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Characteristic secondary metabolites, including flavonoids, theanine and caffeine,
in the tea plant (Camellia sinensis) are the primary sources of the rich flavors,
fresh taste, and health benefits of tea. The decoding of genes involved in these
characteristic components is still significantly lagging, which lays an obstacle for
applied genetic improvement and metabolic engineering. With the popularity of high-
throughout transcriptomics and metabolomics, ‘omics’-based network approaches,
such as gene co-expression network and gene-to-metabolite network, have emerged
as powerful tools for gene discovery of plant-specialized (secondary) metabolism. Thus,
it is pivotal to summarize and introduce such system-based strategies in facilitating
gene identification of characteristic metabolic pathways in the tea plant (or other plants).
In this review, we describe recent advances in transcriptomics and metabolomics for
transcript and metabolite profiling, and highlight ‘omics’-based network strategies using
successful examples in model and non-model plants. Further, we summarize recent
progress in ‘omics’ analysis for gene identification of characteristic metabolites in the tea
plant. Limitations of the current strategies are discussed by comparison with ‘omics’-
based network approaches. Finally, we demonstrate the potential of introducing such
network strategies in the tea plant, with a prospects ending for a promising network
discovery of characteristic metabolite genes in the tea plant.

Keywords: the tea plant, characteristic metabolic pathway, plant-specialized metabolite, transcriptomics,
metabolomics, gene discovery, network approach

Abbreviations: ADC, arginine decarboxylase; AIDA, alanine decarboxylase; ALT, alanine aminotransferase; ANR,
anthocyanidin reductase; ANS, anthocyanidin synthase; CHI, chalcone isomerase; DEG, differentially expressed gene;
DFR, dihydroflavonol 4-reductase; EGCG, epigallocatechin-3-gallate; F3H, flavanone 3-hydroxylase; F3′H, flavonoid 3′-
hydroxylase; F3′5′H, flavonoid 3′,5′-hydroxylase; GC, gas chromatography; GCH, galloylated catechins hydrolase; GLS,
glutaminase; GOGAT, glutamate synthase; GS, glutamine synthetase; GSL, glucosinolate; GST, glutathione S-transferase;
LAR, leucocyanidin reductase; LC, liquid chromatography; MS, mass spectrometry; NGS, next generation sequencing; NMR,
nuclear magnetic resonance; PAL, phenylalanine ammonia-lyase; PCC, Pearson correlation coefficient; RNA-seq, deep mRNA
sequencing; TF, transcription factor; TS, theanine synthetase; UGT, UDP-glycosyltransferase.
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INTRODUCTION

The tea plant (Camellia sinensis) in the family Theaceae is an
important commercial crop that is extensively cultivated in Asian,
African, Latin American, and Oceanian countries (ITC, 2014).
Leaves of this crop serve as the source of a popular non-alcoholic
beverage known as “tea” due to its abundant production of many
valuable secondary metabolites, such as polyphenols, alkaloids,
theanine, vitamins, minerals, and volatile oils (Zhang et al., 2006,
2012; Chen et al., 2009; Sugimoto et al., 2009; Guo et al., 2011;
Lu et al., 2011; Ghiringhelli et al., 2012; Weerawatanakorn et al.,
2015). Among these small-molecular compounds, flavonoids,
theanine, and caffeine represent the three major characteristic
secondary metabolites that are main determinants of the rich
flavors, fresh taste, and health benefits of tea (Yamamoto et al.,
1997). For example, theanine and caffeine are the main taste
compounds of green tea and contribute to the umami and
bitterness, respectively (Narukawa et al., 2014). There have
accumulated plenty of reports about the health benefits of EGCG,
such as anti-oxidation, anti-inflammation, and anti-tumor (Tipoe
et al., 2007). From the view of their biosynthesis, flavonoids
originate from diverse branches of the phenylpropanoid pathway
and include flavones, flavonols, isoflavones, flavanones, flavanols,
anthocyanidins, and dihydroflavonols (Dixon and Pasinetti,
2010). Theanine biosynthesis starts from glutamine and pyruvate,
and depends on the enzymatic processes of TS, GS, GLS, ALT,
and ADC (Sasaoka et al., 1965). Caffeine is a purine alkaloid
and its biosynthetic pathway comprises purine biosynthesis
and purine modification steps (Li et al., 2015). In the tea
plant, the disclosure of genes involved in the characteristic
components biosynthesis is still lagging far behind the model
Arabidopsis thaliana and even many non-model plants [e.g.,
sorghum (Blomstedt et al., 2015) and tomato (Verpoorte and
Memelink, 2002)], which inevitably lays an obstacle to the
potential applications in genetic improvement and metabolic
engineering.

Recent advances in high-throughput phenotyping
technologies, such as transcriptomics and metabolomics,
have accumulated massive ‘omics’ datasets that quantify the
expression/accumulation profile of transcripts/metabolites
and facilitate the evaluation of interactions among these
cellular components (transcriptional regulatory networks,
metabolic pathways) and networks (Barabasi and Oltvai, 2004).
In case of the associations of genes and plant-specialized
(secondary) metabolites, two elements in cellular networks,
namely nodes and edges, denote genes and/or metabolites
and gene-to-gene and/or gene-to-metabolite interactions,
respectively. In the past few decades, parallel and integrated
analysis of the multi-‘omics’ datasets in a network fashion,
such as gene co-expression network and gene-to-metabolite
network, has become efficient ways to identify genes underling
specialized metabolism in the model Arabidopsis thaliana and
other non-model plants (Oksman-Caldentey et al., 2004; Hirai,
2009). Such gene discovery strategies are based on a simple
assumption that genes involved in a specialized metabolic
pathway are coordinately regulated under a shared regulatory
system, using the ‘guilt-by-association’ principle (Oliver,

2000; Saito et al., 2008). With the large-scale ‘omics’ datasets
generated in the tea plant, it is now a possible active area of gene
discovery in characteristic secondary metabolism of this crop by
borrowing the above-mentioned powerful ‘omics’-based network
approaches.

With the above considerations, this review focuses on the
agriculturally important crop, tea plant, in which the key
genes of characteristic metabolites remains poorly understood.
Firstly, we introduce recent advances in transcriptomics and
metabolomics for transcript and metabolite profiling, and
highlight different ‘omics’-based network strategies for the
gene discovery in plant-specialized metabolism using successful
examples that are applied in the model Arabidopsis thaliana and
non-model plants (e.g., tomato, wheat). Further, we summarize
recent progress in the ‘omics’ analysis for gene discovery
of characteristic secondary metabolism in the tea plant, and
limitations of the current strategies are discussed by comparison
with ‘omics’-based network approaches. Finally, the potential of
introducing ‘omics’-based network approaches in the tea plant
are demonstrated, with a prospects ending for the promising
network discovery of characteristic metabolite genes in the tea
plant.

RECENT ADVANCES IN
TRANSCRIPTOMICS AND
METABOLOMICS

Deep mRNA Sequencing (RNA-Seq) for
Transcript Profiling
Microarray and deep sequencing are useful technologies
in transcript profiling (transcriptomics) due to their
high-throughput and coverage (Malone and Oliver, 2011).
In the tea plant, microarray has seldom been used because of
the lack of biological resources (especially genomic sequences)
that can aid in molecular probe design (Shi et al., 2011).
In this review for the tea plant, phenotyping technology
‘transcriptomics,’ specifically RNA-seq (regardless of rRNA
and non-coding RNA), can be applied in non-model species
without reference genomes (Trapnell et al., 2012). There have
accumulated many RNA-seq examples for the tea plant in the
past 5 years. As a NGS technology, RNA-seq has become an
efficient functional genomics tool in generating large-scale,
low-cost mRNA expression data in model plants (Arabidopsis
thaliana and rice) and non-model plants, such as crop (legumes,
maize, and wheat), vegetables (cabbage and tomato), and
trees (Populus) (Agarwal et al., 2014). Currently, several
public repositories, such as Sequence Read Archive (SRA) at
National Center for Biotechnology Information (Leinonen
et al., 2010b) and European Nucleotide Archive (ENA) at
European Molecular Biology Laboratory (Leinonen et al.,
2010a), have made a vast volume of RNA-seq data available,
serving as valuable resources for the data-driven knowledge
discovery in plant secondary metabolism and many other
fields.
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A complete pipeline of RNA-seq consists of biological
sample preparation, library construction, deep sequencing on
a sequencing platform, and the downstream bioinformatics
analysis (Wang et al., 2009). Routine analysis of RNA-seq data
includes sequence alignment and/or de novo assembly, gene
pathway and function annotation, gene expression qualification,
and statistically identification of DEGs, which usually depends
on whether a reference genome is sequenced for a species of
interest (Conesa et al., 2016). Advanced analysis of RNA-seq
data may be related to gene regulatory network reconstruction,
gene module and motif analysis, and others (Iancu et al.,
2012; Tierney et al., 2012). For experimental biologists without
bioinformatics skills, there are several standalone softwares and
online web-servers, such as RobiNA (Lohse et al., 2012) and
TRUFA (Kornobis et al., 2015), for the easily-operated RNA-seq
data analysis.

Metabolomics Technology for Metabolite
Profiling
Plants are a rich source of diverse specialized metabolites
that have been used for a very long period as fragrances,
flavors, colorants, insecticides, and pharmaceuticals (Facchini
et al., 2012). A metabolome, known as a complete set of
small-molecule metabolites in an organism, represents the
resulting phenotype of cells deduced by the perturbation
of gene expression, which are usually governed by external
environmental changes (Saito and Matsuda, 2010). Therefore,
metabolomics is of great importance in understanding cellular
systems and decoding gene functions. A main concern in this
field is metabolite profiling, i.e., targeted or non-targeted
measurement of hundreds or potentially thousands of
metabolites, such as amino acids, alkaloids, polyphenols,
minerals, phenolics, and vitamins (Joyce and Palsson, 2006).
To achieve this, a combination of sample extraction protocols,
separation techniques such as GC and LC, and spectroscopic
techniques such as MS and NMR spectroscopy are required
for the quantitative and qualitative analysis of metabolites
extracted from isolated plant cells or tissues (Kopka et al.,
2004).

One of the disadvantages of current metabolomics is the
limitation of public databases of metabolite accumulation in
plants (include the tea plant) under different conditions; this
is in striking contrast to transcriptomics for which many
useful databases are readily available for the potential functional
genomics research (Saito et al., 2008). To compensate this,
several metabolome resources and tools have been recently
developed. Among these, PMR (Bais et al., 2010), MPMR
(Wurtele et al., 2012), and MeKO (Fukushima et al., 2014)
are ‘metabolite profiling’-oriented databases that facilitate the
sharing of comprehensive metabolome datasets in plants. In
addition, organism-specific databases, such as MoTo DB (Moco
et al., 2006) and SoyMetDB (Joshi et al., 2010), are now
emerging in certain plant species of interest. Accompanying
with these available metabolome resources, useful statistical and
visualized tools, such as MeltDB (Neuweger et al., 2008), MBRole
(Chagoyen and Pazos, 2011) and MetaMapp (Barupal et al.,
2012), have also been developed to reinforce this promising field.

A SURVEY OF ‘OMICS’-BASED
NETWORK STRATEGIES FOR THE
IDENTIFICATION OF SPECIALIZED
METABOLITE GENES IN PLANTS

Introduction to Biological Network
Biological networks are graph representations of molecular
interactions in a biological cell system. A network can be
defined as a set of nodes (or vertices), denoting metabolites,
genes or gene products, and a set of directed or undirected
edges (Figure 1), denoting the interactions between them (e.g.,
regulatory relationships, direct physical interactions, functional
associations). The cell can be viewed as an overlay of at
least three types of networks, which describes transcriptional
regulations (directed), protein–protein interactions (undirected),
and metabolic reactions (directed) (Alon, 2003). Similar to other
naturally occurring networks such as those seen in computer
science, power grids, social communication and the World Wide
Web, biological networks have the characteristic topological
organization, such as small-world and scale-free properties
(Dorogovtsev and Mendes, 2013). In many fields of plant
sciences including secondary metabolism focused here, it has
been demonstrated that networking modeling using single- or
multi-‘omics’ data has the possibility in capturing many of the
essential characteristics of complicated biological cell systems
(Hecker et al., 2009). More detailed information on biological
networks, such as network reconstruction, visualization, and
topological analysis, can be seen in several comprehensive review
articles (Ravasz and Barabási, 2003; Barabasi and Oltvai, 2004).

Gene Co-expression Network
After a glance of the basic concept of biological network,
several types of ‘omics’-based network approaches for the
identification of plant-specialized metabolite genes will be further
introduced. The commonly used in this field is the application
of transcriptome-based gene co-expression network (Higashi
and Saito, 2013). In diverse types of biological networks,
gene co-expression network can be attributed to a form of
gene functional association network as it is inferred from the
similarity of gene expression patterns across a wide array of
experimental conditions. Publicly available datasets and in-house
datasets can be used to compute the gene expression similarity,
resulting in condition-independent and condition-dependent
gene co-expression network, respectively [Table 1 (Hirai, 2009)].
Different selection strategies of experimental conditions have
been summarized by Usadel et al. (2009) for a comprehensive
assessment. The measure commonly used for gene expression
similarity is PCC because most secondary metabolism in plants
proceeds along linear pathways and consists of irreversible
chemical reactions governed by a single enzyme or a TF. Different
measures used for gene expression similarity were summarized in
Table 2 and their advantages/disadvantaged have been discussed
by Schaefer et al. (2017).

In systems biology, a logically conceivable assumption is
that a set of genes involved in a particular biological process
(more practically in a secondary metabolic pathway) are
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FIGURE 1 | Schematic representation of a biological network. This diagram shows an example of a connection network between regulatory genes and
anthocyanin-related metabolites (Cho et al., 2016). The network visualization is generated using Cytoscape software (Shannon et al., 2003), in which square,
diamond, circle, triangle, and hexagon nodes denote metabolites, hormone-related genes, TF-related genes, signaling-related genes, and anthocyanin
biosynthesis-related genes, respectively. An edge is placed between genes and anthocyanin-related metabolites indicating the gene-metabolite regulatory
association. To be more informative, the node color and size are proportional the log2(fold change) of gene expression (metabolite accumulation) in comparison with
controls, and different color of dashed frames indicate the modular structure of this network.

co-regulated and thus co-expressed under the control of a
shared regulatory system. This is a typical example of the
so-called ‘guilt-by-association’ principle. Based on this, gene
co-expression network is widely utilized to identify genes in
particular secondary metabolism in plants using guide-gene
(i.e., bait gene) or non-targeted protocols (Aoki et al., 2007).
In the model Arabidopsis thaliana, many enzyme genes
and regulatory TF genes have been disclosed in specialized
metabolic pathways, such as GSL [see Figure 2 as a pioneering
example (Hirai et al., 2007)], phenylpropanoid (Tokimatsu
et al., 2005), cellulose (Brown et al., 2005), brassinosteroid
(Lisso et al., 2005), hemicelluloses (Cocuron et al., 2007),
flavonoid (Wei et al., 2006), and isoprenoid (Wille et al., 2004).

Inspiringly, a large proportion of these candidate genes have been
confirmed using reverse-genetic and biochemical experiments.
Following these good examples, specialized metabolite genes
have been continuously identified in non-model plants, such
as Cannabis sativa, Papaver somniferum, Solanum lycopersicum,
and Catharanthus roseus (Higashi and Saito, 2013). In public,
there have appeared several co-expression databases and
tools, such as ATTED-II (Obayashi et al., 2008), CSB.DB
(Steinhauser et al., 2004), and GeneCAT (Mutwil et al., 2008)
for model plant, primarily Arabidopsis thaliana, but also
rice, poplar, barley, and others, which can be easily accessed
for experimental biologists who have no any programming
skills.

TABLE 1 | Gene co-expression network classification based on experimental condition selection.

Network type Transcriptome data source Experimental condition Gene co-expression correlation

Condition-dependent In-house dataset Specific condition of interest Condition-biased

Condition-independent Public dataset A wide range of conditions No bias

TABLE 2 | Similarity measures used to calculate gene co-expression relationship.

Similarity measure Statistic method Computational efficiency Gene co-expression relationship

Pearson correlation coefficient (PCC) Parametric Inexpensive Linear

Spearman correlation coefficient (SCC) Non-parametric Moderate Non-linear

Kendall correlation coefficient (KCC) Non-parametric Moderate Non-linear

Mutual information (MI) Non-parametric Expensive Linear and non-linear
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FIGURE 2 | A gene co-expression network application in the gene discovery of plant-specialized metabolism. A gene co-expression module consisting of aliphatic
GSL biosynthetic genes (yellow) and TF genes (red) is illustrated in this figure (Hirai et al., 2007), which was derived from the exhaustive analysis of co-expression
between GSL genes and TF genes using a dataset of publicly condition-independent transcriptome profiles. This network visualization revealed that the known
aliphatic GSL biosynthetic genes (as bait genes) were clustered in the same module together with two uncharacterized TF genes, Myb28 and Myb29, suggesting that
these two TF genes may be positive regulators of aliphatic GSL biosynthesis (experimentally validated in the following reverse-genetic and molecular experiments).

Comparative Co-expression Analysis:
From the View of Cross-Species
Conversation
One possible caveat in gene discovery using gene co-expression
relationships in single-species analysis is the risk of ‘false
positives,’ i.e., co-expressed genes might be accidentally
co-expressed rather than being functionally related. Generally,
gene co-expression relationships in certain biological processes,
such as cell cycle and protein synthesis and degradation, are
conserved across diverse species (Stuart et al., 2003). Thus,
two co-expressed genes from one species usually have their
orthologs in another species that in turn are also co-expressed.
According to this paradigm, the examination of conserved gene
co-expression relationships across different species can be used
to minimize the risk of ‘false positives’ via the knowledge transfer
from model organisms to non-model plants (Movahedi et al.,
2012). There are several tools, such as ATTED-II (Obayashi et al.,
2011), CoP (Ogata et al., 2009) and StarNet (Jupiter et al., 2009),
which allows between-species comparison of gene co-expression
networks. In addition, the NetworkComparer pipeline deployed
in PlaNet (Mutwil et al., 2011) can aid in multi-species
comparison (Mutwil et al., 2011). This tool bins genes into gene
families according to their Pfam annotation (Finn et al., 2016)
and compares gene vicinity networks from the query genes for
re-occurring Pfams. Using AtPAL1 (responsible for the initial

step for monolignol synthesis) as bait gene in NetworkComparer,
Ruprecht and Persson (2012) inferred a consensus network
of AtPAL1-orthologs in barley, Medicago, polar, rice, soybean,
and wheat, from which gene families corresponding to the
subsequent steps in lignin biosynthetic pathway, such as
4CL (‘AMP_binding’), C4H (‘p450’), HCT (‘Transferase’),
CCoAOMT (‘Methyltransf_3’), CCR (‘Epimerase’), and CAD
(‘ADH_zinc_N’), were identified and experimentally confirmed.

Gene Co-functional Network: From
Single- to Multi-Network
As described above, gene co-expression network is a form of
gene functional association network, which is only based on
the similarity of gene expression patterns across a variety of
experimental conditions. There exist other types of molecular
relationships, such as physical interaction of proteins, subcellular
co-localization, domain co-occurrence, co-citation in literature,
mutant phenotypes, gene neighbors, genetic interactions,
conserved motif sequences, and enzymatic reaction. These
different levels of relationships are necessarily to be integrated
in the original gene co-expression network to expand the
network concept from single- to multi-network that can be
called as gene co-functional network (Fukushima and Kusano,
2014). To increase the predictive power for gene identification,
publicly available resources, such as AraNet (Lee et al., 2015),
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ATTED-II (Obayashi et al., 2011), and PlaNet (Mutwil et al.,
2011), have integrated one or several of those valuable molecular
relationships into the gene co-expression network, facilitating a
more comprehensive gene co-functional network resource for
users. It is noted that these efforts are limited to Arabidopsis
thaliana because it is a data-rich model species (Lee et al., 2015).
For other plants species, high coverage and confidence gene
co-functional relationships can also be predicted via efficient
computational pipelines. For instance, genome-wide gene
co-functional networks have recently been integratively achieved
in Glycine max (Kim E. et al., 2017), Solanum lycopersicum
(Kim H. et al., 2017), and Triticum aestivum (Lee et al., 2017)
by translating molecular interaction knowledge from data-rich
model species (e.g., Arabidopsis thaliana and Saccharomyces
cerevisiae) in them and using their in-species gene expression
data.

Gene-to-Metabolite Network:
Co-occurrence Analysis of Genes and
Metabolites
The metabolome in plant cell is the final product of a series
of gene actions. Hence, metabolomics, when integrated
with transcriptomics, provides a potential for the study
of gene-to-metabolite networks that control specialized
metabolism in plants, both at the catalytic and regulatory
levels. Currently, this integrative analysis (especially the
co-occurrence analysis in a network fashion) of gene expression
and metabolite accumulation has emerged as an alternative
strategy for the identification of novel gene functions involved in
plant-specialized metabolism. Hirai et al. (2005) presented one of
the very first articles successfully analyzing the gene/metabolite
associations in a gene-to-metabolite network via the integration
of time-series transcriptome and metabolome datasets. On the
basis of known genes in GSL biosynthesis, the authors identified
the following genes as candidates involved in GSL pathways:
three putative sulfotransferase genes (At1g74100, At1g18590,
and At1g74090), an S-glucosyltransferase gene (At1g24100),
a putative Tyr aminotransferase gene (At5g36160), and two
putative GST genes (At3g03190 and At1g78370). To date, some
of these candidate genes have been experimentally characterized
in concurrent studies using biochemical approaches (Grubb
et al., 2004; Piotrowski et al., 2004).

RECENT PROGRESS IN ‘OMICS’
ANALYSIS FOR THE IDENTIFICATION OF
CHARACTERISTIC METABOLITE GENES
IN THE TEA PLANT

Transcriptome Analysis
We conducted the first RNA-seq based specialized metabolite
gene analysis for the tea plant in the early 2011 through
deep sequencing, de novo assembling and functional annotation
of the transcriptome of a pooled sample of seven tissues
including tender shoots, young leaves, mature leaves, stems,
young roots, flower buds, and immature seeds (Shi et al., 2011).

On this basis, many putative candidate genes involved in the
three major secondary metabolic pathways (flavonoids, theanine,
and caffeine) that tightly related to tea quality and taste
were target-disclosed. Among these, several genes associated
with theanine and flavonoid biosynthesis were experimentally
validated using low throughout RT-PCR and qRT-PCR analysis.
Generally, gene expression changes underlying specialized
metabolite accumulation in plants at specific experimental
conditions, developmental time points or different tissues is
necessary to be measured for the disclosure of complicated
regulatory mechanisms of specialized metabolites biosynthesis.
In these cases, knowledge-gain aimed experimental designs (e.g.,
control/treat coupling and sample repetition) are preferentially
considered to subject to the downstream data analysis namely
DEG identification in routine RNA-seq analytical pipeline.
Evidently, our effort is based on a multi-tissue composed
mixture sample without the above biological concerns. With
the popularity of RNA-seq analysis and increasing decrease
of sequencing cost, many interesting hypotheses have been
developed in the later 5 years by focusing specialized metabolism
mechanisms of the tea plant in certain abiotic/biotic stress
conditions [e.g., drought (Wang W. et al., 2016) and pathogen
attack (Wang Y.N. et al., 2016)], different tissues [e.g., bud, stem,
flower, and seed (Li et al., 2015)], and different developmental
stages [e.g., leaf tissues at color-changing (Li et al., 2017) and
form-shaping stages (Lin et al., 2017)].

Comparative Transcriptome Analysis
Beyond the routine transcriptome analysis, comparative
transcriptome analysis has become a valuable strategy in
dissection of significant differences in genes and their expressions
among different biological samples of a certain species, similar
biological samples of different cultivars in a certain species, or
even similar biological samples in different species. It is known
that oil tea (Camellia oleifera) from the same genus Camellia
lacks the three characteristic metabolites (flavonoids, theanine,
and caffeine) that the tea plant (Camellia sinensis) predominately
possesses. To uncover the genetic components underlying the
biosynthesis of characteristic components in tea, we applied a
cross-species transcriptome comparison by choosing bud and
leave tissues from the two Camellia plants (Tai et al., 2015).
Based on the RNA-seq analysis, we experimentally confirmed
that several enzyme genes associated with flavonoid, theanine
and caffeine pathways, such as PAL, CHI, DFR, and F3H,
exhibited considerably different expressions in tea compared
to oil tea using qRT-PCR analysis. Thus, it can be speculated
that the differential expressions in certain genes behave as the
contributing genetic basis for the divergence of metabolite
contents in the two plants of the same Camellia genus. Another
representative example is that conducted by Wu et al. (2014)
where leaf transcriptomes of the four tea plant cultivars, ‘Yunnan
Shilixiang,’ ‘Chawan Sanhao,’ ‘Rucheng Maoyecha,’ and ‘Anji
Baicha,’ with different percentages of various catechins, were
subjected to a deep comparative analysis. In this effort, three
catechin closely-related enzyme genes, ANS, ANR and LAR,
were unraveled to be as key factors involved in the changed
catechin percentages in different tea plant cultivars.
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Integrated Transcriptome and
Metabolome Analysis
Single metabolome analysis applied in the tea plant is mainly
focused on the accumulation patterns of chemical components
in certain tea products [e.g., green (Lee et al., 2011) and
black (Pan et al., 2017)] or plant parts [mainly leave (Pauli
et al., 2016; Ryu et al., 2017)]. In these studies, the elucidation
of metabolite-related genes has not been concerned. It is
promising that the connection between gene expression and
metabolite accumulation should be considered to study the
‘cause-to-effect’ relationships in the biosynthesis of specialized
metabolites in plants because a metabolome in cell system
represents the phenotype effect of gene actions. In the past
few years, there has appeared several attempts that focused on
integrated transcriptomics and metabolomics analysis in the tea
plant, which is a popular fashion used from the model plant
Arabidopsis thaliana to vegetables (Alba et al., 2005), fruits (Savoi
et al., 2016), crops (Kovinich et al., 2011), and trees (Hamanishi
et al., 2015). In a recent effort, Li et al. (2016) presented a
combined transcriptomics and metabolomics analysis of ‘Anji
Baicha’ (Camellia sinensis) leaves at yellow–green, albescent, and
re-greening stages. In theanine biosynthetic pathway, one of the
three characteristic metabolic pathways, the authors found that
the expressions of four genes, GOGAT, AIDA, GS, and TS, were
significantly correlated with the concentrations of ethylamine
(GOGAT), glutamine (GOGAT, AIDA, GS, and TS), and theanine
(AIDA) in this pathway, which are likely the causes of the leaf
metabolite variability among the three color and developmental
stages.

LIMITATIONS OF THE CURRENT GENE
DISCOVERY STRATEGIES OF
CHARACTERISTIC METABOLITES IN
THE TEA PLANT IN CONTRAST WITH
‘OMICS’-BASED NETWORK
STRATEGIES

The exploration of genes responsible for characteristic
components biosynthesis is an important branch of tea
biochemistry research. Previously, characteristic metabolite
genes were mostly discovered through Sanger sequencing
(Park et al., 2004; Singh et al., 2009). With the advent of NGS
technology (specifically RNA-seq), the gene decoding has made
great achievements in the determination of gene structures
and expression profiles relying on its high throughout and
coverage superiority (Ozsolak and Milos, 2011). However,
current RNA-seq based ‘omics’ analysis has several limitations
in metabolite gene discovery by comparison with ‘omics’-
based network approaches: (1) genes are always identified
from assembled unigenes through homology-based function
annotation based on well-characterized gene references in
data-rich model species. This commonly used strategy in
non-model species may shield the possibility in discovery
of novel enzyme genes and the underlying regulatory TFs
related to certain characteristic metabolic pathways in the

tea plant. As emphatically discussed in this review, genes in
a specific specialized pathway are usually co-regulated at the
transcriptional level. Thus, it is logical that the gene-to-gene
associations (e.g., gene co-expression network) at a genome-wide
scale should be established to predict novel genes of a
characteristic metabolic pathway in the tea plant based on
the ‘guilt-by-association’ principle, using well-characterized bait
genes. (2) Although integrated transcriptome and metabolome
analysis can help disclose genes that contribute to certain
metabolite accumulation pattern in certain biological conditions
in the tea plant (see illustrated example above), the associations
between genes and metabolites has still not been quantitatively
measured into a gene-to-metabolite network (can be seen in
other species) based on a multi-sample statistical model. That
is to say, integrated transcriptome and metabolome analysis
currently applied in the tea plant is intrinsically parallel-isolated
at the two levels of gene expression and metabolite accumulation.
(3) Among the three major characteristic components in the
tea plant, theanine has been found in some Camellia species
and in a mushroom, Xerocomus badius (Casimir et al., 1960).
Therefore, the metabolic pathway associated with theanine
biosynthesis has no reference pathway from other model
plants to identify metabolite genes using the homology-based
knowledge translation. (4) Camellia sinensis (the tea plant) is
evolutionarily far-distant from Arabidopsis thaliana and other
secondary metabolism well-established model plants. Thus,
cross-species gene knowledge translation (homology-based) may
hinder the elaborate disclosure of the specific biosynthesis of
characteristic components in the tea plant.

POTENTIAL OF INTRODUCING
‘OMICS’-BASED NETWORK
STRATEGIES IN THE IDENTIFICATION
OF CHARACTERISTIC METABOLITE
GENES IN THE TEA PLANT

As summarized in section “A survey of ‘omics’-based network
strategies for the identification of specialized metabolite genes
in plants,” several prerequisites are required for the ‘omics’-
based network strategies applied in the tea plant, such as
sufficient sample size and well-characterized bait gene set in
a certain characteristic metabolic pathway. We searched NCBI
SRA (Leinonen et al., 2010b), a representative NGS sequence
database, using the keyword “Camellia sinensis,” and manually
checked biological samples that documented relevant RNA-seq
applications in the tea plant. As of January 2018, more than
200 biological samples in the tea plant in different biological
conditions are publicly available. In addition, dozens of in-house
RNA-seq examples concerned with different biological questions
have accumulated in our own lab in recent years. Thus, the
RNA-seq sample size in the tea plant is now sufficient to allow
for the statistical computation of co-expression relationships of
pairwise genes [see sample requirement for gene co-expression
decision in review (Aoki et al., 2007)]. As to bait genes,
researchers in our tea lab at Anhui Agricultural University
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and colleagues around the world have contributed considerable
efforts in biological molecular experiments that well-characterize
genes related to the three characteristic metabolic pathways in
the tea plant, such as UGT (Cui et al., 2016), F3′H (Zhou
et al., 2016), GCH (Jiang et al., 2013), TS (Okada et al.,
2006), and F3′5′H (Wang et al., 2014). Most recently, the
genome of tea plant has been sequenced and released in public
(Xia et al., 2017). Using this resource as a reference, we can
accurately track genes and compute their expressions in diverse
sequenced samples. In addition, researchers can also use the
reference to computationally predict several molecular functional
associations, such as protein–protein physical interaction and
proteins subcellular co-localization, to enhance single-network of
gene co-expression into multi-network of gene co-function. With
respect to the gene-metabolite associations, parallel experimental
design and integrated analysis related to gene expression and
metabolite accumulation in concerned biological conditions can
be now readily achieved for the possible gene-to-metabolite
network inference in the gene identification of characteristic
secondary metabolism of the tea plant.

POSSIBLE ISSUES REGARDING
‘OMICS’-BASED NETWORK
APPROACHES

When using ‘omics’-based network approaches for the
identification of specialized metabolite genes in plants,
several pitfalls and limitations should be concerned. As
surveyed above, gene association network models (e.g.,
gene co-expression and co-functional networks) utilize the
“guilt-by-association” principle to prioritize candidate genes that
might be involved in a particular secondary pathway. However,
genes in the same pathway are not necessarily co-expressed
or have no co-functional relationships. For example, genes
in a certain secondary pathway with post-transcriptional
regulation may have no significant correlations among them
in a gene model, and therefore they can’t be recognized using
the above “guilt-by-association” method. More information
about the limitation of the “guilt-by-association” principle
in gene association network analysis can be seen in a critical
article reported by Gillis’ group (Gillis and Pavlidis, 2012).
When researchers integrate a large number of heterogeneous
transcriptomic and/or metabolomic ‘omics’ data from public
databases or their own collections in a network modeling
pipeline, it should be noted that several technical issues such
as batch effects and missing values intrinsically exist and may
lead to misguided conclusions (Scherer, 2009). Inspiringly,
there have appeared several computational techniques such
as generalized R2 statistic model (Leek et al., 2010) and
missing value imputation algorithm (Liew et al., 2010) that
are developed to deal with batch effects and missing values.
Another notification for users is the downstream experimental
validation of selected candidate genes. False positive genes are
possibly subjected to time-consuming biochemical test. Among
the candidate genes, relevant ones can be manually screened
out via the KEGG/GO (Gene Ontology Consortium, 2014;

Kanehisa et al., 2015) functional annotation or other function
database annotation and/or extensive literature reviewing of
interest genes.

CONCLUSION AND FUTURE
PROSPECTS

Considerable research examples demonstrate that ‘omics’-based
network approaches are powerful tools for the gene discovery in
plant-specialized metabolism (Hirai et al., 2004; Mercke et al.,
2004). However, different ‘omics’-based network strategies for
the identification of specialized metabolite genes in plants are
not summarized in a single review article, which conceal the
possible connections and differences of such systems biology
approaches. Moreover, the advantages of such ‘omics’-based
network strategies have not been discussed in a single paper
by comparison with the traditional ‘omics’ analysis in the
identification of specialized metabolite genes in plants. As to the
tea plant focused in this review, apart from the high complexity
in its genome, characteristic metabolic pathways in this crop
have their intrinsic features different from other plant species.
For example, as an ammonium-tolerant and perennial plant
species, the tea plant is different from other plants in nitrogen
metabolism, which systematically governs the three characteristic
metabolic pathways and makes them particular (Britto and
Kronzucker, 2002). Therefore, network-fashion systems biology
approaches are necessary to be introduced to facilitate the
de novo identification of key genes involved in characteristic
metabolic pathways in the tea plant. With these considerations,
this review focuses on the agriculturally important crop tea
plant (can also extend to others plant species) in which
characteristic secondary metabolites are primary determinants of
tea quality and taste and key characteristic metabolite genes are
still not fully understood. We highlight different ‘omics’-based
network approaches for the gene discovery in plant-specialized
metabolism using successful examples that are employed in
model and non-model plants. Limitations of the traditional
‘omics’ strategies in discovery of specialized metabolite genes are
discussed by comparison with ‘omics’-based network approaches
using the tea plant as an instance. Particularly, the potential
of introducing these strategies in the relevant field of the tea
plant are particularly demonstrated. We believe this will provide
novel directions in the exploration of functional genes associated
with characteristic components in the tea plant, which is a
critical basis for applied genetic improvement and metabolic
engineering.

As useful large-scale computational pipelines, ‘omics’-based
network approaches can provide clues about the potential
candidate genes involved in certain characteristic metabolic
pathways in the tea plant. Hence, a main concern is that tea
biochemists should perform wet lab experiments to validate
the predicted gene functions. Due to the complicated genetic
background, the transformation system in the tea plant has
still not been established. Thus, reverse genetics approaches,
such as gene knockout and over-expressing, are not feasible
for the experimental confirmation of identified gene functions
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in the tea plant. In such case, we can consider the correlation
analysis of gene expression and metabolite accumulation in
multi-samples statistical model to achieve it, following the regular
molecular experiments such as clone, protein recombination, and
enzymatic activity. With the reference genome of the tea plant
currently available, an active research field of metabolite-based
genome-wide association study [or mGWAS (Luo, 2015)] should
be focused, as it is a good way to identify genomic loci associated
to key metabolic pathways by re-sequencing a collection of
tea plant cultivars or recombination lines around the world
and profiling their metabolomes of tissues and conditions
of interest. The loci information from mGWAS analysis can
be considered together with the gene information inferred
from ‘omics’-based network analysis to provide subtle clues
for a specialized component biosynthesis in the tea plant.
To date, detailed information regarding the bait genes in
the three characteristic metabolic pathways in the tea plant
has been scattered in published studies. As such, several
tasks should be carried out to gain a comprehensive list
of such bait genes, using manual curation from publications
(Zhang et al., 2013) or more effective literature-mining tools
(Jensen et al., 2006). In addition, exhaustive experimental
characterization of characteristic metabolites genes as a more
comprehensive bait gene list should be an ongoing program
for gaining an optimized prediction. In the past 5 years,
we have seen massive accumulation of transcriptome and
metabolome datasets from different labs worldwide, which are
valuable resources in tea secondary metabolism community.
Thus, it is an urgent and promising task to develop the
corresponding deposit and analysis platforms, which can aid
in the network identification of characteristic component genes
in the tea plant for experimental investigator without any

bioinformatics skills. On this base, novel algorithms in biological
network analysis, such as motif and module mining, should
be borrowed to help find gene- and/or metabolite-mediated
regulatory sub-structures [e.g., frequently-appeared feed-forward
loop in plants, FFL (Sakuraba et al., 2015)] that might control
a specific specialized metabolite pathway in the tea plant.
In addition to the three characteristic components in the
tea plant, there are also several other specialized metabolites
with important nutritional values and health benefits, such as
saponins (Sur et al., 2001) and volatile terpenes (Yang et al.,
2013). Now it still remains as a virgin field that should call
for the analogous studies in gene discovery to advance a
comprehensive understanding of secondary metabolic profile in
the tea plant.
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