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Elemental selenium is one of the dominant selenium species in soil, but the mechanism

of its uptake by plants is still unclear. In this study, nanoparticles of elemental selenium

(SeNPs) with different sizes were prepared, and their uptake and transformation in wheat

(Triticum aestivum L.) were analyzed in hydroponic experiments by HPLC-ICP-MS. We

found that the SeNPs can be absorbed by wheat seedlings, and the process is energy

independent. The addition of aquaporins inhibitor caused 92.5 and 93.4% inhibition

of chemosynthesized SeNPs (CheSeNPs) and biosynthesized SeNPs (BioSeNPs)

absorption by wheat roots, respectively. The 40 nm SeNPs uptake by wheat roots was

1.8-fold and 2.2-fold higher than that of 140 and 240 nm, respectively. The rate of

SeNPs uptake in wheat was much slower than that of selenite [Se (IV)], and CheSeNPs

were more efficiently absorbed than BioSeNPs. The SeNPs were rapidly oxidized to Se

(IV) and converted to organic forms [selenocystine (SeCys2), se-methyl-selenocysteine

(MeSeCys), and selenomethionine (SeMet)] after they were absorbed by wheat roots.

Additionally, we demonstrated that the aquaporin function in some way is related to the

absorption of SeNPs. The particle size and synthesis method of the SeNPs affected their

uptake rates by plants. Taken together, our results provide a deep understanding of the

SeNPs uptake mechanism in plants.

Keywords: HPLC-ICP-MS, selenium nanoparticles, selenium speciation, transformation, uptake, wheat (Triticum

aestivum L.)

INTRODUCTION

Selenium (Se) is an essential trace element for mammals, and has important physiological functions
such as antioxidation, anticarcinogenic effects, and immunity stimulation (Fairweather-Tait et al.,
2011). Selenium is found ubiquitously but is geographically variable in the environment, and is
transferred through the geochemical cycle rock-soil-water-plants-mammals (Peters et al., 2016).
The daily intake of Se varies geographically, in the world, 0.5–1 billion people have a Se intake below
the recommended 55 µg day−1 and have been estimated to be Se-deficient, including the people
living in south island of New Zealand, and parts of China and Europe (Combs Jr, 2001; Rayman,
2004; Pappas et al., 2008; Lv et al., 2014). Wheat (Triticum aestivum L.) is one of the principal cereal
grains produced and consumed globally. Supplement of Se into the food chain is one of the effective
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measures to solve Se deficient situation. Thus, there is potential
for it to make a substantially larger contribution of grain Se could
be raised to levels found in overseas. Besides that, wheat provides
the main source of Se in the world, and people in most European
countries such as England and Finland uptake Se from bread
(Broadley et al., 2011; Lee et al., 2011).

Selenium is a metalloid element that occurs in different forms,
including as selenide [Se (-II)], elemental selenium [Se (0)],
selenite [Se (IV)], and selenate [Se (VI)], all of these organic or
inorganic Se compounds occur naturally in the environment and
accumulates in many organisms (Dissanayake and Chandrajith,
2009). Elemental selenium is one of the dominant Se species in
both aerobic and anaerobic soils which contribute 26–66% of the
total Se in soil (Fox et al., 2000). Under oxidizing conditions
(>300mV) and moderately reducing conditions (0–200mV)
selenate and selenite will be the most dominant species in soil,
respectively (Zhang and Moore, 1996; Martens and Suarez, 1997;
Gao et al., 2000). In plant metabolism, selenate is absorbed
through a sulfate transporter in the root plasma membrane
into the cell, and is then converted into Se-amino acids (Terry
et al., 2000; Sors et al., 2005; Schiavon and Pilon-Smits, 2017).
Selenite likely enters via a phosphate transport pathway into the
plant root, which is a metabolically-dependent active process (Li
et al., 2008; Zhang et al., 2013; Kaur et al., 2014). In the process
of Se assimilation, selenite is reduced to selenide, and then
incorporated into selenocysteine (SeCys). The synthesis of SeCys
probably occurs in chloroplasts, the cytosol, and mitochondria,
and SeCys can be converted into selenomethionine (SeMet)
(White and Broadley, 2009). Plants probably take up organic
forms of Se via amino acid permease, and the rate of uptake of
SeCys and SeMet by wheat and canola is 20-fold higher than
that of selenate or selenite (Schiavon and Pilon-Smits, 2017).
However, plants uptake and transformation of elemental Se have
not been well study.

Gray and black elemental Se are insoluble and have no
bioactivity, while the red selenium nanoparticles (SeNPs) have
scavenging effects on different free radicals in vitro (Zhang et al.,
2001; Huang et al., 2003). SeNPs have found applications in
medicine as antimicrobial, antioxidant, and anticancer agents
(Hariharan et al., 2012; Forootanfar et al., 2014; Torres et al.,
2012; Yang et al., 2012). SeNPs were more effective in increasing
the activities of glutathione peroxidase (GSH-Px), thioredoxin
reductase (TrxR), and glutathione S-transferase (GST) than
SeMet in experiments with rodents and crucian carp, and
SeNPs had low cytotoxicity compared with selenite in mice
(Shi et al., 2010; Domokos-Szabolcsy et al., 2012; Wadhwani
et al., 2016). SeNPs can be chemosynthesized by chemical
reducing agents or be biosynthesized by organisms. Compared
with chemosynthesized SeNPs (CheSeNPs), the biosynthesized
SeNPs (BioSeNPs) are more stable due to natural coating of
organic molecules or proteins (Lenz et al., 2011). Currently, the
supplementation of plants with Se is usually limited to selenite or
selenate, and it is still unclear how plants absorb SeNPs. Previous
research has demonstrated that tobacco can take up SeNPs in
callus culture and through the root, and that the biological
effects of SeNPs are different from selenate in plant tissue culture
(Domokos-Szabolcsy et al., 2012).

Here we compared the uptake, translocation and
transformation of CheSeNPs and BioSeNPs in wheat seedlings
in a controlled hydroponic system. The aim of this work was
to identify the key absorption mechanism of SeNPs in wheat
seedlings, which has so far remained unclear, and provide a
theoretical basis for enhancing the quality and safety of the
human diet and ensure the long-term use of new Se resources.

MATERIALS AND METHODS

Wheat Seedling Culture
Wheat (Triticum aestivum L. cv. Luyuan 502, ShandongAcademy
of Agricultural Sciences) caryopses were surface-sterilized with
70% (v:v) ethanol for 90 s, washed three times with deionized
water, and germinated in 0.5mM CaCl2 solution at 25◦C in the
dark. The wheat seedlings were cultured in plastic containers with
2-liter modified 1/5 strength of Hoagland’s nutrition solution
(1.0mM KNO3, 1.0mM Ca(NO3)2, 0.457mM MgSO4, 0.1mM
KH2PO4, 1.0µM MnCl2, 3µM H3BO3, 1µM (NH4)6Mo7O24,
1µM ZnSO4, 0.2µM CuSO4, and 60µM Fe(III)-EDTA) with
2mM 2-morpholonoethanesulphonic acid (MES), and the pH
was adjusted with KOH to 6.0 (Hogland and Arnon, 1950). The
culture solution was renewed every 5 days. The wheat seedlings
were grown in a greenhouse under the following conditions: 16 h
photoperiod per day with a light intensity at 280 µmol m−2s−2,
25/18◦C day/ night temperature, relative humidity of 60–80%,
and 24 h of continuous ventilation.

Preparation and Characterization of SeNPs
Chemosynthesized SeNPs (CheSeNPs) with nominal diameters
of 40, 140, and 240 nm were prepared according to previously
described methods (Lin and Wang, 2005). Briefly, CheSeNPs
were synthesized from selenous acid with sodium thiosulfate
(Na2S2O3) as the reducing agent, and sodium dodecyl sulfate
(SDS) as a surfactant stabilizer. The CheSeNPs with different
particle sizes were collected by centrifugation, washed three
times with 10mM SDS, and suspended with deionized water
to 1mM, respectively. Biosynthesized SeNPs (BioSeNPs) were
isolated from Rahnella aquatilis HX2 via a modified method
described by Dobias et al. (2011). Briefly, HX2 was incubated
in Luria-Bertani broth (containing 1% tryptone, 1% NaCl, and
0.5% yeast extract) supplemented with filter-sterilized Na2SeO3

to a final concentration of 5mM for 48 h at 28◦C. The HX2
cells with SeNPs were collected by centrifugation at 8,000 g for
10min. The precipitates were washed three times with deionized
water, suspended with 1M NaOH solution, boiled for 20min
in a water bath, and amended with a 1/2 volume of n-hexane.
The aqueous phase which contained the SeNPs was taken and
adjusted the pH to 7.2 using 6M HCl. The BioSeNPs were
collected by centrifugation at 8,000 g for 30min, washed three
times and suspended to 1mM with deionized water for further
use.

A transmission electron microscope (TEM) (Hitachi H7500,
Tokyo, Japan) and an energy dispersive X-ray (EDX) detector
(Hitachi HT7700, Tokyo, Japan) were used to analyze the
elemental composition of the CheSeNPs and BioSeNPs. The TEM
and EDX analyses were both performed at theNational Center for
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Nanoscience and Technology (Beijing, China) according to the
methods of manufacturer’s instruction. The SeNPs were observed
with the TEM system, and then selected areas within the TEM
sections were subjected to elemental composition analysis using
an EDX microanalysis system coupled to the TEM. The particle
sizes of CheSeNPs and BioSeNPs were measured from manual
counting of 200 individual particles from 9 different TEM images,
respectively. The voltage was 100 kV and the signal acquisition
time was 120 s. The hydrodynamic diameter and zeta potential
of the CheSeNPs and BioSeNPs were measured by a dynamic
light scattering (DLS) and particle size analyzer (SZ-100, Horiba,
Japan).

Stability and Desorption of SeNPs in the
Wheat Root
The roots of 6-week-old wheat seedlings were washed twice
with desorption solution (1mM CaSO4, 2mM MES, pH 6.0) for
30min, and transferred to 100ml 2mM MES (pH 6.0) solution
with 5µMCheSeNPs. Each treatment was replicated three times.
After 60min absorption, the root about 1 g treated with SeNPs
was washed three times by 10ml desorption solution. The Se
concentrations in washed desorption solution were detected.

Pretreated wheat seedlings were transferred to 300ml
containers (two plants per container) with 100ml 5µM
CheSeNPs or BioSeNPs. Solutions containing 5µMCheSeNPs or
BioSeNPs without plants served as controls. Each treatment was
replicated three times. Two milliliter aliquots were collected at 0,
2, 4, 8, 16, and 24 h during the incubation, filtered through 0.22-
µmmixed cellulose nitrate filters (Millipore, Billerica,MA, USA),
and stored at 4◦C for selenite analysis.

Kinetics of SeNPs Absorption
The roots of 6-week-old wheat seedlings were washed twice
with desorption solution (1mM CaSO4, 2mM MES, pH 6.0)
for 30min, and the plants were transferred to 100ml 2mM
MES (pH 6.0) solution with a series Se concentrations (0, 0.1,
0.5, 1.0, 5.0, 10.0, 20.0µM selenite, CheSeNPs, and BioSeNPs,
respectively). Each treatment was replicated three times (two
plants per pot), and the experiment was repeated three times.
After 60min absorption, the roots were rinsed with deionized
water and then transferred into ice-cold desorption solution for
15min with three times to remove the Se adhering to the root
surfaces. Then, the shoots and roots of wheat seedlings were
separated, lyophilized and analyzed for Se.

Effect of a Respiratory Inhibitor on SeNPs
Uptake
The respiratory inhibition assay was performed according to
the reported method (Li et al., 2008) with slight modification.
Carbonyl cyanide between chlorobenzene hydrazone (CCCP)
known as a protonophore or uncoupler of oxidative
phosphrylation was used as a respiratory inhibitor in this
experiment (Volkov et al., 1988). Wheat seedlings were
pretreated as described above, and then the roots were
transferred to 100ml 2mM MES (pH 6.0) solution with 5µM
CheSeNPs or BioSeNPs, with or without 1µM carbonyl cyanide
between chlorobenzene hydrazone (CCCP), which was initially

dissolved in ethanol; the final ethanol concentration was 0.01%
(v/v). Solutions containing 5µM CheSeNPs or BioSeNPs with
0.01% (v/v) ethanol served as controls. Each treatment was
replicated three times (two plants per pot), and the experiment
was repeated three times. After 60min absorption, the wheat
roots were treated as described above in the kinetics section.

Effect of Aquaporin Inhibition on SeNPs
Uptake
The aquaporin inhibition assay was performed according to the
reported method (Zhang et al., 2006) with slight modification.
Wheat seedlings were prepared as described above in the kinetics
section, then transferred to 100ml 2mM MES (pH 6.0) solution
with 5µM CheSeNPs or BioSeNPs, with or without 0.1mM
AgNO3. Each treatment was replicated three times (two plants
per pot), and the experiment was repeated three times. After
60min absorption, the wheat seedlings were treated as described
above.

Effect of Particle Size on SeNPs Uptake
Pretreated wheat seedlings were transferred to 100ml 2mMMES
(pH 6.0) solution with 5µM 40, 140, or 240 nm CheSeNPs. Each
treatment was replicated three times (two plants per pot), and the
experiment was repeated three times. After 60min absorption,
the wheat seedlings were treated as described above.

Uptake and Transfer of SeNPs in Wheat
Prepared wheat seedlings were transferred to 100ml 2mM MES
(pH 6.0) solution with 5µM selenite, CheSeNPs, or BioSeNPs.
Each treatment was replicated three times (two plants per pot).
The seedlings were harvested at 24, 48, and 72 h and treated as
described above. To evaluate the transfer potential of Se from
roots to shoots, the transfer factor (TF) (defined as the ratio of
Se concentration in shoots to roots) was calculated (Huang et al.,
2015).

Total Selenium Analysis
The total Se concentration in the treated wheat tissues was
determined with a AFS-920 hydride generation flame atomic
fluorescence spectrometer (HG-AFS) (Beijing Jitian Analysis
Instruction Co., Beijing, China). Powdered seedling samples
(250mg) were digested with 8ml 15.3M HNO3 under the
microwave digestion program described by Baldwin et al. (1994).
After cooling down, 2.5ml 6M HCl was added to each tube,
and the contents were heated to 100◦C for 1 h to reduce selenate
to selenite (Zhang et al., 2006). The obtained solutions were
diluted with deionized water to a final volume of 50ml. Two
milliliter samples were injected into the HG-AFS system, and
each sample was prepared and analyzed in triplicate for linear
estimation based on regression analysis of the effects of Se
treatments usingMicrosoft Excel. Blanks and a certified reference
material (Chinese cabbage material, GBW 10014) were included
in each batch of samples for quality control. The recovery for
GNW-10014 was 85.2–119.7%.
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Selenium Species Transformation and
Analysis
Prepared wheat seedlings were transferred to 100ml 2mM MES
(pH 6.0) solution with 10µM selenite, CheSeNPs, or BioSeNPs.
Each treatment was replicated three times (two plants per
treatment). After 24 h absorption, the shoots and roots were
separated, lyophilized and analyzed for Se species.

A powdered sample (250mg) was mixed with 8mg ml−1

protease XIV (Sigma Chemical Co., St. Louis, MO, USA), and
shaken for 24 h at 37◦C, filtered through a filter paper and
then through 0.22-µm mixed cellulose nitrate filters. Samples of
nutrient solution were diluted appropriately and filtered through
0.22-µmmixed cellulose nitrate filters.

The Se species were separated using an anion-exchange
column (Hamilton PRP-X100) in conjunction with ICP-MS
(Table S1). The 100 µl samples were injected into an HPLC-
ICP-MS system (Agilent LC 1260 series and ICP-MS 7700;
Agilent Technologies, Santa Clara, CA, USA) and eluted with
30mM (NH4)2HPO4 (pH 6.0) at a flow rate of 1ml min−1.
Peaks were identified according to the retention times of
standard compounds [i.e., selenocystine (SeCys2), Se-methyl-
selenocysteine (MeSeCys), Se (IV), SeMet, and Se (VI)]
purchased from the National Research Center for Certified
Reference Materials, Beijing, China. The identified Se species
were quantified based on the peak areas of the calibration curves
using an HPLC workstation.

Statistical Analysis
All analyses were performed in triplicate, and the results were
expressed as mean values and standard error (SE). The data were
processed using SigmaPlot 12.0. One-way ANOVA with multiple
comparisons using Duncan’s test was employed to compare the
means among different treatments (p < 0.05) using the SAS
software (version 9.0; SAS Inc., Cary, NC, USA).

RESULTS

SeNPs Characterization
To verify the SeNPs produced by chemosynthesis and
biosynthesis, the characteristics of the SeNPs were examined
using a TEM and an EDX detector. Under the TEM, the
prepared NPs synthesized by chemical and biological methods
both appeared as well-dispersed spherical particles with
average diameters of 140 ± 10 nm and 140 ± 40 nm
(Figures S1A,C), respectively. The hydrodynamic diameter
of the CheSeNPs and BioSeNPs were carried out by DLS, as
shown in the Figures S2A,B. The hydrodynamic diameter
of the CheSeNPs and BioSeNPs was 157.8 ± 30.6 nm and
151.6 ± 41.9 nm, respectively (Figure S2). The zeta potential
of CheSeNPs and BioSeNPs were −46.5 and −51.1mV,
respectively (Figure S3). The EDX results demonstrated
that the NPs had specific absorption peaks for Se at 1.37
(peak SeLα), 11.22 (peak SeKα), and 12.49 (peak SeKβ)
keV (Figures S1B,D). These results indicated that the
chemosynthesized and biosynthesized NPs were SeNPs
(Figure S1).

SeNPs Absorption by Wheat Roots
To verified the elutability of the desorption solution, the
desorption experiment was preformed. The Se concentration in
the first two times washed desorption solution was 30.8 ± 0.1
µg L−1 and 4.2 ± 0.1 µg L−1, respectively (Figure S4). In the
third washed desorption solution, selenium could not be detected
(Figure S4). This result indicated that the desorption solution
could remove SeNPs adhered on roots surface efficiently.

To assess the absorption of selenite, CheSeNPs, and BioSeNPs
by plants, the absorption kinetics were assayed using a series
of Se concentrations in hydroponic experiments. The Michaelis-
Menten equations for selenite, CheSeNPs, and BioSeNPs influx
into wheat roots are shown in Figure 1 and Table 1. The Vmax

for selenite influx was 2.5- and 3.3-fold higher than for CheSeNPs
and BioSeNPs, and the Km value of selenite was 2.3- and 2.6-fold
higher than for CheSeNPs and BioSeNPs, respectively (Table 1).
SeNPs absorption by wheat roots increased with the external
SeNPs concentration and reached a plateau at 10µM of Se,
while selenite absorption into wheat roots increased with the
external selenite concentration, but did not reach a plateau in this
experiment (Figure 1).

FIGURE 1 | Concentration-dependent kinetics for selenite, CheSeNPs, and

BioSeNPs absorption within 60min. Data are means ± standard error (SE)

(n = 3). The curves represent the fitted Michaelis-Menten kinetics.

TABLE 1 | Concentration-dependent kinetics parameters for selenite, CheSeNPs,

and BioSeNPs influx into wheat (Triticum aestivum L.) roots within 60min.

Uptake kinetics

parameters

Different treatments

Selenite CheSeNPs BioSeNPs

Vmax (nmol g−1

root h−1)

324.7 ± 58.0 127.6 ± 21.4 98.5 ± 17.9

Km (µM) 11.9 ± 4.9 5.2 ± 2.5 4.5 ± 2.5

R2 0.9787 0.9425 0.9236

Kinetic parameters were calculated from mean Se influx (n = 3) using Michaelis-Menten

function nonlinear regression model.
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FIGURE 2 | (A) Effect of the metabolic inhibitor carbonyl cyanide

m-chlorophenylhydrazone (CCCP) on the influx of CheSeNPs and BioSeNPs

into wheat (Triticum aestivum L.) roots within 60min. (B) Effect of the

aquaporin inhibitor AgNO3 on the influx of CheSeNPs and BioSeNPs into

wheat roots. SeNPs were supplied at 5µM. Data are means ± SE (n = 3);

different letters differ significant at p = 0.05 (Duncan’s test).

SeNPs Uptake Was Unaffected by CCCP
and Disrupted by AgNO3
CCCP is known as a protonophore or uncoupler of oxidative
phosphrylation, which is believed to be inhibition of ATP
formation by uncoupling oxidative phosphorylation (Volkov
et al., 1988). Thus, it can be used to eliminate the effect of root
respiration. To determine whether the uptake of SeNPs by wheat
was a passive diffusion process or consumed energy, 1µMCCCP
was included in the experiment. The uptake of CheSeNPs and
BioSeNPs was measured after wheat roots were exposed to the
two Se species for 60min. Compared with the control treatment,
the addition of ethanol or CCCP to the nutrient solution did
not significantly affect the uptake of CheSeNPs or BioSeNPs
(Figure 2A). To examine the uptake of SeNPs by plants through
water channels, 0.1mM AgNO3 was used as a water channel
blocker (Niemietz and Tyerman, 2002). The AgNO3 treatment
resulted in 92.5 and 93.4% inhibition of CheSeNPs and BioSeNPs
uptake, respectively (Figure 2B); these results indicated that the
uptake of SeNPs could be disrupted by AgNO3.

FIGURE 3 | Accumulation of CheSeNPs of different sizes in wheat (Triticum

aestivum L.) roots within 60min. Data are means ± SE (n = 3); different letters

indicate significant difference at p = 0.05 (Duncan’s test).

SeNPs Uptake Was Correlated With
Particle Sizes
SeNPs of different sizes were prepared, and the effects of particle
size on SeNPs uptake by wheat were analyzed. The results
indicated that the SeNPs uptake by wheat roots was affected by
the particle size in the CheSeNPs treatments (Figure 3). The Se
absorption by wheat roots under 40 nm CheSeNPs treatment was
significantly increased compared with 140 and 240 nmCheSeNPs
treatments, being 1.8- and 2.2-fold higher, respectively. There
was non-significant difference between the 140 and 240 nm
CheSeNPs treatments.

Selenium Accumulation and Translocation
in Wheat
To confirm that the wheat absorbed the SeNPs and not other
Se species in the experimental system, the stability of SeNPs
in the plant culture solution with or without wheat seedlings
was monitored. The SeNPs concentration remained steady
during the wheat absorption process (Figure S5). The measured
concentrations of selenite accounted for 2.2 and 0.5% of the
CheSeNPs- or BioSeNPs-treatment concentrations in the initial
solution, respectively (Figure S5). The concentration of selenite
in the CheSeNPs or BioSeNPs plus wheat root treatments
did not significantly change with treatment time (Figure S5).
Additionally, the selenite concentration did not markedly
increase with exposure time in the solutions of CheSeNPs or
BioSeNPs alone (without wheat seedlings) (Figure S5).

The uptake and translocation of Se in wheat under selenite,
CheSeNPs, and BioSeNPs treatments was detected by HG-
AFS. The Se concentration in wheat roots did not show
a significant difference among the selenite, CheSeNPs, and
BioSeNPs treatments at 24, 48, and 72 h (Figure 4B). However,
the concentration of Se in wheat roots significantly increased
(p < 0.05) with the exposure duration from 24 to 72 h under
all treatments. Generally, the Se concentration in wheat roots
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FIGURE 4 | Selenium accumulation in wheat (Triticum aestivum L.) (A) shoots

and (B) roots in response to selenite, CheSeNPs, and BioSeNPs treatments

for 24, 48, and 72 h. Data are means ± SE (n = 3); different letters indicate

significant difference at p = 0.05 (Duncan’s test).

and shoots increased with increasing exposure time (Figure 4).
In the BioSeNPs treatment, the Se concentration in wheat
shoots was significantly lower than in the CheSeNPs and selenite
treatments, whereas there was no significant difference in the
Se concentration between the CheSeNPs and selenite treatments
(Figure 4A). Compared with the selenite treatment, the Se
concentration decreased by 16.3–47.3% in BioSeNPs-treated
wheat shoots, but showed a slight increase in the CheSeNPs
treatment at earlier exposure times (24 and 48 h).

The TF, defined as the ratio of the Se concentration in shoots
to that in roots, can be used to evaluate the transfer potential
of Se from roots to shoots. The TF values in all treatments were
generally below 0.1, which indicated that, like selenite, BioSeNPs,
and CheSeNPs had low translocation rates from roots to shoots
(Figure 5). Among the treatments, BioSeNPs showed the lowest
translocation rate and CheSeNPs the highest. The TF value of
the CheSeNPs treatment at 48 h was 1.4 and 1.9 times higher
than those of the selenite and BioSeNPs treatments, respectively
(Figure 5). However, there was no significant difference in the TF
values between the treatments at 24 and 72 h.

FIGURE 5 | Selenium transfer factor (TF) in wheat under selenite, CheSeNPs,

and BioSeNPs treatments for 24, 48, and 72 h. Data are means ± SE (n = 3);

different letters indicate significant at p = 0.05 (Duncan’s test); * differs

significantly at p = 0.011.

Selenium Species in Wheat Seedlings
Selenium species were extracted from wheat root and shoot
tissues by enzymatic hydrolysis and detected with HPLC-
ICP-MS. The analysis results showed that the BioSeNPs
and CheSeNPs were absorbed and converted to organic
forms by wheat plants (Figure 6). In total, eight Se species
were observed, but only five were identified, including
SeCys2, MeSeCys, SeMet, Se (IV), and Se (VI). SeCys2,
MeSeCys, Se (IV), Se (VI) and an unidentified peak (1)
eluted at a retention time of 116 s (RT 116) were detected
in wheat roots and shoot tissues under all treatments
(Figure 6).

HPLC-ICP-MS analysis revealed that the extraction procedure
extracted 50.2–60.1% of the total Se from the roots and shoots
of the treated wheat, except in the shoot under BioSeNPs
treatment (33.4%) (Table S2). In the wheat roots, Se (IV) was
the dominant species under the CheSeNPs- (34.0% of the total
Se) and BioSeNPs treatments (17.6%) whereas SeMet was the
dominant Se species (18.0%) under the selenite treatment and
was found at a concentration of 8.71 µg g−1. Se (VI) was also
present in wheat roots under all treatments, but had a relatively
lower concentration, representing only <2.5% of the total Se
(Figure 6, Table 2). In the root extracts, an unidentified peak
(7) was eluted at a retention time of 637 s (RT 637) for the
BioSeNPs treatment plants, whilst another unidentified peak
(6) was eluted at a retention time of 435 s (RT 435) for the
selenite treatment plants (Figure 6). The Se speciation in wheat
shoots showed difference to that in roots. SeCys2 (11.4%) was
the dominant species in wheat shoots for CheSeNPs treatment
plants, whilst Se (VI) accounted for 7.4% of the Se in the
BioSeNPs treatment plants. In the selenite treatment plants,
the most abundant organic Se compound was SeMet, which
occupied 18.4% of the total Se in wheat shoots (Figure 6,
Table 2).
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FIGURE 6 | Examples of chromatograms of selenium (Se) speciation in protease XIV extracts of wheat (Triticum aestivum L.) roots and shoots, as determined by anion

exchange HPLC-ICP-MS. The intensity (count per second, cps) is for m/z 78. (A–C) Se species in wheat shoots under selenite, CheSeNPs, and BioSeNPs treatment,

respectively. (D–F) Se species in wheat roots under selenite, CheSeNPs, and BioSeNPs treatment, respectively. 1 (Unknown Se species); 2 (SeCys2, Selenocystine);

3 (MeSeCys, Se-methyl-selenocysteine); 4 [Se (IV), Selenite]; 5 (SeMet, Selenomethionine); 6 (Unknown Se species); 7 (Unknown Se species); 8 [Se (VI), Selenate].

TABLE 2 | Effects of selenium (Se) species supplied on Se speciation in protease XIV extracts from wheat (Triticum aestivum L.) roots and shoots.

Species Se species supplied

Selenite CheSeNPs BioSeNPs

µg g−1 DW Percentage %* µg g−1 DW Percentage % µg g−1 DW Percentage %

Shoot SeCys2 0.33 ± 0.06b 3.0 ± 0.6 1.48 ± 0.06a 11.4 ± 0.6 0.08 ± 0.01b 2.3 ± 0.1

MeSeCys 0.24 ± 0.08b 2.2 ± 0.8 0.28 ± 0.05c 2.2 ± 0.4 0.07 ± 0.04b 2.0 ± 0.5

Se (IV) 0.22 ± 0.15b 2.0 ± 1.6 0.38 ± 0.01c 2.9 ± 0.1 0.06 ± 0.02b 1.7 ± 0.3

SeMet 2.05 ± 0.73a 18.4 ± 0.7 1.01 ± 0.11b 7.8 ± 1.0 0.19 ± 0.04a 5.4 ± 0.6

Se (VI) 0.25 ± 0.04b 2.2 ± 0.5 0.22 ± 0.00c 1.7 ± 0.1 0.26 ± 0.01a 7.4 ± 0.1

Root SeCys2 2.36 ± 1.09ab 8.0 ± 2.7 2.12 ± 0.13b 6.6 ± 2.1 0.11 ± 0.03b 0.8 ± 0.1

MeSeCys 0.90 ± 0.21ab 3.0 ± 0.5 0.85 ± 0.04c 2.6 ± 0.9 0.32 ± 0.07b 2.4 ± 0.3

Se (IV) 3.55 ± 1.02ab 11.7 ± 2.5 11.00 ± 0.15a 34.0 ± 6.8 2.36 ± 1.00a 17.6 ± 3.6

SeMet 5.45 ± 2.27a 18.0 ± 5.5 1.87 ± 0.13b 5.8 ± 1.7 0.67 ± 0.22b 5.0 ± 0.8

Se (VI) 0.40 ± 0.10b 1.3 ± 0.2 0.33 ± 0.06d 1.0 ± 0.4 0.34 ± 0.14b 2.5 ± 0.5

Mean values (n = 3) ± standard error (SE). Selenite, sodium selenite; CheSeNPs, chemogenic selenium nanoparticels; BioSeNPs, biogenic elemental selenium nanoparticles; SeCys2,

selenocystine; MeSeCys, Se-methyl-selenocysteine; Se (IV), selenite; SeMet, selenomethionine; Se (VI), selenate.

*The percentage was calculated by the concentration of Se species / the concentration of Se in tissues×100%. The different letters indicate statistically significant differences between

the treatments as the p < 0.05.

DISCUSSION

Mechanisms of SeNPs Uptake
On account of most NPs have a proportionately very large surface
area and this surface can have a high affinity for plants roots
(Cheng et al., 2004; Aslani et al., 2014). The Figure S4 indicated
that the desorption solution could remove SeNPs adhered on
roots surface efficiently. In addition, the results in Figure 2

will also give evidence to SeNPs desorption from roots. If the
SeNPs could not be removed from root efficiently by desorption
solution, Se concentration of root in AgNO3 treatment could not
significantly decreased compared to the control.

The phytouptake of several metal nanoparticles including
Se has been investigated, and these studies have demonstrated
that nanoparticles can adhere to plant roots and induce
chemical or physical uptake (Domokos-Szabolcsy et al., 2012;
Aslani et al., 2014). However, the uptake mechanism of
SeNPs is not well understood. The uptake kinetics of selenite,
CheSeNPs, and BioSeNPs showed that CheSeNPs and BioSeNPs
influx into wheat roots was much slower than selenite influx
(Figure 1, Table 1). The lower Vmax and Km values for both
CheSeNPs and BioSeNPs suggested a distinct difference in
the uptake and affinity for these Se species compared with
selenite.
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A previous study reported that the metabolic inhibitor CCCP
inhibited the uptake of selenite by 80%, and demonstrated that
selenite uptake was a metabolically-dependent active process
(Li et al., 2008). However, neither the uptake of CheSeNPs
nor BioSeNPs was sensitive to the metabolic inhibitor CCCP
(Figure 2A). CCCP is used as an oxidative phosphorylation
inhibitor to reduce the operation of the ATP synthase, and
eliminate the effect of wheat root respiration (Volkov et al.,
1988). Thus, it is likely that wheat root absorption of SeNPs
is a passive diffusion process, and does not consume energy.
Furthermore, our results demonstrated that AgNO3 significantly
disrupted the wheat root absorption of CheSeNPs, and BioSeNPs
(Figure 2B). AgNO3 is a potential inhibitor of aquaporins of
plant origin (Niemietz and Tyerman, 2002). The mechanism of
AgNO3 inhibits aquaporin function is that the pore diameter
of an aquaporin is 2.8 Å and the ionic radius of Ag+ is 2.5
Å. Hence elements with ionic radii similar to silver may be
potent inhibitors of aquaporins. Silver reacts with the sulfhydryl
group of a cysteine and also with a histidine, resulting in gating
by the targeted aquaporin (Niemietz and Tyerman, 2002). The
inhibition of CheSeNPs and BioSeNPs uptake by AgNO3 was
due to its effect on aquaporins. It was reported that AgNO3

blocked the water channels and inhibited selenite absorption
by rice roots at low pH by 73% (Zhang et al., 2006). Earlier
literature has documented that water channels do not completely
exclude small uncharged molecules, and they can transmit
considerable amounts of water as solutes diffuse across channels
(Hertel and Steudle, 1997). The aquaporins inhibiter resulted in
92.5 and 93.4% inhibition of CheSeNPs and BioSeNPs uptake,
respectively (Figure 2B). The diameter of aquaporins is about
2.8 Å, it seems too small for SeNPs to pass though (Niemietz
and Tyerman, 2002). The aquaporins play important roles in
the physiological processes, including transport of water, mineral
nutrition, carbon, nitrogen fixation, promote cell elongation,
differentiation, and stomata movement (Maurel et al., 2008).
Thus, we speculate that the inhibiter of aquaporin function in
some way influenced the wheat seedlings absorb of SeNPs.

Evidences have suggested that only NPs or NPs aggregates
with a diameter less than the pore diameter of the cell wall can
easily pass through and reach the plasma membrane (Moore,
2006; Zhang et al., 2008; Dietz and Herth, 2011). Because of the
limited sizes of the cells pore, only NPs smaller than 5 nm may
traverse an intact cell wall (Carpita et al., 1979; Li et al., 2015).
As the size of SeNPs is greater than the pore size of cell walls,
this hypothesis is refuted by the results of the present study.
This study demonstrated that smaller CheSeNPs weremore easily
absorbed than larger ones (Figure 3). Thus, the uptake of SeNPs
is not solely dependent on the pore diameter of the cell wall; other
mechanisms may be involved. Furthermore, NPs below 100 nm
in size possess unique physico-chemical, electrical, optical, and
biological activities, compared with their bulkier counterparts
(Ingle et al., 2014).

Transformation of SeNPs in Wheat Plants
The CheSeNPs and BioSeNPs were synthesized using selenite
in our experiments (Figure S1). The CheSeNPs and BioSeNPs
have a relatively higher zeta potential (−46.5 and −51.1mV,

respectively) in water solution and thus form a stable dispersion,
enabling the application possible for plant. We monitored
the dynamics of Se concentrations in the solutions in the
SeNPs treatments with or without wheat seedlings, and found
little (0.05–2.2%) selenite in the initial treatment solution. The
selenite concentration did not significantly increase during the
experiment, which indicated that the SeNPs appeared stable and
were not oxidized to selenite in the solution (Figure S5). The
results indicated that the plants absorbed the SeNPs and not the
selenite in the experiment.

The selenium species were extracted with protease XIV.
Because of the limited availability of standard Se compounds,
the SeCys2, MeSeCys, Se (IV), SeMet, Se (VI) were quantitatively
and qualitatively measured in this study (Figure 6). Unknown
compounds and the low extraction efficiencies accounted for
the difference between the total Se content and the sum of
the identified peaks. Previous studies have demonstrated that
inorganic Se (i.e., selenate and selenite) can be taken up by plants
and then transformed into organic Se compounds (i.e., SeCys2,
SeMet, and MeSeCys) and bound within proteins (Vogrincic
et al., 2009; Schiavon and Pilon-Smits, 2017). However, little
information is available on SeNPs transformation in plants. Our
study showed that SeNPs could also be taken up by plants
and then transformed into organic Se compounds, selenite,
and selenate in roots and shoots, which demonstrated the the
bioavailability of SeNPs in plants. The root extracts contained a
number of Se species with Se (IV) being the dominant species
in wheat roots under the CheSeNPs and BioSeNPs treatments
(Table 2). By contrast, when wheat plants were supplied with
selenite, it was rapidly converted to organic forms in the roots,
although a tiny portion of selenite was remained. Similarly, Li
et al. (2008) found that selenite supplied to wheat roots was
rapidly assimilated into organic forms and detected a relatively
small concentration of Se (IV) in wheat root extracts. Because
Se (IV) was the most abundant species in the root extracts of
CheSeNPs- and BioSeNPs-treated plants, we hypothesize that the
oxidation reactions occurred in the root cells. In wheat shoots,
SeMet (18.4%) was the dominant species in the selenite treatment
plants, SeCys2 (11.4%), and SeMet (7.8%) were the main species
in the CheSeNPs treatment plants, and Se (VI) (7.4%) and SeMet
(5.4%) were the main species in the BioSeNPs treatment plants
(Table 2). The transformation of Se species in plants is a dynamic
process, and SeCys, selenocystathionine, selenohomoserine, and
SeMet are all considered likely intermediates in the assimilation
of selenite into selenoproteins (Shrift, 1969). Duncan et al. (2016)
reported that SeMet was the major Se species in wheat grain
samples, and Vogrincic et al. (2009) found that SeMet and
MeSeCys were the most abundant species in Se-enriched plants.
Another interesting phenomenon was that under the BioSeNPs
treatment, the percentage of Se (VI) was 7.4%, which was 4.4-
and 3.4-fold higher than that in the CheSeNPs and selenite
treatments, respectively (Table 2). This suggests that some
complex metabolic process occurs in plants based on the special
biological characteristics of BioSeNPs. In contrast to the synthesis
of CheSeNPs, BioSeNPs are synthesized by complex microbial
communities and capping agents (i.e., proteins, polysaccharides,
phenols, amines and alcohols) are present on the surfaces of
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BioSeNPs (Dwivedi et al., 2011; Husen and Siddiqi, 2014; Jain
et al., 2015). The BioSeNPs synthesized by HX2 which coated
two main proteins Rahnella aquatilis flagellin C (FliC) and the
outer membrane protein porin (Data no shown). Thus, the
extracellular polymeric substances of BioSeNPsmay be one of the
unfavorable factors influencing their transport and accumulation
in wheat plants.

SeNPs Translocation From Roots to Shoots
The TF, defined as the ratio of Se concentration in shoots to
roots is generally used to evaluate the translocation potential of
Se from plant roots to shoots (Huang et al., 2015). CheSeNPs and
selenite showed similar translocation of Se from roots to shoots
during the longer exposure period (72 h), while the BioSeNPs
were rarely translocated to shoots (Figure 4). The TF values were
below 0.1 in all treatments, which indicated that little SeNPs and
selenite were transported to the shoots. The low TFs of SeNPs and
selenite from roots to shoots may be due to their rapid conversion
to organic Se compounds (SeCys2, MeSeCys, and SeMet) and
retention in wheat roots. The shape, size, chemical composition,
concentration, surface structure, aggregation and solubility of
NPs are critical factors influencing the plant uptake (Aslani et al.,
2014).

In conclusion, the present study has provided physiological
evidence that SeNPs can be actually absorbed by wheat seedlings.
SeNPs influx into wheat roots is a passive diffusion process, and
the uptake rate of SeNPs is lower than for selenite. CheSeNPs
below 50 nm in size were more easily absorbed into wheat
roots. The aquaporin function is in some way involved in the
SeNPs uptake by wheat seedlings. Few SeNPs were transported
from roots to shoots, and they were rapidly assimilated into Se
(IV) and organic forms in both wheat roots and shoots. Thus,
water management and smaller diameter of SeNPs produced by
microorganisms may improve the wheat absorption of SeNPs in

the field. Thus, SeNPs could be used as a new fertilizer to produce

Se-biofortified plants, which might improve Se supplementation
for humans and domestic animals.
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