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The world population is expected to increase from 7.3 to 9.7 billion by 2050. Pest

outbreak and increased abiotic stresses due to climate change pose a high risk to

tropical crop production. Although conventional breeding techniques have significantly

increased crop production and yield, new approaches are required to further improve

crop production in order to meet the global growing demand for food. The Clustered

Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 (CRISPR-associated

protein9) genome editing technology has shown great promise for quickly addressing

emerging challenges in agriculture. It can be used to precisely modify genome sequence

of any organism including plants to achieve the desired trait. Compared to other genome

editing tools such as zinc finger nucleases (ZFNs) and transcriptional activator-like

effector nucleases (TALENs), CRISPR/Cas9 is faster, cheaper, precise and highly efficient

in editing genomes even at the multiplex level. Application of CRISPR/Cas9 technology

in editing the plant genome is emerging rapidly. The CRISPR/Cas9 is becoming a

user-friendly tool for development of non-transgenic genome edited crop plants to

counteract harmful effects from climate change and ensure future food security of

increasing population in tropical countries. This review updates current knowledge and

potentials of CRISPR/Cas9 for improvement of crops cultivated in tropical climates to

gain resiliency against emerging pests and abiotic stresses.
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INTRODUCTION

Population growth, climate change, and food shortage are some
of the threatening current issues for the world community.World
population is growing rapidly and is projected to reach 9.7 billion
by 2050 (Clarke and Zhang, 2013). The rate of population growth
is higher in the tropical countries than the countries in temperate
regions. Seven among the nine countries where more than 50%
population growth are expected between now and 2050 are in the
tropical region. These countries are India, Nigeria, Democratic
Republic of the Congo, Ethiopia, United Republic of Tanzania,
Indonesia and Uganda. It has been estimated that Nigeria will
be the largest country in terms of population after India and
China by 2050 (Campos and Caligari, 2017). More than two
third of the people who are in extreme poverty live in tropical
countries. The ability to feed this rapidly growing population in
the tropical region will soon become a critical issue that will need
to be addressed by the society. This situation will be exacerbated
due to decrease in available arable land coupled with reduced
crop yields that are both predicted to arise from the climate
change. For instance, the International Rice Research Institute
(IRRI) has estimated that one hectare of cultivable land is lost
every 7.7 s, and the rate of loss may accelerate with increased
global temperatures (Stamm et al., 2011). Climate change not
only affects crop production through altered weather patterns,
but also via increased environmental stresses such as soil salinity,
drought and emergence of new disease and insect-pests. To keep
up with the pace of population growth, it has recently been
estimated that food production will need to be increased by 50%
by 2030 and by 70–100% by 2050 for a well-fed world population
(Godfray et al., 2010; Jones et al., 2014). To meet this predicted
demand, crop varieties with higher yield, better adaptability to
the changing climate as well as more tolerant to biotic and abiotic
stresses will need to be developed in the next decade on an urgent
basis.

Unfortunately, crop research and development, particularly
crop genetics which has been focused on only a few crops
such as wheat and maize which are historically grown in the
temperate regions of the world, mainly Europe, North America
and Central Asia. Despite enhancement of crop yield potential via
conventional breeding methods like hybridization and mutation
breeding, the actual crop yield seems to be approaching a plateau
in recent decades (Mann, 1999; Ansari et al., 2017). Moreover,
yield stagnation has been reported in some of the world’s most
intensive cropping systems such as rice in East Asia, maize
in South Europe and wheat in Northwest Europe. One way
of overcoming the limitations of the conventional breeding
technologies is the use of biotechnology in crop improvement.

In recent years, sequence-specific genome editing
technologies were found to be useful tools for crop
improvement (Georges and Ray, 2017). In particular, the
clustered regularly interspaced short palindromic repeats
(CRISPR)/CRISPR-associated protein9 (Cas9) genome editing
technology (CRISPR/Cas9)1 has so far shown the greatest

1CRISPR/Cas9 Technology In Rice And Wheat. Posted 8th March 2017 by Fabio

Caligaris. http://www.global-engage.com/agricultural-biotechnology/crisprcas9-

technology-rice-and-wheat/.

promise for addressing emerging challenges in agriculture.
The details of CRISPR/Cas9 technology are described and
illustrated in some recent reviews (Sander and Joung, 2014;
Westra et al., 2014; Bortesi and Fischer, 2015; Ma et al., 2016;
Musunuru, 2017). This technology can be used to modify
almost any genomic sequence to achieve desired traits in
organisms including plants, with the only known limitation
being the availability of the protospacer adjacent motif (PAM)
sequence. Compared to other genome editing tools such as
zinc finger nucleases (ZFNs) and transcriptional activator-
like effector nucleases (TALENs), CRISPR/Cas9 is easier,
more cost-effective, precise and is highly efficient even at
multiplex genome editing (Wang M. et al., 2018). Applications
of CRISPR/Cas9 in genome editing of plants is one of the
most rapidly emerging technologies in biosciences. More
importantly, the CRISPR/Cas9 is becoming a user-friendly
tool for development of non-transgenic genome edited crop
plants to cope up with changing climate and ensure future
food security. This review updates our current knowledge and
potentials of CRISPR/Cas9 for improvement of crops cultivated
in tropical climates to gain resiliency against emerging pests and
abiotic stresses. The purpose of this review is to provide updated
information on the use of CRISPR/Cas9 in improvement of
tropical crops as well as crops that are cultivated in tropical
climate such as rice and wheat. In addition, we also focus on how
CRISPR/Cas9 can be applied to improve crops that are better
adapted to changing climate, emerging diseases, and improve
product quality and address challenges pertaining to tropical
crops.

PROGRESS OF CRISPR/CAS9
TECHNOLOGY IN IMPROVEMENT OF
TROPICAL CROPS

Emerging evidences are showing rapid expansion of
CRISPR/Cas9 in a variety of field including agriculture. This
section updates and highlights the application of CRISPR/Cas9
technology in improvement of tropical crops. Genome editing
at target sites by specific nucleases has shown great promise
for improvement of crop plants to meet the growing global
demands of food. This technology offers an opportunity for
biotechnologists to develop a sustainable and prolific agricultural
system in terms of improving yield, abiotic stress tolerance,
enhancing resistance to diseases and pests, and modification of
plants for product quality. In the past, crop plants have been
modified by conventional and modified plant breeding methods.
These techniques are falling out of favor due to the requirement
of longer time, problems of compatibility among the species,
and the ever diminishing genetic variation of plants (Chen and
Gao, 2014). In this regard, crop improvement requires genome
editing with CRISPR/Cas9 technology to modify plant traits or
add novel characteristics within a short period of time (Zhang
and Zhou, 2014). Currently, CRISPR/Cas9 is also being used
to produce site specific mutagenesis or targeted transcriptional
regulation in several tropical crops. Meanwhile, CRISPR/Cas9
technology have been used in many crop plants cultivated in the
tropical regions. The trends of application of the CRISPR/Cas9
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technology for improvement of crop plants in tropical climates
within the last 5 years are phenomenal, and it indicates a rapid
large-scale application of it in addressing emerging challenges in
production of crops in tropical climates.

IMPROVING YIELDS AND QUALITY OF
CROPS CULTIVATED IN TROPICAL
REGIONS USING CRISPR TECHNOLOGY

Crop yields are becoming increasingly vulnerable due to adverse
climatic changes and deterioration of air quality and health of
soils. To improve crop yield in the changing climate, scientists
are looking for ways to engineer plants that can survive harsh and
unpredictable environments and yield more. To achieve these
targets, investigating the potential CRISPR/Cas9 to boost crop
yields is becoming intense. By using CRISPR/Cas9 technology,
a group of scientists at Cold Spring Harbor Laboratory (CSHL)
precisely engineered the promoter sequence of quantitative
genes in tomato (Rodríguez-Leal et al., 2017). By making
small changes in the promoter regions in genes that control
quantitative traits such as LOCULE NUMBER (control fruit
shape and size), FASCINATED (responsible for large fruit size),
COMPOUND INFLORESCENCE (control flower proliferation)
and SELF PRUNING (control flowering time and hence growth
habit) in tomato, researchers generated a wide range of new
alleles that improved fruit shape, size as well as plant architecture
(Rodríguez-Leal et al., 2017). This study demonstrates that
CRISPR/Cas9 can be used to generate novel variations in plants
where naturally existing variations are not available or has been
greatly diminished. In rice, Xu et al. (2016) simultaneously
mutated three genes (GW2, GW5, TGW6) that negatively
regulate seed size. By mutating these genes in rice, they were
able to increase seed size significantly (up to 30% in triple
mutants). The CRISPR/Cas9-mediated mutation of CLVTA3
genes in Brassica napus has resulted in higher seed number
per silique as well as increased grain weight. Wang W. et al.
(2018) recently applied CRISPR/Cas9 to increase the seed size
in wheat. They knocked out the function of all homeologs of
TaGW2, a gene which is known as negative regulator of seed
size. Similarly, transgene-free low-gluten wheat has recently been
engineered with CRISPR/Cas9 by Sánchez-León et al. (2018).
Previous studies have shown that functionally active TaGW2
gene of A genome negatively regulate grain weight and width
(Su et al., 2011; Yang et al., 2012; Hong et al., 2014; Jaiswal
et al., 2015; Simmonds et al., 2016) as well as grain length (Yang
et al., 2012; Simmonds et al., 2016). When functionally active
copies of TaGW2 were mutated from the A, B and D genomes,
the total grain weight (27.7%), grain width (10.9%), and grain
length (6.1%) were significantly increased (WangW. et al., 2018).
This result shows that CRISPR/Cas9 can successfully be applied
to engineer plants for higher yields. It would be interesting
to see whether mutation of orthologous copies of TaGW2 in
rice or maize changes in the size and weight of seeds. These
success stories indicate that CRISPR/Cas9 has high promise for
the improvement of various traits of crop plants. It is expected
that application of CRISPR/Cas9 in crops cultivated in tropical

regions will significantly improve yield in near future and will be
the key tool for plant biotechnologists to engineer crop plants for
ensuring greatly demanding food security.

In addition to increase yield, CRISPR/Cas9 has also been
used to improve quality of crops cultivated in tropical climates.
Carotenoids play an important role in many physiological
processes in plants and the phytoene desaturase genes encode
important enzymes in the carotenoid biosynthesis pathway.
Phytoene desaturase genes, RAS-PDS1 and RAS-PDS2 were
recently mutated by the application of CRISPR/Cas9 with a 59%
success rate in bananas (Kaur et al., 2018). This finding indicates
that CRISPR/Cas9 can be used for the modification of quality of
bananas, and a further improvement may just be on the horizon.
Cassava is one of the most studied tropical crops and is an
essential source of energy in tropical regions. Using CRISPR/Cas9
technology, MePDS mutants were generated in cassava, which
exhibited albino or partial albino at cotyledonary-stage somatic
embryos (Odipio et al., 2017). This phenotype was observed in
over 95% of the mutant cassava. More importantly, the somatic
embryo lines successfully produced plantlets with the mutations
(22–47% success rate; Odipio et al., 2017). These findings suggest
that CRISPR/Cas9 could be applied for the targeted improvement
of this important tropical food crop. On the other hand, several
groups were successful in generating mutations or deletions in
one of the tropical cash crops, cotton with the target of MYB25,
GFP, GhVP, GhCLA1, or GhARG genes (Chen X. et al., 2017;
Janga et al., 2017; Li C. et al., 2017; Wang P. et al., 2017;
Wang Y. et al., 2017). Gao and co-workers also demonstrated
that GhPDS and GhEF1 are targeted easily by CRISPR-mediated
multiple mutations (Gao et al., 2017), supporting the idea that
modification of several functions of cotton (or other tropical
crops) at a time is possible, and thus attain a greater variety of
options for the quality management and resistance to external
stresses. Therefore, CRISPR/Cas9 could be used as an effective
tool for the improvement of tropical crops and more success
stories are expected to come soon.

DEVELOPMENT OF ABIOTIC STRESS
TOLERANT CROP PLANTS IN THE
TROPICS BY CRISPR/CAS9

Abiotic stresses such as soil salinity, drought, heat stress etc. are
now major threats to crop production that significantly limit
yield of crops worldwide. The effect of these stresses is more
severe in the tropical region than the temperate. One of the
major abiotic stresses in tropical countries is high temperature.
Global warming worsens the effect triggering several other types
of abiotic stresses including drought. Drought is also another
major abiotic stresses limiting crop production worldwide. The
phytohormone ethylene is well-known to govern plant response
to various abiotic stresses including drought (Kawakami et al.,
2010) and heat (Hays et al., 2007).

Recently, it has been reported that 21KUP genes in cassava are
upregulated after exposure to several abiotic stresses including
salt, osmosis, cold, drought, and H2O2. It was also found that
differences in cassava genotypes influenced drought resistance
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through differential expression of KUP genes (Ou et al., 2018).
A genome-wide study has revealed that MAPKKK genes play
important roles in the tissue development of cassava and its
resistance to drought stress (Ye et al., 2017). African oil palm
is an important source of oil in tropical countries, which is
highly sensitive to cold weather but has good resistance to salt
and drought. It was found that EgWRKY genes of oil palm
had showed tissue-specific expression patterns with higher levels
under cold stress. It is now well recognized that almost all
the EgWRKY genes are upregulated under abiotic stresses, and
the authors suggest that the expression of EgWRKY genes in
African oil palm play important roles in the responses to abiotic
stresses (Xiao et al., 2017). Although CRISPR/Cas9 has not
yet been applied for the improvement of most of the tropical
crops, opportunity does exist to apply the technology for genetic
modification of numerous tropical crops to increase yield and
improve product quality, abiotic stress tolerance, and enhancing
the resistance to destructive diseases and pests.

CRISPR/CAS9 GENOME EDITING FOR
ADDRESSING EMERGING DISEASES AND
PESTS IN CROPS CULTIVATED IN
TROPICAL REGIONS

Crop diseases caused by fungi, bacteria, oomycetes, viruses, and
othermicroorganisms have increased in frequency in recent years
and are enduring threat to global food security (Fisher et al.,
2012). Emerging plant diseases are increasingly recognized as
an important component of worldwide threat to food security.
Despite modern agricultural practices, diseases of major food
crops are responsible up to 15% pre-harvest yield losses. Various
insect pests also cause significant crop losses worldwide. The
CRISPR/Cas9-mediated genome editing technology has opened
a new opportunity for rapid development of disease resistant
crop varieties by either stacking of disease resistant (R) gene(s)
or disruption/deletion of susceptibility (S) genes. Some success
stories of CRISPR/Cas9-mediated genome editing for fungal,
bacterial and viral disease resistant crop plants are reviewed in
this section with a brief discussion on further potential use of this
technology (Table 1).

Rice is one of the most cultivated cereal crops in the tropical
climate and it suffers from various diseases such as blast which
can cause significant yield losses worldwide. Blast disease, caused
by the filamentous fungus Magnaporthe oryzae, is considered
as one of the deadliest rice diseases that has recently expanded
its host range to other cereal crops such as wheat, barley, oat
and millet (Sakulkoo et al., 2018). This disease is destroying
food supplies to the extent that the lost production could feed
hundreds of millions of people. Increased global trade, climate
change, and the propensity of this pathogen to occasionally
jump from one grass host to another, have resulted in increased
incidence of blast diseases (Inoue et al., 2017). Wang and
colleagues have developed mutagenized rice lines possessing
enhanced blast resistance using CRISPR/Cas9 technology (Wang
et al., 2016). They engineered the CRISPR/Cas9 vector (pC-
ERF922) to target the rice OsERF922 gene, which negatively

regulates blast resistance of rice (Liu et al., 2012). In this
process, pC-ERF922 was delivered into calli derived from seeds
of blast susceptible rice variety Kuiku131 by Agrobacterium-
mediated transformation with a mutagenic frequency of 42.0%
in T0 transgenic plants. Edited plants that harbored the desired
modification in the OsERF922 were identified in the T1 and T2

segregating populations. The edited lines showed significantly
enhanced blast resistance compared with wild-type. This study
provided a successful example of improving PTI to enhance
rice blast resistance using CRISPR/Cas9. Similarly, disruption
of rice bacterial blight susceptibility genes, OsSWEET11 and
OsSWEET14 using CRISPR/Cas9 has been achieved (Jiang et al.,
2013). Recently, Ma et al. (2017) used CRISPR/Cas9 to knockout
the function of OsSEC3A gene in rice and demonstrated that rice
plant that lacks a functional copy of OsSEC3A provide better
defense response as well as enhanced resistance to the fungal
pathogenMagnaporthe oryzae, which causes rice blast disease.

Wheat is another important crop which is also widely
cultivated in tropical areas. Wheat is a critical staple food
providing 20% of the calories and over 25% of the protein
consumed by humans (FAOSTAT, 2017; http://faostat.fao.org).
Like rice, the wheat crop is susceptible to various diseases
including blast. Wheat blast is a fearsome fungal disease caused
by the Triticum pathotype of M. oryzae (MoT), which has
been posing serious threat to wheat production since its first
emergence in Paraná State of Brazil in 1985 (Igarashi et al.,
1986; Kohli et al., 2011). In February 2016, an outbreak of
wheat blast occurred in eight districts of Bangladesh, for the
first time outside of South America (Callaway, 2016; Islam et al.,
2016). It devastated more than 15,000 hectares of wheat with
yield loss up to 100%. Within a year, it spread to new areas in
Bangladesh and also in West Bengal of India (Bhattacharya and
Pal, 2017). The Mexico-headquartered International Maize and
Wheat Improvement Centre (CIMMYT) has reported that the
consequences of a wider outbreak of the disease in South Asia
could be devastating to a region of 300 million undernourished
people whose inhabitants consume over 100 million tons of
wheat each year (Collis et al., 2016). Considering the existing
favorable environments for MoT in many countries in Asia,
Africa and some states in the USA and also due to climate change,
we fear that this worrisome enemy of major food crops may
introduce and spread to the new wheat growing areas in future.

The ability of this blast fungus to evolve into new races
is responsible for the limited success in controlling through
breeding for resistance (Valent et al., 1991; Strange and Scott,
2005). Resistant resources against MoT are limited. The spread
of the pathogen to some of the world leading wheat growing
Asian countries such as India, Pakistan, and China could be
catastrophic (Index Islam et al., 2016; Mundi, 2016). Mutation
of genes associated with blast disease susceptibility (S-genes)
may lead to enhanced wheat blast resistance. This strategy is
emerging as an alternative to the “standard” plant breeding
approach of introgressing major disease resistance (R-genes)
(van Schie and Takken, 2014). It seems a practical proposition
because of the development of genome editing methods that
can be applied to cereal crops and which can simultaneously
mutate all copies of the gene in polyploid genomes (Shan et al.,
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TABLE 1 | Some examples of CRISPR/Cas9-mediated genome editing in crop plants cultivated in the tropical climates for development of tolerance to abiotic and biotic

stresses.

Crop Target gene(s) Target traits Type of edit Results References

Banana Phytoene desaturase Trial for CRIPSR Gene

disruption

Decreased chlorophyll and total

carotenoid contents

Kaur et al., 2017, 2018

Cassava Phytoene desaturase Trial for CRIPSR Gene

disruption

Observation of albino phenotype Odipio et al., 2017

Cassava elF4E isoforms nCBP-1

& nCBP-2

Resistance to cassava

brown streak disease

Gene

disruption

Elevated resistance to cassava brown

streak disease

Gomez et al., 2017

Theobroma cacao TcNPR3, a suppressor

of the defense

response

Resistance to the

cacao pathogen

Phytophthora tropicalis

Gene

disruption

Increased resistance to infection with

the cacao pathogen Phytophthora

tropicalis

Fister et al., 2018

Cotton

(Gossypium hirsutum)

CLCuD IR and Rep

regions

Resistance to cotton

leaf curl disease

Viral gene

disruption

Targeted cleavage of mixed

infections by multiple viruses

and associated DNA satellites,

such as CLCuD-complex

Iqbal et al., 2016

Rice OsSWEET11,

OsSWEET14

(rice bacterial blight

susceptibility genes)

Resistance to bacterial

blight

Promoter

disruption

The promoter of the blight

susceptibility gene was disrupted

Jiang et al., 2013

Rice OsERF922 (ethylene

responsive factor

transcription factor)

Resistance to rice blast Gene

disruption

Resistance to M. oryzae was

enhanced

Wang et al., 2016

Wheat TaMLO-A1, TaMLO-B1

and TaMLO-D1

Resistance to powdery

mildew

Gene

disruption

The number of mildew microcolonies

formed on the leaves was significantly

reduced against the control and no

apparent fungal growth was observed

on the leaves of edited plants

Wang et al., 2014

Wheat TaDREB2 and TaERF3 Trial for CRISPR Gene

disruption

Provide a deep insight about their

functioning in abiotic stress response

Kim et al., 2018

2014; Wang et al., 2014; Zhang et al., 2016; Sánchez-León et al.,
2018). Over the years of research, it has been apparent that
there are genes associated with enhanced susceptibility to rice
blast disease. These represent a variety of gene functions which
appear to be negative regulators of plant immunity responses,
or which encode host proteins that are required by pathogens
to help facilitate their entry and spread within plant tissue. A
classic example of a susceptibility factor acting in this way is
the barley Mlo locus, which is widely deployed as a recessive
disease resistance gene (Büschges et al., 1997). When these genes
are mutated, they lead to increase resistance to the disease.
More than twenty rice S-genes (e.g., OsRAC4/5/B, OsWAK112d,
OsMAPK5, OsWRKY28/76, OsERF922, OsGF14b, SPL11, OB-fold
gene, OsPLDbeta1, and OsSSI2) have been characterized (Xiong
and Yang, 2003; Zeng et al., 2004; Jung et al., 2006; Vega-
Sánchez et al., 2008; Yara et al., 2008; Jiang et al., 2009;
Yamaguchi et al., 2009; Chen et al., 2010; Delteil et al., 2012,
2016; Grand et al., 2012; Liu et al., 2012, 2016; Chujo et al.,
2013; Yokotani et al., 2013; Xie et al., 2014; Wang et al., 2016).
An example of a blast S-gene function is provided by some
members of the WRKY transcription factor family. In rice,
WRKY proteins comprise a complex transcriptional regulatory
cascade that is important for the host response to rice blast
disease. This network of transcription factors can act either
positively or negatively to modulate the host immunity response,
including response to pathogen-associated molecular patterns
(PAMP) elicitors, jasmonic acid (JA) signaling or other cellular

functions that impact the outcome of the interaction. Among the
WRKY proteins, OsWRKY28, is a PAMP-responsive repressor
that negatively regulates innate immune responses in rice against
the rice blast fungus (Chujo et al., 2013). Another example is
OsMAPK5, a MAP kinase that mediates immune signaling and
represses defense gene expression, thereby negatively regulating
rice blast resistance. Remarkably, loss of function of mutations
in OsMAPK5 lead to enhanced resistance to the blast disease
in rice (Xiong and Yang, 2003; Xie et al., 2014). Wang et al.
(2014) developed powdery mildew resistant wheat by disruption
of TaMLO-A1, TaMLO-B1, and TaMLO-D1 genes in the wheat
genome by the CRISPR/Cas9. Therefore, it may be possible to
achieve resistance to wheat blast by mutation in wheat orthologs
of several rice susceptibilities (S-) genes as means of mitigating
emerging wheat blast problems in a short period of time.
We foresee CRISPR/Cas9 edited non-transgenic homozygous
S-genes mutants for durable blast resistant wheat varieties.

CRISPR/CAS9 GENOME EDITING FOR
ADDRESSING SOME DISEASES AND
PESTS OF TROPICAL CROPS

Cassava is a staple food of African small-hold farmers. Several
diseases such as brown streak, mosaic and bacterial blight cause
significant yield losses in cassava. CRISPR/Cas9 can be used
to develop resistant varieties against these diseases resulting in
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improving crop yield and livelihood of resource poor African
farmers (Bart and Taylor, 2017). Editing of Phyteone desaturase
gene in cassava using CRISPR/Cas9 showed that it could be
an efficient genome editing tool for cassava (Odipio et al.,
2017). Cassava brown streak disease is a major constraint on
cassava yield in East and Central Africa. It is caused by the
family Potyviridae which require the interaction of viral genome-
linked protein (VPg) and host eukaryotic translation initiation
factor 4E(elF4E) isoforms. Simultaneous CRISPR/Cas9-mediated
editing of cassava elF4E isoforms nCBP-1 and nCBP-2 has shown
elevated resistance to cassava brown streak disease (Gomez et al.,
2017).

Papaya is a highly nutritious and medicinally important
tropical fruit crop which is susceptible to viral pathogens.
Transgenic papaya varieties such as “SunUp” and “Rainbow”
developed against a major viral pathogen, Papaya ringspot
virus (PRSV), has significantly promoted the papaya industry
in Hawaii. However, more than two decades of Hawaiian
experience of transgenic papaya cultivation did not replicate
in other countries for various biotic and abiotic factors.
Major factors include rapid emergence of recombinant strains,
virus-encoded PTGS suppressors, sequence homology between
transgene and infecting PRSV CP gene, transgene copy number,
and emergence of new viruses (Hamim et al., 2018). These
problems can largely be solved by the stacking of multiple virus
resistant genes in papaya through CRISPR/Cas9. Alternatively,
CRISPR/Cas9-mediated mutations of S-genes in the papaya
plant could also confer resistance to PRSV (Green and Hu,
2017). Papaya plants contain high level of papain, a cysteine
protease which mediate plant defense against pathogen and
insect attack. However, Phytopthora palmivora, a fungal pathogen
can infect all parts of papaya plant in spite of having high
amount of papain in the infected parts. This suggests that
P. palmivora contains cysteine inhibitors, which enable them
overcoming papain mediated resistance. By using CRISPR/Cas9,
researchers at the University of Hawaii Manoa have identified
a cysteine protease inhibitor, cystatin (PpalEPIC8) which plays
major role in suppressing the defense mediated by papain.
Mutation of PpalEPIC8 in P. palmivora has resulted in increased
sensitivity to papain suggesting that it plays a major role in
P. palmivora virulence by inhibiting papain (Gumtow et al.,
2018). These findings suggest that CRISPR/Cas9 technology in
combination with Agrobacterum-mediated transformation could
easily be applied for the development of homozygous mutants
in most destructive pathogens, oomycetes, which is either
impossible or difficult by conventional methods. The success
in application of CRISPR/Cas9 in easy generation of mutants
of P. palmovira opens a new window for understanding the
molecular basis of plant- oomycete interactions that ultimately
help to develop resistant crop plants against this (oomycete)
extremely destructive class of phytopathogens. Theobroma cacao
(T. cacao), the tropical tree which produces cocoa beans, is
the centerpiece of the multi-billion-dollar chocolate industry
and is a vital export for many developing countries. Fister and
colleagues have targeted a universal defense suppressor gene
TcNPR3NPR3 in T. cacao and obtained mutagenized tissues after
transient incorporation of CRISPR/Cas9 components. The edited
tissues demonstrated increased resistance as demonstrated by less

infection and up-regulated expression of PR genes (Fister et al.,
2018). A large-scale application of CRISPR/Cas9 technology
based on these protocols might help to develop resistant crop
plants against the major crop pests in the tropical regions.

CHALLENGES PERTAINING TO
APPLICATION OF CRISPR/CAS9 IN
TROPICAL CROP PLANT

Although genomes of many tropical crop plants have been
sequenced, the function of the vast majority of genes remains
unknown. In other words, we have not reached the level of
complete understanding of the functions of the major genes in
tropical plants. However, recent genome sequencing technology
and genome-wide association studies (GWAS) allow us to
predict the function of many genes, which confer resistance to
diseases in tropical fruit and other crops. Using next generation
sequencing (NGS) and GWAS datasets, Kayondo et al. (2018)
has confirmed that the resistance of cassava to CBSD (cassava
brown streak disease) is polygenic and environment-dependent.
More importantly, they have identified the candidate resistance
gene NBS-LRR on chromosome 11 (Kayondo et al., 2018). A
systematic analysis has also identified 4 MeDELLAs as cassava
bacterial blight resistant genes (Li et al., 2018). Moreover, 77 bZIP
transcription factor has been identified in cassava using RNA-
Seq (Hu et al., 2016), while MebZIP3 and MebZIP5 have been
identified as resistance enhancing genes to cassava bacterial blight
(Li X. et al., 2017). However, data regarding correlation between
tropical disease and gene mutation or modification of gene
expressions is still limited. To make CRISPR/Cas9 more useful
in tropical plant breeding, further studies on plant gene function
and their regulatory elements are needed. New discoveries
unraveling the role of tropical plant genes and improvement of
CRISPR/Cas9 in the near future should facilitate overcoming
various plant breeding problems in tropical areas. A list of
potential genes that can be targeted by the CRISPR/Cas system
is given in the Table 2.

As shown in Table 2, expression of MaAGPase and
MaSWEETs genes are increased following exposure to abiotic
stressors including salt, cold, and drought in bananas. A
similar effect was noted when banana plants are infected with
Fusarium oxysporum f.sp. Cubense (Foc) Tropical Race 4 (TR4)
(Miao et al., 2017a,b). In grapes and citrus, P. viticola and
Huanglongbing (HLB) infection both directly increase AGPase
activity leading to enhanced starch biosynthesis (Kim et al.,
2009; Gamm et al., 2011). Since transcriptional up-regulation
of MaAGPase genes occurs in response to Foc TR4 infection,
these genes may play a role in modulating the response to fungal
infections in banana (Miao et al., 2017b). As such, CRISPR/Cas9-
mediated knockout of these genes may lead to Foc TR4 infection
resistance. Interestingly, MaSWEETs expression increases with
exposure to cold, salt and osmotic stress. Most MaSWEETs
genes are upregulated when plants are exposed to these stressors
(Miao et al., 2017a). Accordingly, MaSWEETs genes play an
important role in bananas’ response to these stressors (Miao
et al., 2017a). Bioengineered banana expressing sweet pepper
Hrap and Pflp genes have demonstrated complete resistance to
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TABLE 2 | Tropical plant genes that can be edited by the CRISPR/Cas9 technology to improve plant tolerance to the abiotic and biotic stresses.

Crop Target gene(s) Target traits/stress References

Avocado PAL and LOX Anthracnose disease resistance Bill et al., 2017

Avocado PaNPR2 and PaNPR4 Phytophthora cinnamomi resistance Backer et al., 2015

Banana MaSWEET-1a, MaSWEET-4b,

MaSWEET-14b, MaSWEET-4c,

MaSWEET-14c, MaSWEET-4d,

MaSWEET-14d, and MaSWEET-14h

Foc 4 TR4 and abiotic stresses (cold and salt) resistance Miao et al., 2017a

Banana MaATG8s Fusarium oxysporum f. sp. cubense (Foc) resistance Wei et al., 2017b

Banana Hrap, Pflp Xanthomonas campestris pv. musacearum resistance Tripathi et al., 2010,

2014; Namukwaya et al.,

2012

Banana MaAPS1 and MaAPL3 Abiotic stresses (cold and salt) and Fusarium Oxysporum

f.sp. cubense (Foc) Tropical Race 4 (TR4) resistance

Miao et al., 2017b

Cassava RXam1 Xanthomonas axonopodis pv. manihotis (Xam) strain-specific

resistance to XamCIO136

Díaz Tatis et al., 2018

Cassava MeWRKY20-MeATG8a/8f/8h (MeATG8a,

MeATG8f, MeATG8h)

Cassava bacterial blight (CBB), caused by Xanthomonas

axonopodis pv. manihotis (Xam) resistance

Yan et al., 2017

Cassava MeDELLAs Cassava bacterial blight (CBB) resistance Li et al., 2018

Cassava MebZIPs (MebZIP3 and MebZIP5) Cassava bacterial blight (CBB) resistance Li X. et al., 2017

Cassava MeRAV1 and MeRAV2 Cassava bacterial blight (CBB) resistance Wei et al., 2017a

Cassava MeKUPs Abiotic stresses (salt, osmosis, cold, drought) resistance Ou et al., 2018

Cassava MeMAPKKK Abiotic stress (drought) resistance Ye et al., 2017

Coconut PTI5 Root wilt disease (RWD) resistance Verma et al., 2017

Coconut NBS-LRR type RGAs Coconut root (wilt) disease resistance Rajesh et al., 2015

Cotton GhPIN1–3 and GhPIN2 Abiotic stress (drought) resistance He et al., 2017

Cotton GhRDL1 Abiotic stress (drought) resistance Dass et al., 2017

Cotton GhERF-IIb3 Bacterial blight caused by Xanthomonas citri pv.

malvacearum (Xcm) resistance

Cacas et al., 2017

Date palm Pdpcs and Pdmt Abiotic stress (Cd and Cr) resistance Chaâbene et al., 2018

Date palm Pdpcs and Pdmt Abiotic stress (metals) resistance Chaâbene et al., 2017

Papaya CpDreb2 Abiotic stresses (drought, heat and cold) resistance Arroyo-Herrera et al.,

2016

Papaya CpRap2.4a and CpRap2.4b Abiotic stresses (heat and cold) resistance Figueroa-Yañez et al.,

2016

Sugarcane ScGluA1 Smut (Sporisorium scitamineum) resistance Su et al., 2013

Sugarcane ScCAT1 Smut (Sporisorium scitamineum) resistance Su et al., 2014

Sugarcane ScAPX6 Abscisic acid (ABA), methyl jasmonate (MeJA), and copper

(Cu) stress resistance

Liu et al., 2017

Sugarcane ScGluD2 Smut and abiotic stresses (salt and heavy metal) resistance Su et al., 2016

Sugarcane ScChiIV1 and ScChiVI1 Smut (Sporisorium scitamineum) resistance Su et al., 2015

Sugarcane ScNsLTP Abiotic stresses (drought and chilling) resistance Chen Y. et al., 2017

Xanthomonas campestris pv. musacearum (Tripathi et al., 2010,
2014; Namukwaya et al., 2012). Host-induced gene silencing
(HIGS) has also been reported in bioengineered banana. HIGS of
Fusarium oxysporum genes moderate Fusariumwilt in transgenic
banana (Ghag et al., 2014). CRISPR/Cas9 could therefore modify
banana gene expression to improve abiotic stress tolerance
as well as enhance resistance to various diseases and pests.
Ardi et al. (1998) showed that epicatechin is involved in the
resistance of avocados to anthracnose disease. The up-regulation
of phenylalanine ammonia-lyase gene expression and down-
regulation of lipoxygenase gene expression enhances epicatechin
biosynthesis (Bill et al., 2017). In fact, epicatechin directly
governs the concentration of antifungal diene compound (AFD)

by regulating lipoxygenase activity (Prusky et al., 1992). AFD is
the most active antifungal compound found in avocado. It alters
the dormancy of Colletotrichum gloeosporioides in unripe fruit.
In the near future, CRISPR/Cas9 technology may modify genes
involved in AFD biosynthesis to increase resistance of avocado
to fungal infection. Additionally, Verma’s group successfully
generated transcriptomic databases of genes associated with
root wilt disease (RWD) including the NBS-LRR domain,
PR1, PR4, pathogenesis-related genes transcriptional activator
PTI5-like gene, thaumatin-like protein, HSP70 and glutathione
S-transferase. Accordingly, modifying these coconut genes with
CRISPR/Cas9 may lead to improved quality management as well
as increase resistance to external stressors.
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A prerequisite for successful CRISPR/Cas9-mediated plant
gene editing is the availability of efficient delivery methods
for the gene editing components and a satisfactory plant
regeneration system (Altpeter et al., 2016; Ran et al., 2017).
Although many successful reports of CRISPR-mediated plant
gene editing have now been published, there are a number of
factors which affect efficiency. The frequency of gene editing
in tropical plant species will depend on whether or not these
conditions such as efficient gRNA designing, assembling multiple
gRNA cassettes, efficient delivery of Cas9 and gRNA vectors or
ribonucleoproteins (RNP), selection and regeneration of edited
plantlets, and efficient detection of the gene editing event are
optimal. All delivery systems have advantages and disadvantages.
The PEG-mediated delivery of CRISPR reagents using transient
protoplasts system is very useful for gRNA validation but only
a very small number of plant species can be regenerated from
protoplasts (Woo et al., 2015). On the other hand, haploid
microspores, or immature pollen grains can be easily isolated
from many different species in a relatively short period of
time, and used as targets for transformation and early screening
of gene editing events. Although a functional microspore-
based gene editing system using electroporation, biolistic
and Agrobacterium-mediated delivery has several advantages
compared to conventional plant transformation-based systems,
it has very low efficiency regarding regeneration of microspore
edited plants (Brew-Appiah et al., 2013; Bhowmik et al.,
2018).

The Agrobacterium and biolistic mediated delivery of the
CRISPR reagents also have several drawbacks. It requires time,
and labor for preparation of a large number of explants and
regeneration of CRISPR edited plants through tissue culture
may also take a long period (Liang et al., 2018). In addition,
Agrobacterium-mediated transformation is typically genotype
specific, and the efficiency of the biolistic gene transfer needs
optimization of several parameters such as particle type, size,
quantity and acceleration, DNA amount and structure during
particle coating, tissue type, and pre-treatment (Altpeter et al.,
2016). Therefore, the development of efficient and reproducible
delivery systems for genome editing would be an important step
in moving the powerful CRISPR/Cas9 for routine use in tropical
crop species.

In order to improve plant transformation through
CRISPR/Cas9, several approaches such as optimization of
the promoters to drive and express Cas9 and utilization of

different fluorescent reporters and selection markers (Wang
et al., 2015; Yan et al., 2015; Kaur et al., 2018) have recently
been evaluated. To test whether the CRISPR/Cas9 can be used

to precisely edit an endogenous gene in banana, Kaur et al.
(2018) designed a specific gRNA from the most conserved
region (5th exon) of the RAS-PDS genes and inserted it into
the binary vector pRGEB31 under rice snoRNA U3 promoter
using a BsaI restriction site. This vector also contained a Cas9
endonuclease-encoding sequence driven by the dual CaMV
35S promoter and hygromycin phosphotransferase (HPTII)
selection marker genes. Authors have reported 59% mutation
efficiency in RAS-PDS in the banana cv. Rasthali genome

using hygromycin for the selection of positive transformed
plants. Another approach by overexpressing candidate genes
such as Baby boom (Bbm) and Wuschel2 (Wus2) from maize
(Zea mays) has increased transformation frequencies in maize,
sorghum (Sorghum bicolor), sugarcane (Saccharum officinarum),
and indica rice (Oryza sativa ssp. indica) (Lowe et al., 2016).
Because of the advantage of being independent of genotype, this
approach may be useful for advancing transformation efficiency
and CRISPR editing in difficult to transfect tropical crop species.
As CRISPR/Cas9-mediated plant genome editing still faces
challenges, primarily not being able to establish a genotype-
independent delivery method, extending and improving the
transformation platform will help to deploy this technology for
the improvement of tropical species.

CONCLUSION

Many success stories on application of CRISPR/Cas9 in genome
editing of tropical crops and crops cultivated in tropical
regions have not been reported yet as compared to temperate
crops. To have a greater impact on agriculture in tropical
areas, further efforts are needed to optimize the CRISPR/Cas9
protocols for making it more user-friendly and freely accessible
for research and practical applications. Development of an
efficient transformation system for major tropical crops and
crops such as Indica rice (Ishizaki, 2016) in tropical climates
would facilitate the development of crops resilient to emerging
pests and abiotic stresses. International collaboration through
open data sharing and practice of open science are needed
to rapidly tackle any emerging challenges in agriculture such
as recent emergence of wheat blast disease in tropical areas
of Asia. CRISPR/Cas9 mediated genome edited (deleted or
disruption of undesirable genes/sequences) crop plants should
be considered as non-GMO for rapid application and acceptance
of this technology at the field level. We foresee the application
of CRISPR/Cas9 technology in various crops revolutionize
agriculture in a second green revolution to ensure food and
nutritional security of the ever-increasing population of tropical
countries.
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