Since microbial heavy metal remediation does
not involve any transgenic modifications, it is ethically and
societally acceptable. Even though heavy metal tolerance in plants
through microbial remediation has been investigated for many
years, there is still considerable interest in extensive studies
on plant–microbe–metal association due to their direct effects
on enhanced biomass production and heavy metal tolerance
(Glick, 2003; Taj and Rajkumar, 2016; Hansda and Kumar, 2017).

This review thus summarizes the recent advances in plant-
associated microbes in metal remediation and stress tolerance in
plants.

PLANT GROWTH UNDER THE
INFLUENCE OF HIGHLY TOXIC METALS

Among numerous heavy metals, four heavy metals As, Pb, Cd,
and Hg are considered as the most toxic metals by the Agency
for Toxic Substances and Disease Registry (ATSDR, 2003), based
on their toxicity, frequency of occurrence, and most importantly,
their exposure potential to flora and fauna. Origin and impact
of these four heavy metals on environment and plant growth are
briefly described below.

Arsenic
Arsenic is a naturally occurring metal which pose serious health
hazards to millions of people across the globe (Kumar et al.,
2015). It is usually originated via volcanic action, erosion of
rocks, and by human activities such as applications of pesticides
and wood preservatives, mining and smelting operations (Wang
and Mulligan, 2006; Tripathi et al., 2007; Neumann et al., 2010).
The contamination of As in groundwater used for irrigation
and drinking is a worldwide problem as it not only affects
crop productivity, but also accumulates in different plant tissues
including grains and contaminates food chain (Verma P.K.
et al., 2016). Recently, several studies have been carried out to
investigate the physiological and molecular mechanisms of As
toxicity, accumulation, detoxification, and tolerance in various
plants including rice, lettuce, spinach, and carrot (Kumar et al.,
2015). Inorganic arsenate As(V) and arsenite As(III) are two
forms of As that exist in the environment. Both As(III) and
As(V) are toxic and are regarded as major environmental
pollutants based on United States Environmental Protection
Agency (USEPA) evaluation (Tripathi et al., 2007; Verma
et al., 2017). As(III) is more toxic than As(V) and act by
interrupting biological functions in plants via different manner
as, for example, it binds to proteins with sulfhydryl groups,
interfering with their functions (Verma S. et al., 2016). It also
generates ROS, inhibits respiration by binding to vicinal thiols
in pyruvate dehydrogenase and 2-oxo-glutarate dehydrogenase,
and act indirectly as a mutagen by inducing intrachromosomal
homologous recombination (Helleday et al., 2000). On the other
hand, in plants, As(V) interferes with oxidative phosphorylation
and ATP synthesis during energy metabolism (Carbonell et al.,
1998; Verma S. et al., 2016).

Lead
Lead is one of the most widely and evenly distributed trace
metals that exist in various forms in the natural sources. It
can affect soil, flora, and fauna health by contaminations from
leaded fuels, dust, old lead plumbing pipes, various industrial
sites, or even old orchard sites in production where lead arsenate
is used (Tangahu et al., 2011). Pb2+ is non-biodegradable and
its long-term exposure is found to be acutely toxic to both
plants and animals and has several harmful effects on biological
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systems including soil properties [e.g., pH, organic carbon,
amorphous iron, and aluminum oxides (FEAL), and cation
exchange capacity; Bradham et al., 2006; Pehlivan et al., 2009]. If
proper remedial action not taken, high soil Pb levels may never
return to normal (Traunfeld and Clement, 2001). Pb impairs
various biological processes in plants including seed germination,
seedling development, root elongation, transpiration, chlorophyll
biosynthesis, and cell division (Pourrut et al., 2011; Kumar et al.,
2017). It also changes cell membrane permeability by reacting
with active groups of different metabolic enzymes, with the
phosphate groups of ADP or ATP, and by replacing essential
ions, thus causing phytotoxicity (Pourrut et al., 2011; Kumar
et al., 2017). Pb toxicity leads to inhibition of ATP production,
induces lipid peroxidation, and DNA damage by over production
of ROS.

Cadmium
Cadmium is considered to be one of the most phytotoxic heavy
metals. Since it is highly soluble in water, it is easily taken
up by plants representing the main entry pathway into the
food chain causing serious human health hazards (Buchet et al.,
1990). Cd has been classified as a potent human carcinogen
by The International Agency for Research on Cancer (IARC,
1993; Gianazza et al., 2007; Gill and Tuteja, 2011). Interestingly,
it has reported that it is commonly released into the arable
soil from industrial processes and farming practices (Wagner,
1993) and also that crops are the main source of Cd intake by
humans (Satarug et al., 2002; Gill and Tuteja, 2011). Even at low
concentrations Cd can severely alter several enzyme activities
including those involved in the Calvin cycle, carbohydrate and
phosphorus metabolism, and CO2 fixation (Sandalio et al., 2001;
Verma and Dubey, 2001; Sharma and Dubey, 2006; Gill and
Tuteja, 2011) ultimately resulting in stunted growth, chlorosis,
leaf epinasty, alterations in chloroplast ultrastructure, inhibition
of photosynthesis and pollen germination and tube growth,
induction of lipid peroxidation, and alterations in nitrogen
(N) and sulfur (S) metabolism and disruption of antioxidant
machinery (Gill and Tuteja, 2011).

Mercury
Mercury is a natural component of the Earth’s crust that
accumulates in land and water ecosystems, mainly as a
consequence of different anthropological actions such as mining
and industrial activities (Järup, 2003; Montero-Palmero et al.,
2014). The large input of Hg into the arable lands has resulted
in the widespread occurrence of Hg-contamination in the entire
food chain. In the environment several forms of Hg exist such
as elemental (Hg0), inorganic (Hg2+), associated with ions (HgS,
ClHg2, Hg2Cl2), and organic (CH3-Hg) but in agricultural soils
the ionic form is predominant (Hg2+) (Zhou et al., 2008; Azevedo
and Rodriguez, 2012). Increasing evidence has shown that Hg2+

can readily accumulate in higher plants (Israr et al., 2006; Yadav,
2010). At lower concentrations Hg2+ may not significantly affect
plant growth but at higher concentrations it becomes highly
phytotoxic to plant cells and can cause visible injuries and
physiological disorders (Ortega-Villasante et al., 2005; Zhou et al.,
2007). Binding of Hg2+ to water channel proteins leads to leaf

stomata closure and physical impediment of water flow in plants
(Zhang and Tyerman, 1999; Zhou et al., 2008). Additionally,
it has also been reported to interfere with mitochondrial
activity (Zhou et al., 2008). Mercuric ions are further reported
to induce oxidative stress by stimulating generation of ROS
in plants leading to disruption of biomembrane lipids and
cellular metabolism, as well as increased activities of antioxidant
enzymes like SOD, POD, or APX indicating the degree of stress
(Cargnelutti et al., 2006; Zhou et al., 2007).

HEAVY METAL SIGNALING AND
TOLERANCE IN PLANTS

In the last few decades, the research areas pertaining to plant
responses and tolerance to heavy metal stress have rapidly
progressed. Several genes that are induced under metal stress
have been identified through various omics approaches as, for
example, transcriptome analysis in different plants including
Arabidopsis, Brassica, and Lycopersicum revealed role of several
transcription factors (TFs) such as bHLH, bZIP, AP2/ERF, and
DREB under heavy metal stress (LeDuc et al., 2006; Shameer
et al., 2009; Singh et al., 2016). Use of various proteomics
techniques such as 2-D electrophoresis, MALDI-TOF, LC-MS
have led to the discovery target proteins that take part in
heavy metal detoxification in several plants including Oryza
sativa, Zea mays, Arabidopsis, and Populus sp. (Lingua et al.,
2012; Wang et al., 2013; Singh et al., 2016). Similarly, various
amino acids, amines, organic acids, phenol, glutathione, and
α-tocopherol are some metabolites which have been reported
to be involved under heavy metal stress tolerance (Collin et al.,
2008; Yusuf et al., 2012; Singh et al., 2016). However, the
functions of several of them are still not known owing to the
complexity in plant responses to these stresses. Heavy metal
stress signal transduction is initiated by receptors/ion channels
by perception of stress signal(s) and further by non-protein
messengers such as cyclic nucleotides, calcium, and hydrogen
ions (Figure 1). Several kinases and phosphatases relay the
stress signals that further leads to gene expression of various
TFs and synthesis of metal-detoxifying peptides (Rao et al.,
2011; Islam et al., 2015; Kumar and Trivedi, 2016). Heavy
metal(s) activates distinct signaling pathways in plants such as
calcium-dependent signaling, mitogen-activated protein kinase
signaling, ROS signaling, and hormone signaling that enhance
the expression of TFs and/or stress-responsive genes (Dubey
et al., 2014; Kumar and Trivedi, 2016). Diverse Ca2+ sensors such
as calmodulins (CaMs), CaM-like proteins, calcineurin B-like
proteins (CBLs), and Ca2+-dependent protein kinases (CDPKs)
exist in plants that sense, decode, and convey the alterations
in cytosolic Ca2+ concentration for the stress response (Conde
et al., 2011; Steinhorst and Kudla, 2014). Transcript profiling
of rice roots exposed to long-term and short-term Cr stress
suggested the involvement of CDPKs as their activity increased
with increasing Cr(VI) concentration (Huang et al., 2014). In
foxtail millet, Ca2+ activates antioxidant enzymes and provides
tolerance against Cr stress (Fang et al., 2014). Similarly, MAPKs
signaling cascade phosphorylate numerous TFs such as ABRE,
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FIGURE 1 | A schematic representation of heavy metal stress signaling cascade in plants and the existing cross-talk among the networks of plant–microbe–metal
interaction. These signaling pathways include MAPKs, calcium, ROS, and hormone signaling molecules that mediate signal transduction to enhance the expression
of stress-responsive genes.

DREB, bZIP, MYB, MYC, NAC, and WRKY thus influencing
metal stress response (Lin and Aarts, 2012; Tiwari et al., 2017a).
High levels of Cu and Cd are known to activate distinct MAPKs
in Medicago sativa (Jonak et al., 2004). Similarly, Cd induces
OsMAPK2 and myelin basic protein (MBP) kinase gene in rice
(Yeh et al., 2004). Several studies have also suggested heavy metal-
mediated MAPKs activation via ROS generation, accumulation,
and alteration in antioxidant system in Arabidopsis and rice
(Liu et al., 2010; Kumar and Trivedi, 2016). ROS are also
known to disrupt various phytohormone signaling pathways
including auxin, ethylene, and JA. A recent study demonstrated
that JA exposure improved antioxidant response leading to Cd
stress tolerance in rice (Singh and Shah, 2014). Comparative
transcriptome analysis of As(III)-treated rice seedlings suggested
modulation of signal transduction, plant defense, and hormonal
signaling processes such as ABA metabolism (Chakrabarty et al.,
2009). The above observations clearly suggest that variation in
the levels of phytohormones change plant response to metal
stress.

Several reports also indicate the role of signaling molecules in
providing plant-associated-beneficial microbes-mediated abiotic
stress tolerance in plants as, for example, MAPK5 was found
to be differentially expressed in rice roots treated with Bacillus
amyloliquefaciens, a plant growth promoting rhizobacteria
(PGPR) under salt stress indicating the induction of MAPKs
signaling in presence of PGPR in plants (Nautiyal et al.,
2013). Altered expression of At3g57530 responsible for calcium-

and CaM-dependent protein kinase activity was reported
in Arabidopsis under Pseudomonas putida and Pseudomonas
fluorescens treatment (Wang et al., 2005; Srivastava et al., 2012).
The expression of several downstream stress-responsive TFs such
as MYB, NAC, and bZIP were also found to be modulated
by PGPR treatment in several plants including rice, chickpea,
and Arabidopsis (Srivastava et al., 2012; Tiwari et al., 2016,
2017b). Role of phytohormones ABA, SA, JA, and ethylene have
also been elucidated in PGPR inoculated plants under stressed
conditions (Tiwari et al., 2016, 2017b). The induction of these
genes which are central to heavy metal stress signaling, in
the presence of plant-associated microbes as well indicate the
complex cross-talk between plant, microbes, and heavy metals in
stress response and tolerance. Therefore, an understanding of the
intricate metal stress signaling pathways and the existing cross-
talk among the networks of plant–microbe–metal interaction is
extremely important to elucidate the stress-responsive networks
in plants.

MICROBIAL REMEDIATION OF HEAVY
METALS FOR PLANT GROWTH
PROMOTION

Remediation of heavy metals is necessary for the protection
and conservation of the environment (Glick, 2010). For the
elimination of heavy metals from the environment, numerous
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physicochemical and biological techniques have been adopted.
Physicochemical techniques are rapid but are regarded as
challenging due to the cost involved and technical complexity.
They also cause adverse effects on soil physical, chemical,
and biological properties, and lead to secondary pollution
(Glick, 2010; Sheoran et al., 2011; Ali et al., 2013; Ullah et al.,
2015). On the other hand, biological remediation is considered
as the most effective method of toxic metal removal as these
are natural, environment friendly, low cost, and high societal
acceptance technologies (Doble and Kumar, 2005). One such
technology is the use of plant growth promoting microbes
for bioremediation of heavy metal polluted soil and is quite
important in the context of global climate change and excessive
fertilizer use in agricultural soils (Nautiyal et al., 2013; Tiwari
et al., 2016). Microbes are known for enhancement of plant
growth and survival under heavy metal stress condition as they
have the capability of consuming waste and converting the
complex waste into simple non-toxic by products/compounds.
This is feasible because microorganisms have developed many
resistance mechanisms for survival in the presence of toxic heavy
metals in their environment (Thassitou and Arvanitoyannis,
2001; Mustapha and Halimoon, 2015). Microbes also enhance
bioavailability of metals from soil by chelation, acidification, and
precipitation as, for example, organic acids released by microbes
and plant roots lower the soil pH and helps in sequestration
of metal ions (Mishra et al., 2017). Microbial remediation
processes via plant-associated microbes involved in heavy metal
removal is represented in Figure 2. These resistance mechanisms

developed by microbes include metal sorption, bioaccumulation,
and enzymatic oxidation or reduction to a non-toxic form,
and efflux of heavy metals from the cell (François et al., 2012;
Monteiro et al., 2012; Hrynkiewicz and Baum, 2014; Mustapha
and Halimoon, 2015). Here we have provided a list of recently
studied plant-associated microbes that respond to various metal
stress in plants (Table 1).

Remediation of Heavy Metals by Bacteria
Bacteria are the most crucial microbial organisms used for
the remediation of heavy metal contaminated soils (Chen
et al., 2015). Bacteria alleviate heavy metal ion toxicity by
immobilizing, mobilizing, uptake, and transformation of heavy
metals (Hassan et al., 2017). Moreover, numerous free-living
as well as symbiotic PGPR resides in the soil environment
around plant root that can positively alter plant growth and
its productivity by the production of growth regulators via
supplying and facilitating nutrient uptake from soil (Nadeem
et al., 2014). Several studies have been reported where PGPR act
as potential elicitors for abiotic stress tolerance including heavy
metal tolerance (Dary et al., 2010; Tiwari et al., 2016, 2017b).
They limit bioavailability of metals by forming complexes with
siderophores, particular metabolites, and bacterial transporters
(Rajkumar et al., 2010; Ahemad, 2012). These microorganisms
of agronomic importance have evolved various mechanisms
to avoid heavy metal stress including: (a) transport of
metals across cytoplasmic membrane; (b) biosorption and
bioaccumulation to the cell walls; (c) metal entrapment in the

FIGURE 2 | A model of microbial remediation processes involved in heavy metal removal elaborates modulation of plant growth and alteration of soil
physicochemical properties by root exudates and bacterial secretion to enhance metal bioavailability and biotransformation that leads to rapid detoxification and/or
removal of heavy metal from soil.
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TABLE 1 | List of plant-associated microbes reported for plant growth promotion under heavy metal stress (2010 onward).

S. No. Microorganisms Heavy metals Plants Reference

1. Bacillus cereus, Pseudomonas moraviensis Cu, Cr, Co, Cd, Ni, Mn, Pb Triticum aestivum Hassan et al., 2017

2. Microbacterium sp. CE3R2,
Curtobacterium sp. NM1R1

Zn, Pb, Cu, As Brassica nigra Román-Ponce et al., 2017

3. Bacteroidetes bacterium, Pseudomonas
fluorescens

Cd, Cu, Pb, Zn Brassica napus Dąbrowska et al., 2017

4. Kocuria sp. CRB15 Cu Brassica nigra Hansda and Kumar, 2017

5. Klebsiella pneumoniae Cd Oryza sativa Pramanik et al., 2017

6. Enterobacter ludwigii, Klebsiella
pneumoniae

Hg Triticum aestivum Gontia-Mishra et al., 2016

7. Azospirillum Pb, Cd Panicum virgatum Arora et al., 2016

8. Enterobacter, Leifsonia, Klebsiella, Bacillus Cd Zea mays Ahmad et al., 2016

9. Pseudomonas putida Cd Eruca sativa Kamran et al., 2015

10. Rhodococcus erythropolis, Achromobacter
sp., Microbacterium sp.

Zn, Cd Trifolium repens Pereira et al., 2015

11. Variovorax paradoxus, Rhodococcus sp.,
Flavobacterium sp.

Cd Brassica juncea Belimov et al., 2015

12. Bacillus pumilus E2S2, Bacillus sp. E1S2 Cd, Zn Sedum plumbizincicola Ma et al., 2015

13. Rhizobium leguminosarum Zn Brassica juncea Adediran et al., 2015

14. Glomus versiforme Cd Solanum nigrum Liu et al., 2015

15. Rhizophagus clarus Pb Cymbopogon citratus Lermen et al., 2015

16. Pseudomonas sp. LK9 Cd, Zn, Cu Solanum nigrum Chen et al., 2014

17. Bacillus licheniformis Ni Oryza sativa Jamil et al., 2014

18. Rahnella sp. JN6 Cd, Pb, Zn Brassica napus He et al., 2013

19. Bacillus thuringiensis GDB-1 As, Cu Alnus firma Babu et al., 2013

20. Ralstonia eutropha, Chryseobacterium
humi

Zn, Cd Helianthus annuus Marques et al., 2013

21. Staphylococcus arlettae As Brassica juncea Srivastava et al., 2013

22. Ochrobactrum sp., Bacillus sp. Cd, Pb, As Oryza sativa Pandey et al., 2013

23. Paenibacillus macerans, Bacillus
endophyticus, Bacillus pumilus

Cu, Ni, Zn Brassica juncea Tiwari et al., 2012

24. Bacillus sp. MN3-4 Pb Alnus firma Shin et al., 2012

25. Psychrobacter sp. SRS8 Ni Helianthus annuus, Ricinus
communis

Ma et al., 2011

26. Bacillus sp. SLS18 Cd Solanum nigrum Luo et al., 2011

27. Glomus mosseae Cd, Pb Cajanus cajan Garg and Aggarwal, 2011

28. Bacillus cereus, Candida parapsilosis Fe, Mn, Zn, Cd Trifolium repens Azcón et al., 2010

29. Paecilomyces lilacinus NH1 Cd Solanum nigrum Gao et al., 2010

30. Bradyrhizobium sp. 750, Pseudomonas
sp., Ochrobactrum cytisi

Cu, Cd, Pb Lupinus luteus Dary et al., 2010

extracellular capsules; (d) heavy metals precipitation; and (e)
metal detoxification via oxidation–reduction (Zubair et al., 2016).
Heavy-metal-tolerant PGPR including Bacillus, Pseudomonas,
Streptomyces, and Methylobacterium have the potential to
improve growth and production of crops by reducing the
detrimental effects of heavy metals (Sessitsch et al., 2013).
Previous study reported Cd resistant Ochrobactrum sp. and
Pb and As resistant Bacillus spp. have several PGPR traits
that help in bioremediation and growth promotion of a rice
cultivar (Pandey et al., 2013). Different rhizobacteria also
have been reported that take part in metal accumulation and
helps hyperaccumulating plants in uptake of heavy metals
and their tolerance (Thijs et al., 2017). Further, it has
been reported that use of microbes with some additives for
the plants grown in heavy metal polluted soil are more

beneficial than without additives (Mishra et al., 2017). A recent
study showed that addition of thiosulfate with metal-tolerant
microbes enhanced mobilization and uptake of As and Hg in
Brassica juncea and Lupinus albus promoting bioavailability and
phytoextraction (Franchi et al., 2017). These methods can aid
both the biocontrol and bioremediation process simultaneously
in polluted soils.

In spite of these practices, nowadays, the use of genetically
transformed bacteria in heavy metal bioremediation is gaining
great consideration; however, this limited to laboratory trials
only (Gupta and Singh, 2017). Symbiotic relationship between
plants and genetically transformed bacteria helps in in situ
bioremediation of organic pollutants (Ullah et al., 2015; Ashraf
et al., 2017). However, only a few evidences are available
that highlights the remediation of heavy metals through such
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TABLE 2 | List of genetically modified plant-associated microbes for heavy metal stress tolerance (based on Ullah et al., 2015).

S. No. Genetically engineered microbe Modified gene expression Associated plant Heavy metal(s) Reference

1. Pseudomonas putida Phytochelatin synthase Triticum aestivum Cd, Hg, Ag Yong et al., 2014

2. Mesorhizobium huakuii Metallothionein, phytochelatin synthase Astragalus sinicus Cd, Cu, Zn, As Ike et al., 2008

3. Mesorhizobium huakuii Metallothionein, phytochelatin synthase Astragalus sinicus Cd Ike et al., 2007

4. Pseudomonas putida Expression of metal binding peptide Helianthus annuus Cd Wu et al., 2006

5. Mesorhizobium huakuii Phytochelatin synthase Astragalus sinicus Cd Sriprang et al., 2003

6. Meshorhizobium huakuii Metallothionein Astragalus sinicus Cd Sriprang et al., 2002

7. Enterobacter cloacae EC 4.1.99.4 Brassica napus As Nie et al., 2002

8. Ralstonia eutropha Metallothionein Nicotiana benthamiana Cd Valls et al., 2000

symbiotic associations (Ullah et al., 2015). Examples of few
genetically engineered PGPR are listed in Table 2. Recently
elimination of toxic metals through a novel phytobacterial
strategy, i.e., via use of genetically transformed PGPR has
been suggested (Ullah et al., 2015). Genetically transformed
bacteria possess one or more genes to increase remediation
of heavy metals. In this context, genes for metal chelators,
metal homeostasis, transporters, biodegradative enzymes, metal
uptake regulators, and biotic and abiotic stress tolerance are
important candidates for making recombinant bacteria (Singh
et al., 2011).

Remediation of Heavy Metals by Fungi
Numerous filamentous fungi belonging to the genera
Trichoderma, Penicillium, Aspergillus, and Mucor have been
described as having the ability to tolerate heavy metal stress
(Ezzouhri et al., 2009; Oladipo et al., 2017). Fungal cell walls have
excellent metal binding properties due to presence of negative
charge on the different functional groups, e.g., carboxylic, amine
or sulfhydryl, phosphate, in different wall components (Tobin,
2001; Ong et al., 2017). A study showed interaction of Aspergillus
niger var. tubingensis Ed8 with Cr(VI) mainly in a reduction
process and also in a sorption process (Coreño-Alonso et al.,
2014). Previous studies reported reduction in As induced stress
in chickpea through Trichoderma sp. (Tripathi et al., 2013;
Tripathi et al., 2017).

Arbuscular mycorrhizal fungi (AMF) are also one of the
most prominent soil microorganisms. They establish direct
physical link between soil and plant roots which increase root
surface area facilitating nutrient absorption by the plants (Saxena
et al., 2017). AM fungi are also involved in alleviating metal
toxicity to the host plant (Leyval et al., 1997; Meharg, 2003).
The specific role of arbuscular mycorrhizae in the host plant
on exposure to heavy metal depends on a variety of factors,
including the plant species and ecotype, the fungal species and
ecotype, the metal and its availability; soil edaphic conditions,
including soil fertility; and plant growth conditions, such as
light intensity or root density (Pawlowska and Charvat, 2004).
Similar to PGPR, several mechanisms have been hypothesized
for toxic metal direction and allocation in plant roots in
the presence of AMF including (a) heavy metals bound to
cell wall and deposit in the vacuoles of AMF, (b) metal
sequestration by the help of siderophores in the soil or
into root apoplasm, (c) metals bound to metallothioneins

or phytochelatins inside the fungal or plant cells, and (d)
metal transporters at the tonoplast of both plants and fungi
catalyze the transport of metals from cytoplasm (Jan and Parray,
2016).

CONCLUSION AND FUTURE
PERSPECTIVES

Heavy metal contamination and remediation has received
considerable attention in today’s world owing to the fact
that several heavy metals cannot be degraded and hence
persist in the soil. Several strategies have been successfully
applied to generate plants which are able to grow in metal
contaminated soils and accumulate or tolerate metal stress.
Use of microbial approach for heavy metal tolerance and
remediation is an eco-friendly and economic approach. Since
the plant heavy metal uptake and tolerance depend on
various factors, interactions between plant and microbes can
play an important role in successful survival and growth
of plants in contaminated soils. Plant growth promoting
microbes also assist plant growth by changing bioavailability
of heavy metal. These beneficial effects exhibited by microbes,
together with the suggested interrelationship between heavy
metal tolerance and plant growth promoting ability, indicates
that their exploitation in remediating metal contaminated
soils might have significant potential in near future. In
spite of these practices, genetically engineered microbes also
have been used for remediation processes. Undoubtedly these
engineered microbes have greater remediation potential but
their impact on ecosystems needs to be elucidated before
commercialization. Despite several findings to date, various
steps of regulatory networks via plant-associated microbes in
heavy metal stress are still unknown, and more investigations
need to be done for unraveling the cross-talk among soil-
microbe and metal interaction in different crops. Additionally,
synergistic action of plant and microbe and their mechanism
for metal mobilization, transformation, and detoxification should
also be studied. Further monitoring and managing microbial
heavy metal remediation requires the characterization of the
fate and behavior of the compounds of interest in the
environment. However, at present, it is difficult to understand the
environmental impacts of various metals mostly as a consequence
of insufficient information being available about them. Thus this
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highlights the importance of a consistent link between research
and development for the assessment and treatment of emerging
metal pollutants and the tools, equipment and knowhow that
contributes toward the fulfillment of these challenges.
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