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Targeting and translocation of proteins to the appropriate subcellular compartments are
crucial for cell organization and function. Newly synthesized proteins are transported to
mitochondria with the assistance of complex targeting sequences containing either an
N-terminal pre-sequence or a multitude of internal signals. Compared with experimental
approaches, computational predictions provide an efficient way to infer subcellular
localization of a protein. However, it is still challenging to predict plant mitochondrially
localized proteins accurately due to various limitations. Consequently, the performance
of current tools can be improved with new data and new machine-learning methods.
We present MU-LOC, a novel computational approach for large-scale prediction of
plant mitochondrial proteins. We collected a comprehensive dataset of plant subcellular
localization, extracted features including amino acid composition, protein position
weight matrix, and gene co-expression information, and trained predictors using
deep neural network and support vector machine. Benchmarked on two independent
datasets, MU-LOC achieved substantial improvements over six state-of-the-art tools
for plant mitochondrial targeting prediction. In addition, MU-LOC has the advantage
of predicting plant mitochondrial proteins either possessing or lacking N-terminal
pre-sequences. We applied MU-LOC to predict candidate mitochondrial proteins for
the whole proteome of Arabidopsis and potato. MU-LOC is publicly available at
http://mu-loc.org.

Keywords: machine learning, mitochondrial targeting, deep neural network, support vector machine, position
weight matrix, gene co-expression

INTRODUCTION

Mitochondria play an essential role in plant cells. They are responsible for a diversity of
biological processes, such as energy production, biosynthesis of several co-factors and vitamins,
photorespiration, and programmed cell death (Millar et al., 2011; Welchen et al., 2014). It has
been estimated that more than 95% of mitochondrial proteins in plants are encoded by nuclear
genes (Millar et al., 2005). Two basic mechanisms exist for mitochondrial targeting. One group
of proteins has cleavable N-terminal targeting peptides (also called pre-sequences), and the other
group does not possess pre-sequences and instead has short, internal signal sequences that are
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still not well characterized (Chacinska et al., 2009; Schmidt et al.,
2010). Additionally, there are reports of “piggyback” protein
import and “sharing” of proteins through connections with the
endoplasmic reticulum (ER), though these are exceptions to
primary routes of import (Badugu et al., 2008; Fransen et al.,
2012).

A great effort has been made to identify plant mitochondrial
proteins at the whole proteome level. Mass spectrometry
and fluorescence-tagging techniques are the most frequently
used experimental methods to determine protein subcellular
localization. To date, the highest number of experimentally
identified mitochondrial proteins from a single study in
plants is 1,060 from potato tubers (Salvato et al., 2014).
Also, the Uniprot/Swiss-Prot database (release 2016_08)
contains 830 annotated Arabidopsis proteins with curated
mitochondrial localization annotations. However, it is estimated
that the Arabidopsis proteome contains about 2,000–3,000
mitochondrial proteins (Millar et al., 2005, 2006; Hooper et al.,
2014). Therefore, plant mitochondrial proteomes identified
to date are far from complete. Despite the development of
high-throughput technologies, identifying plant mitochondrial
proteins experimentally is still a time-consuming and labor-
intensive task. In addition, mass spectrometry has limitations
in discovering a wide variety of “extreme” proteins including
low mass, low abundance, or highly hydrophobic proteins.
Computational methods, on the other hand, provide an
efficient and cost-effective large-scale method to predict plant
mitochondrial proteins.

A number of computational tools have been developed to
predict mitochondrial proteins. These tools apply a diversity
of prediction algorithms, such as expert system, discriminant
analysis, decision tree, k-nearest neighbor (KNN), neural
network, and support vector machine (SVM; Rao et al., 2016).
Most of the programs use the N-terminal sequence information
in their predictions. TargetP is one of the most frequently
used tools for mitochondrial localization prediction. It builds
multiple neural networks for different subcellular locations and
then combines them using an integrating network (Emanuelsson
et al., 2000, 2007). Predotar is also a neural network-based
program to identify N-terminal targeting sequences (Small
et al., 2004). It utilizes amino acid composition, charge, and
hydrophobicity information as input features. MitoProt II
uses a discriminant analysis to predict proteins imported to
mitochondria and their N-terminal targeting signals (Claros and
Vincens, 1996). WoLF PSORT employs sorting signals, amino
acid composition, and functional motif information to train a
KNN classifier for prediction (Horton et al., 2007). MitoFates is
a relatively new method incorporating amino acid composition,
physico-chemical information, amphiphilic property of pre-
sequences, position weight matrices, and sequence motifs in an
SVM model to predict mitochondrial N-terminal pre-sequences
(Fukasawa et al., 2015). LOCALIZER is a recent machine-
learning method for predicting localizations of mitochondria,
chloroplasts, and nuclei proteins in plants (Sperschneider et al.,
2017). DeepLoc uses recurrent neural network (RNN), a
deep learning architecture, to predict 10 subcellular locations
including mitochondria (Almagro Armenteros et al., 2017).

However, unlike other tools, DeepLoc does not have a separate
model specifically for plants as plant proteins may have different
patterns of targeting signals compared with animals and fungi.
Meanwhile, several studies have explored gene and protein
functional information as training features. SUBAcon integrates
22 prediction tools and four types of experimental evidences
including protein–protein interactions and gene co-expression
in a Bayesian classifier to predict the subcellular localizations
for all proteins in Arabidopsis (Hooper et al., 2014). YLoc, an
interpretable protein targeting prediction system, utilizes gene
ontology information in its prediction (Briesemeister et al.,
2010). Cui et al. (2011) also released a predicted mitochondrial
proteome of 2,585 proteins for Arabidopsis using gene co-
expression information.

Despite various computational methods available, current
tools have relatively poor performance when applied to predict
mitochondrial proteins in plants. Salvato et al. (2014) pointed
out that current methods failed to predict approximately 35%
of the Arabidopsis and potato mitochondrial proteomes. First,
most of these programs were developed years ago and relied
on the limited data available at that time. Nowadays, with
more experimentally identified plant mitochondrial proteins,
we have more enriched training data at hand. Second, most
tools focus on features from N-terminal pre-sequences. However,
the N-terminal targeting is only one of import mechanisms
of mitochondrial proteins (Calvo and Mootha, 2010). Third,
most tools employ traditional machine-learning methods. In
recent years, deep learning has been successfully used to solve
various biological problems and has shown superiority over
traditional machine-learning algorithms (Angermueller et al.,
2016; Rampasek and Goldenberg, 2016; Almagro Armenteros
et al., 2017). To the best of our knowledge, applying deep learning
approaches to answer the question of mitochondrial localization
in plants is novel, and we here show that out method leads to
improved prediction performance.

To address the limitations of current methods, we
developed MU-LOC, a machine-learning framework for
plant mitochondrial protein prediction. Our contributions to
the field include (1) collecting a comprehensive and high-quality
dataset of mitochondrial proteins currently available in plants;
(2) combining functional features in addition to N-terminal
sequence information, including amino acid compositions,
protein position weight matrix, and gene co-expression;
(3) taking advantage of machine-learning methods [deep
neural network (DNN) and SVM] to achieve a substantial
improvement over existing tools; and (4) having the capacity
of predicting plant mitochondrial proteins with and without
N-terminal pre-sequences. MU-LOC is publicly accessible at
http://mu-loc.org.

MATERIALS AND METHODS

The problem of predicting plant mitochondrial proteins can
be viewed as a binary classification problem: given a plant
protein, we would like to classify it as a mitochondrial or non-
mitochondrial protein. Machine-learning methods are suitable
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for addressing this problem. There are several key steps in
this process: (1) constructing a high-quality labeled dataset; (2)
extracting a set of features with effective discrimination power
for the two categories; (3) developing a training classifier; and (4)
testing the prediction performance of the classifier. We discuss
each step in the following sections.

Data Collection and Pre-processing
Table 1 summarizes the datasets we used in this study. We
have used a set of experimentally validated mitochondrial
proteins in plants reported by several high-throughput researches
(Heazlewood et al., 2004; Carrie et al., 2009; Huang et al.,
2009; Duncan et al., 2011; Tan et al., 2012). We obtained from
the literature 541, 327, and 1,060 mitochondrial proteins for
Arabidopsis, rice, and potato, respectively. It should be noted that
these high-throughput experiments might include certain false-
positive results, but the error rate is believed to be small and
should not have significant effects on the prediction model.

As a secondary data source, we have also collected data
from several public databases under rigorous standards.
UniProt/Swiss-Prot database has protein subcellular localization
annotations (The UniProt Consortium, 2015). We downloaded
the Swiss-Prot flat files (release 2016_08) and extracted manually
asserted mitochondrial proteins belonging to Viridiplantae based
on NCBI Taxonomy. In this way, 1,547 plant mitochondrial
proteins were retrieved. Supplementary Table S1 lists the top
15 species with the highest number of mitochondrial targeting
annotation in Uniprot/Swiss-Prot. The Plant Proteome Database
(PPDB) contains manually curated subcellular localizations
for Arabidopsis and maize proteins (Sun et al., 2009). We
downloaded the sequences of 460 and 666 mitochondrial
proteins for Arabidopsis thaliana and Zea mays, respectively.
SUBA3 is a subcellular localization database for Arabidopsis
proteins, from which we retrieved 1,196 mitochondrial proteins
experimentally determined by GFP or MS/MS (Tanz et al.,
2013). On the other hand, the negative dataset was constructed
from the Uniprot/Swiss-Prot database with evidence of manual
assertions. In total, 27,966 non-mitochondrial proteins in plants
were extracted and treated as the negative set. Supplementary
Table S1 lists top 15 species most frequently used in the negative
data. Some proteins in the negative set might be mis-annotated
and actually be mitochondrial proteins, but again its impact on
the prediction model is believed to be small. On our website1,
we listed the detailed information of the Swiss-Prot dataset,
including the protein ID, its description, subcellular localization
annotation, species, and targeting signals if available.

After combining all positive and negative protein sequences, a
non-redundant dataset was constructed using CD-HIT (version
4.6; Li and Godzik, 2006; Huang et al., 2010) with a sequence
identity threshold of 40%. Similar proteins were first grouped
into different clusters. The longest protein in each cluster was
chosen as the representative sequence. Also, sequences with less
than 50 amino acids were excluded. Finally, we obtained 1,104
and 5,809 non-redundant proteins as the positive and negative
sets, respectively.

1http://mu-loc.org/data

We further partitioned the data collected into training,
specificity estimation (validation), and independent testing
set. Supplementary Table S2 lists the number of proteins in
each subset, where 1,000 proteins from both positive and
negative set were randomly selected to construct the training
set. Meanwhile, additional 4,500 proteins from the negative
set were used for specificity estimation. In practice, this
gives a confidence level measure when classifying unknown
proteins. Furthermore, 100 proteins each from both positive
and negative sets not used in training or specificity estimation
were set aside as an independent testing set to compare
the prediction performance of MU-LOC with existing tools.
The testing set containing 100 positive cases is a mixture
of mitochondrial proteins with or without N-terminal pre-
sequences, reflecting the real-world use case where we do not
know if a mitochondrial protein has an N-terminal targeting
sequence or not.

We included a second independent testing set which
Sperschneider et al. (2017) used, containing curated 65 plant
mitochondrial and 587 non-mitochondrial proteins, respectively
(Supplementary Table S2). The 65 mitochondrial proteins have
N-terminal pre-sequences, and we used this dataset to evaluate
the performance of MU-LOC and existing tools in predicting
plant mitochondrial proteins with N-terminal pre-sequences. It
should be noted that the overlap of these 652 proteins with
our training data is minimal. In total, six mitochondrial and 16
non-mitochondrial proteins were in our training set.

Feature Extraction
Amino Acid Frequency Features
Amino acid frequencies are commonly used features for protein
subcellular localization prediction. We extracted the frequencies
of the 20 types of amino acids from both N-terminal and
the whole sequences, respectively. For N-terminal features, by
default, we used the first 22 residues to calculate the amino acid
frequency features. The feature length of amino acid frequency is
20 and the sum of the 20 frequencies is one.

Sequence Profile Features
Sequence profile information is another set of features that
some prediction programs employ. We used the position-specific
scoring matrix (PSSM) to reflect the evolutionary profile of
a protein. PSI-BLAST (blastpgp and makemat, version 2.2.26)
was applied to obtain raw PSSMs with the following parameter
settings “-j 3 -h 0.001” (three iterations, and inclusion e-value
as 0.001; Altschul et al., 1990). We used a non-redundant
UniProt/Swiss-Prot database (release 2016_08) as the search
database. Then, each entry in the raw PSSM was scaled linearly
to the range of−1 to 1.

In a PSSM, each position of a protein sequence is represented
by a vector of 20 showing the preferences of the 20 types of
amino acids at this position throughout evolution. We computed
PSSM features for both N-terminal and the whole sequences.
For the N-terminal PSSM feature, similar to the amino acid
frequency feature, we used the vector representation of the
first 22 residues. Therefore, the N-terminal PSSM feature has
a length of 440 (20 by 22). On the other hand, for the
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global PSSM feature, we averaged the vectors representing the
same amino acid type. Therefore, the global PSSM feature
can, to some extent, be viewed as a generalized amino acid
frequency (average pooling) where each type of amino acid
is represented by a vector indicating the overall usage of the
20 amino acids through evolution. By necessity, the position-
specific information is eliminated here, but we obtained the
global PSSM feature with a fixed dimension for proteins with
varying lengths. The global PSSM has a feature length of 400 (20
by 20).

Gene Co-expression Features
Functional data, such as gene co-expression, captures
complementary information compared with sequence features.
The hypothesis is that mitochondrial genes tend to co-express
with mitochondrial rather than non-mitochondrial genes
to form various pathways and perform their functions.
SUBAcon also utilized gene co-expression information in
their prediction, which increased the Matthews correlation
coefficient (MCC) value for mitochondrion targeting by
2.5% (Hooper et al., 2014). We downloaded the NCBI GEO
Datasets (GDS) for A. thaliana with at least 10 samples and
experimental platform GPL198, and obtained 24 datasets
(Supplementary Table S3; Barrett et al., 2013). These 24 GEO
datasets were already normalized by NCBI, and we performed
log2 transformations to all gene expression values. We then
calculated the Pearson’s correlation coefficient matrix for each
individual dataset, and followed a meta-analysis approach by
combining the 24 correlation matrices to compute pairwise
meta-Pearson’s correlation coefficients (meta-PCCs) between
20,839 Arabidopsis genes (Srivastava et al., 2010). More detailed
description of the meta-analysis is provided in Supplementary
Materials.

We applied the idea of KNN to turn the meta-PCC
co-expression matrix into input features. We mapped both
training and testing proteins to Arabidopsis by BLAST (blastp,
version 2.2.26; Altschul et al., 1990) against the Arabidopsis
proteome (downloaded from TAIR; Lamesch et al., 2012) to find
the best hit in Arabidopsis (e-value of 0.01 as cut-off). Next,
for each testing protein, we extracted top K% genes/proteins in

the training set that had the highest meta-PCCs with the query
protein. Then we calculated the percentage of positive set in the
K% most highly co-expressed genes, and denoted this percentage
as the KNN score. In this way, the meta-PCC co-expression
matrix was turned into a KNN score. We set K as 0.25, 0.5,
1, 2, and 4% of the training data to obtain five KNN scores as
input features. The choice of K values was consistent with Gao
et al. (2010) from which we borrowed the idea of KNN scores.
In case we could not find matches satisfying the e-value cut-off,
we assigned five zeros for the co-expression feature. The gene
co-expression feature has a length of five.

Machine Learning and Feature Selection
We applied two types of machine-learning methods in the
process of feature selection and model training, including SVM
and DNN.

Support Vector Machine (SVM)
We used the software package SVMlight (version 6.022) to train
SVM classifiers. Radial basis function (RBF) was used as the
kernel function. The best parameters were obtained using a
stratified 10-fold cross-validation by searching a grid of cost
and gamma values. The search range was [10−3, 10−2, 10−1,
1, 10, 102, 103] for the cost parameter (-c option) and [10−5,
10−4, 10−3, 10−2, 10−1, 1, 10, 102, 103, 104, 105] for the
gamma parameter (-g option). As a result, we ran the program
with optimal parameters of “-c 10 -g 0.1” for SVMlight. We
also performed stratified 10-fold cross-validation to evaluate the
performance of features and training sample sizes. Briefly, the
2,000 training proteins were partitioned randomly into 10 sub-
samples. Each sub-sample contained 100 positive and negative
proteins, respectively. Then we iterated the process 10 times
where sub-sample i was used as validation for testing the model
and the other sub-samples as training for building the model
in iteration i (i = 1, · · ·, 10). On the other hand, when making
predictions on specificity estimation and independent testing set,
all 2,000 training proteins were used to build a single prediction
model.

2http://svmlight.joachims.org/

TABLE 1 | Plant mitochondrial protein data collected in this study.

Class Data source Species Number of proteins Reference

Positive (1,104) Literature Solanum tuberosum 1,060 Salvato et al., 2014

Literature Arabidopsis thaliana 541 Heazlewood et al., 2004; Carrie et al.,
2009; Huang et al., 2009; Duncan et al.,
2011; Tan et al., 2012

Literature Oryza sativa 327 Huang et al., 2009

PPDB A. thaliana 460 Sun et al., 2009

PPDB Zea mays 666 Sun et al., 2009

SUBA3 A. thaliana 1,196 Tanz et al., 2013

Uniprot/Swiss-Prot Multiple plantsa 1,547 UniprotKB

Negative (5,809) Uniprot/Swiss-Prot Multiple plantsa 27,966 UniprotKB

Numbers in parentheses represent proteins after running the redundancy reduction procedure. aSupplementary Table S1 lists the top 15 species distribution of the
Uniprot/Swiss-Prot datasets.
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Deep Neural Network (DNN)
We used the Python machine learning library Theano (version
0.7.0)3 and Pylearn24 to build feed-forward DNN models. Due
to the large number of parameters, we did not perform a
comprehensive parameter optimization. Instead, we optimized
some key parameters using a stratified 10-fold cross-validation,
including the learning rate, number of hidden layers and hidden
units, and dropout probability. Our optimal DNN consisted
of three hidden layers with 500, 500, and 300 hidden units,
respectively. Meanwhile, the output layer used the Softmax
function. The learning rate was set to 0.01. The initial momentum
was set to 0.5 and increased to 0.7 at the end of training. We
also applied the Maxout (Goodfellow et al., 2013) function as
the activation function, and the technique of dropout (Srivastava
et al., 2014) to achieve better performance and avoid overfitting.
Maxout as an activation function can approximate any convex
function and is a natural companion to dropout (Goodfellow
et al., 2013). The key idea of dropout is to randomly exclude
a certain number of hidden units along with all the associated
weights in each iteration and generate a large number of
simplified sub-networks. The average weights from all the
sub-networks are used at the end of each iteration. We set
the Maxout components to five and the dropout probability
to 0.5 for all three hidden layers. To facilitate the training
process, we also took advantage of the capability of GPU
computing provided by Theano. This allowed us to train
a model with hundreds of thousands of parameters within
15 min.

As with SVM, we applied stratified 10-fold cross-validation
to evaluate the performance of features and training sample
sizes. In each iteration, eight sub-samples were used to train a
DNN model, one sub-sample was treated as validation to choose
the best model, and the remaining one sub-sample was used
as the testing set to measure the cross-validation performance.
This process was repeated 10 times and each sub-sample was
used as the validation or testing set exactly once. When making
predictions on specificity estimation and independent testing
set, we merged the training and testing sub-samples in cross-
validation, and still used the validation sub-sample to choose the
best model. In this way, 10 DNN models were trained, and the
final predictions were the averages of the output results from the
10 models.

Feature Selection
For the N-terminal features, the length of N-terminal sequences
used to extract features becomes a key parameter. We
extracted 704 plant mitochondrial proteins with transit peptide
annotations from the Uniprot/Swiss-Prot data collected. About
70% of the 704 proteins have transit peptides with a length
of 5–50 amino acids (Supplementary Figure S1A). Therefore,
we computed amino acid frequency and PSSM features from 5
up to 50 N-terminal residues, respectively. We then tested the
prediction performance of each individual feature using SVM
and 10-fold cross-validation. The corresponding average areas

3http://deeplearning.net/software/theano/
4http://deeplearning.net/software/pylearn2/

under the receiver operating characteristic (ROC) curve (AUCs)
were computed as performance evaluation measurements.

For features generated from whole sequences, we computed
amino acid frequency, PSSM, and gene co-expression features.
Similar to the N-terminal features, we tested the prediction
performance of each type of feature using SVM and 10-fold
cross-validation, and computed the average AUCs to evaluate the
performance.

Performance Measures
We applied several frequently used metrics to evaluate the
prediction performance of our models, including accuracy,
specificity, sensitivity, precision [true positive prediction
percentage among all the predictions, or positive predictive value
(PPV)], F1 score, and MCC. Supplementary Table S4 summarizes
the above measurement metrics and the corresponding equations
to calculate them. ROC and precision–recall curves were plotted
by taking different thresholds, and AUCs were calculated using
the trapezoidal rule.

Data Availability
MU-LOC is publicly available at http://mu-loc.org as a web-
service. The data and program are also publicly available
for download at the website. We also created an Amazon
Machine Image (AMI) hosted at Amazon Web Services (AWS).
This virtual machine enables users to run MU-LOC for
proteome-wide prediction without concerning about installing
any prerequisite tools or data. More details about how to use the
Amazon AMI are described on MU-LOC website.

RESULTS

Discrimination Capability of Individual
and Combined Features
We explored different types of features generated using both
N-terminal and whole sequences. We performed 10-fold cross-
validation on the training set for each feature combination and
calculated the average AUCs as performance measurements.
Both N-terminal amino acid frequency and PSSM features
reached their highest average AUCs with 20–30 residues at the
N-terminus (Supplementary Figure S1B). By default, features
computed from the N-terminal 22 amino acids were included in
the final training as N-terminal features. The N-terminal amino
acid frequency and PSSM feature achieved an average AUC of
0.721, and 0.775, respectively (Supplementary Table S5). Features
from whole sequences including amino acid frequency, PSSM,
and gene co-expression feature had an average AUC of 0.669,
0.810, and 0.742, respectively (Supplementary Table S5). Also,
adding whole sequence amino acid frequency to other features
did not improve the prediction performance (Supplementary
Table S5). Hence, we did not include whole sequence amino
acid frequency in the final training features. To conclude, the
features we finally incorporated in our training and testing
were N-terminal amino acid frequency (AAFreq.NT), N-terminal
PSSM (PSSM.NT), whole sequence PSSM (PSSM), and gene
co-expression (Coexpr).
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Supplementary Table S6 summarizes the prediction power of
combinations of the final input features. Every individual feature
achieved an average AUC greater than 0.72. Whole sequence
PSSM performed the best and reached an average AUC of 0.810
and 0.804 using SVM and DNN, respectively. It should also be
noted that using gene co-expression alone with feature length
of only five, the average AUC still reached 0.742 with the SVM
model. We failed to train a working DNN in 250 epochs using
AAFreq.NT, PSSM.NT, and Coexpr, respectively, suggesting that
DNN was more difficult to train than traditional machine-
learning methods. When combining all four types of features,
the discrimination power further improved to 0.850 and 0.857
for SVM and DNN models, respectively. This indicated that
the four sets of features captured complementary information
from different aspects. Therefore, integrating all features together
worked better than any individual feature.

We also tested the prediction performance using three out
of the four types of features to further investigate the impact
of different features. When AAFreq.NT was excluded from
training, the average AUC (0.850 for SVM and 0.855 for DNN)
remained very close to the AUC with all four types of features
(0.850 for SVM and 0.857 for DNN). For the other three sets
of features, the performance decreased dramatically when one
was removed. Without using PSSM, the performance dropped
the most to 0.820 and 0.796 for SVM and DNN, respectively.
Removal of Coexpr also decreased the performance substantially.
When excluded from training, the average AUC dropped to
0.824 (SVM) and 0.821 (DNN). When removing PSSM.NT,
the SVM model had similar performance compared with all
features used while the DNN model showed a decrease of the
average AUC to 0.835. This may indicate a certain level of
redundancy between PSSM.NT and the other features, and some
superiority of DNN compared to SVM in modeling features
with redundancy. In summary, the discerning powers of different
types of features in decreasing order were PSSM, Coexpr,
PSSM.NT, and AAFreq.NT. In the following sections, we discuss
these features in more detail.

Amino Acid Frequency Features
Amino acid frequency, especially the N-terminal amino acid
composition, is a type of commonly used features for protein
subcellular localization prediction. Figure 1 summarizes the
enrichment of the 20 types of amino acids in the N-terminal
sequences (22 residues) of plant mitochondrial proteins. Arg,
Trp, His, Leu, Lys, Ala, Tyr, and Ile were enriched in the
N-terminal sequences of plant mitochondrial proteins. The
enriched amino acids can be grouped into two categories,
positively charged (Arg, His, and Lys), and hydrophobic
(Trp, Leu, Ala, Tyr, and Ile). On the other hand, Asp, Glu,
Val, Asn, Gly, Pro, and Met were depleted in the positive
dataset. In particular, the two negatively charged residues,
Asp and Glu, had the most depletion in the N-terminal
sequences. This is consistent with previous studies, where
pre-sequences of mitochondrial proteins were found to form
amphiphilic helices with hydrophobic residues on one side and
positively charged residues on the other side (von Heijne, 1986;
Schneider et al., 1998). Therefore, the enrichment of positively

charged and hydrophobic residues was expected. Hence, plant
mitochondrial proteins and non-mitochondrial proteins had
different patterns of the amino acid composition in their
N-terminus, and the corresponding amino acid frequency can
be used as discriminative features for predicting mitochondrial
targeting.

Sequence Profile Features
Figure 2 summarizes the PSSM features for N-terminal and
whole sequences, respectively. For N-terminal PSSM features,
the positive and negative sets had different amino acid usage at
different sequence positions (Figure 2A). Hydrophobic residues
(Ile, Val, Leu, Met, Ala, Tyr, Phe, and Trp) were preferred in
the sequence at the very beginning of mitochondrial proteins
(positions 1–6), while the positively charged residues, Arg, Lys,
and His, were enriched in most N-terminal positions. On the
other hand, the negatively charged residues, Asp and Glu,
were depleted in most N-terminal positions. These findings are
consistent with amino acid composition, but the N-terminal
sequence profiles had better predictive power than amino acid
frequencies (Supplementary Table S6). Hence, the N-terminal
PSSM features can be included as discriminative features.

For global PSSM features, the 20 types of amino acids
formed three cluster blocks (Figure 2B). One block mainly
contained hydrophobic residues (Trp, Phe, Tyr, Ile, Val, Leu,
and Met). Another block mainly contained polar and charged
residues, including Asp, Asn, His, Lys, Arg, Glu, and Gln.
In addition, the positive set generally had larger PSSM scores
within each block (Figure 2B, cells in red). This indicated
that mitochondrial proteins might prefer to use amino acids
with similar properties (hydrophobic, charged, polar, etc.)
compared with non-mitochondrial proteins, and thus tended to
be conserved. Hence, the global sequence profile information
was also a useful discriminative feature. In addition, from the
previous section, we see that the global PSSM features had the
best discriminative power (Supplementary Table S6).

Gene Co-expression Features
We applied KNN score to utilize the gene co-expression
information. KNN score was calculated as the percentage of
the positive set in K% nearest neighbors that had the highest
meta-PCCs. The larger the score, the more similar a protein
was to mitochondrial proteins. Figure 3 summarizes the KNN
score with different parameter settings of K (0.25, 0.5, 1, 2,
and 4%). Overall, there was a clear separation of the KNN
scores for positive and negative datasets. Mitochondrial proteins
had a median KNN score greater than 0.6. On the other
hand, non-mitochondrial proteins had a median KNN score
less than 0.4 and the 75% quantile was less than 0.5. Note that
this separation was not due to sequence similarity since the
redundancy had already been reduced to less than 40% for the
collected data. This indicates that plant mitochondrial proteins
were, to some extent, conserved with respect to their functions
and expression. Positive proteins tended to be co-expressed
with mitochondrial proteins, while negative proteins were less
likely to be co-expressed with mitochondrial genes. Therefore,
the functional gene co-expression information and the KNN
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FIGURE 1 | Comparisons of N-terminal sequence amino acid frequencies in the positive and negative training datasets. The vertical axis represents the log2 ratio of
average frequency of each type of amino acid for the N-terminal 22 residues between positive and negative training set. Amino acid residues in the horizontal axis
are sorted in the descending order of the log2 ratio. A value greater than zero indicates that the corresponding amino acid residue is enriched in the N-terminal
sequences of plant mitochondrial proteins, and vice versa.

score representations were suitable as discriminative features for
mitochondrial targeting prediction.

Effect of Training Sample Size
To evaluate the effect of different training sample sizes, we
randomly selected an x% (x = 50, 60, · · ·, 100) subset from the
2,000 training samples. Each subset contained an equal number
of positive and negative proteins. We extracted all four types
of features, namely, AAFreq.NT, PSSM.NT, PSSM, and Coexpr.
Both SVM and DNN models were trained with 10-fold cross-
validation, and the average AUCs were calculated as performance
measurements.

Figure 4 summarizes the performance with varying training
sample sizes. Both SVM and DNN models achieved relatively
good performance. The average AUCs were in the range of
0.82–0.87 in all cases. Even when utilizing only 50% training
data, the average AUC still reached 0.823 and 0.846 for SVM
and DNN, respectively. The best performance was 0.853 for
SVM and 0.864 for DNN, both with all 2,000 proteins used for
training. There was a general trend of increasing performance
with increasing training sample size for both SVM and DNN
models. Also, models trained in the 10-fold cross-validation were

more consistent when more proteins were used in the training
process. To conclude, the more data we included in classification,
the more robust the trained models were. In this work, we used
all 2,000 proteins for training, and the sample size we used in this
study is probably sufficient.

DNN models generally achieved better performance than
SVM models given the same set of proteins for training. Typically,
DNN models had many more parameters to be estimated
than traditional machine learning methods, and they were
more prone to be stuck in local minima. Thus, in order to
increase prediction consistency, it is worthwhile to train multiple
DNNs under different parameter settings and apply an ensemble
strategy to make predictions, which may help improve prediction
performance and reduce inconsistencies among all predictors.

Comparison With Other Tools for
General Plant Mitochondrial Targeting
Prediction (Independent Testing Set 1)
We further tested the prediction performance between MU-
LOC and six existing tools, TargetP (version 1.1), Predotar
(version 1.03), MitoProt II (version 1.101), YLoc, MitoFates, and
LOCALIZER (version 1.0.2). We used the independent testing
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FIGURE 2 | Comparisons of PSSM scores in the positive and negative training datasets. Positive values (cells in red) indicate higher average PSSM scores of
mitochondrial proteins compared with non-mitochondrial proteins and vice versa for negative values (cells in blue). (A) The average PSSM score difference between
the positive and negative set for the N-terminal 22 residues. Each column represents the difference of the 20 amino acid usages in an N-terminal position between
mitochondrial and non-mitochondrial proteins. Hierarchical clustering was performed using Ward’s method. (B) The average PSSM score difference between
mitochondrial and non-mitochondrial proteins in the training set for the whole protein sequences. Given a sequence, the PSSM scores were averaged for each type
of amino acid. We then computed the difference of the averaged PSSM scores between the positive and negative set in the training data. Hierarchical clustering was
also performed using Ward’s method.

set 1 (Supplementary Table S2), which was not in the training
process and the maximum sequence identity with training sets
was reduced to 40% (see section “Materials and Methods”). This
independent testing set contains a mixture of plant mitochondrial
proteins with or without N-terminal pre-sequences, reflecting the
real-world use case.

The ROC and precision–recall curves of different tools are
shown in Figure 5, and the performance of each tool under
the default parameter settings is summarized in Table 2. For
MU-LOC, the default parameter is 0.90 estimated specificity level.
We used the AUC and F1 score to summarize the ROC and
precision–recall curves, respectively. First, MU-LOC(DNN) and
MU-LOC(SVM) had the highest AUC of 0.8408 and 0.8322.
TargetP, Predotar, MitoProt II, YLoc, and MitoFates had AUC
of 0.7444, 0.6851, 0.6870, 0.7493, and 0.7050, respectively. Since
LOCALIZER did not provide a continuous prediction score for
all testing proteins, we did not calculate its AUC. A one-sided
bootstrap test using ROCR and pROC R packages indicated a
significant higher AUC of MU-LOC(DNN) and MU-LOC(SVM)
over TargetP, Predotar, MitoProt II, YLoc, and MitoFates (p-value
all below 0.05; Sing et al., 2005; Robin et al., 2011). Meanwhile,
MU-LOC(DNN) and MU-LOC(SVM) had the highest F1 score
of 0.698 and 0.675 while the best F1 score for other tools was 0.558
(TargetP).

From Table 2, MU-LOC has the highest accuracy and MCC
under the default parameter setting in all the tools we compared
with. MU-LOC(DNN) achieved a sensitivity of 0.60, an accuracy

of 0.740, and an MCC of 0.500, while the best performance for
other tools (TargetP) had a sensitivity of 0.41, an accuracy of
0.675, and an MCC of 0.413. We listed in Supplementary Table S7
the performance metrics of MU-LOC under different specificity
levels. Even under higher specificity levels, MU-LOC still ranked
the top in general plant mitochondrial targeting prediction. For
instance, under a specificity level of 0.94 (same as TargetP),
MU-LOC(DNN) had a sensitivity of 0.49, an accuracy of 0.715,
and 0.482, and MU-LOC(SVM) had performance on par with
TargetP.

We also investigated the consistency between MU-LOC and
other methods using independent testing set 1. Supplementary
Figure S2 summarizes the overlap of true positive predictions
found by MU-LOC(DNN) and other methods on the
independent testing set 1 under the default parameters.
MU-LOC(DNN) successfully predicted most of the true positives
found by other approaches, covering 91% (52 out of 57), 78%
(32 out of 41), 85% (28 out of 33), 82% (27 out of 33), 71% (20
out of 28), 92% (22 out of 24), and 85% (23 out of 27) predictions
from MU-LOC(SVM), TargetP, Predotar, MitoProt II, YLoc,
MitoFates, and LOCALIZER, respectively. The independent
testing proteins and the prediction results by different methods
are listed in Supplementary Table S8.

Most existing tools for mitochondrial targeting prediction
(TargetP, Predotar, MitoProt II, MitoFates, etc.) focus on
using N-terminal sequence information. The high level of
consistency between MU-LOC and other methods confirmed
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FIGURE 3 | Boxplot of gene co-expression KNN scores in the positive and negative training datasets. The vertical axis represents the KNN scores computed as the
proportion of the positive set in the nearest neighbors (genes in the training set with the top ranked meta-Pearson’s correlation coefficients). The horizontal axis
denotes the size of the nearest neighbors as the percentage of training sample size (0.25, 0.5, 1, 2, and 4%). The black dots represent data points beyond the upper
quartile.

the reliability of our method. In addition, MU-LOC has
the advantage of predicting mitochondrial proteins lacking
N-terminal pre-sequences because we utilized both N-terminal
sequence features (AAFreq.NT and PSSM.NT) and global
features (PSSM and Coexpr). MU-LOC was able to find more
true-positive predictions than other methods without increasing
the number of false positives (Table 2, Supplementary Table S7,
and Figure 5).

Comparison With Other Tools for
Predicting Plant Mitochondrial Proteins
With N-terminal Pre-sequences
(Independent Testing Set 2)
The above independent testing set 1 contains a mixture
of mitochondrial proteins with or without N-terminal
pre-sequences. Since most of current methods focus on
predicting N-terminal targeting sequences, they are effective
in using predicted mitochondrial N-terminal pre-sequences.
To investigate whether our method captures the features of
mitochondrial N-terminal pre-sequences sufficiently without
explicitly predicting them, we took advantage of the testing
data Sperschneider et al. (2017) used, including 65 plant
mitochondrial proteins with N-terminal pre-sequences and 587

non-mitochondrial proteins (Supplementary Table S2). The
overlap of this testing set with our training data is minimal, with
only six mitochondrial and 16 non-mitochondrial proteins in
our training set.

We tested MU-LOC, MitoProt II, and MitoFates on the
second independent testing set with the default parameters
(Supplementary Table S8). Also, for TargetP, Predotar, YLoc, and
LOCALIZER, we directly cited their performances reported by
Sperschneider et al. (2017) since the exact same testing set was
used (Table 3). Both the DNN and SVM models of MU-LOC
performed well with accuracy around 94%, and they also had
considerably higher specificity, sensitivity, accuracy, and MCC
than other tools we compared with. MU-LOC increased the
MCC to 0.67 while the best performance for current tools
(MitoFates) is around 0.6. Due to the fact that independent
testing set 2 was highly imbalanced (65 positive vs. 587 negative),
we also calculated the precision (or PPV) in Table 3 and
plotted the precision–recall curve in Supplementary Figure
S3A. From the precision–recall curve, MU-LOC performed
better than MitoFates, which had the best performance on
independent testing set 2 among previous tools that we
compared. Also, under the default settings, MU-LOC(DNN)
had positive predicted value (PPV) of 0.682, meaning that
out of 66 predicted mitochondrial proteins, 45 (68.2%) were
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FIGURE 4 | Histogram of prediction performance with varying training sample sizes. A subset of training data with size from 1,000 to 2,000 was extracted and used
to build both SVM and DNN models. Average AUCs from 10-fold cross-validation were calculated and plotted.

true positives (Table 3). MU-LOC(SVM) had the highest
PPV (0.741) among all methods compared. Supplementary
Figure S3B also shows the PPVs of MU-LOC under different
cut-offs of prediction scores to estimate the confidence of
MU-LOC predictions. MU-LOC(DNN) prediction scores were
distributed more uniformly while MU-LOC(SVM) prediction
scores were more separated toward the low and high ends. In
summary, MU-LOC is at least comparable with the top methods
for predicting plant mitochondrial proteins with N-terminal
pre-sequences.

Predicting Mitochondrial Proteome of
Arabidopsis thaliana and Solanum
tuberosum
We applied our MU-LOC(DNN) model to the whole proteome
of A. thaliana and Solanum tuberosum; 27,416 Arabidopsis and
39,011 potato representative protein sequences with at least 50
amino acid residues were downloaded from The Arabidopsis
Information Resource (TAIR; Lamesch et al., 2012) and Spud
DB5, respectively. We utilized the 4,500 negative proteins
in the specificity estimation set (see section “Materials and
Methods”) to determine the stringency threshold. We increased

5http://solanaceae.plantbiology.msu.edu/index.shtml

the default estimated specificity level to limit false-positive
predictions. Supplementary Figure S4 summarizes the number of
mitochondrial proteins that we predicted for the two plant species
under high estimated specificity levels (0.99 and 0.95).

At estimated specificity levels of 0.99 and 0.95,
MU-LOC(DNN) predicted 1,031 and 3,205 potential
mitochondrial protein candidates in Arabidopsis, respectively
(Supplementary Figure S4). At an approximate specificity of 0.95,
our predicted 3,205 candidates covered 61% (509 out of 830)
Arabidopsis mitochondrial proteins annotated in Swiss-Prot
(release 2016_08). This agreement is not surprising since any
SwissProt entry was either used in training or shared more
than 40% sequence identity with a protein in the training set.
Nevertheless, it served as a good consistency check. We also
compared our predicted mitochondrial proteome with that from
SUBAcon (Hooper et al., 2014). SUBAcon is a Bayesian classifier
specifically for Arabidopsis protein localization prediction, which
combines 22 computational algorithms, experimental evidence
(green fluorescent protein tagging and mass spectrometry), and
functional information (protein–protein interaction and gene
co-expression). SUBAcon listed 2,671 representative proteins
(3,140 isoforms in total) to be located in mitochondria, out of
which 1,247 proteins were also predicted by our model.

We also predicted the whole mitochondrial proteome
for potato. At an estimated specificity of 0.99 and 0.95,
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FIGURE 5 | Comparison of prediction performance between MU-LOC and six other tools for general plant mitochondrial targeting prediction (independent testing
set 1). (A) ROC curves of different methods. “1 – Specificity” is plotted along the x-axis. (B) Precision–recall curves of different methods. Prediction score of each
method on independent testing set 1 was used to calculate and plot corresponding ROC and precision–recall curve. Note that since LOCALIZER does not provide a
continuous score for all the testing proteins, we only plotted its performance at the default stringency level (a single point in A,B).

TABLE 2 | Performance comparison of MU-LOC with existing tools for general plant mitochondrial targeting prediction (independent testing set 1).

Tool Parameter Specificity Sensitivity Accuracy Precision F1 score MCC

MU-LOC(DNN) Default 0.88 0.60 0.740 0.833 0.698 0.500

MU-LOC(SVM) Default 0.88 0.57 0.725 0.826 0.675 0.473

TargetP Default 0.94 0.41 0.675 0.872 0.558 0.413

Predotar Default 0.96 0.33 0.645 0.892 0.482 0.373

YLoc YLoc-LowRes 0.95 0.28 0.615 0.848 0.421 0.310

MitoProt II Probability > 0.8a 0.89 0.33 0.610 0.750 0.458 0.266

MitoFates Default 0.96 0.24 0.600 0.857 0.375 0.288

LOCALIZER Default 0.90 0.27 0.585 0.730 0.394 0.219

For the performance metrics used, the higher the value, the better the prediction accuracy. Results with the best performance are highlighted in bold. aThe webserver of
MitoProt II provides only the prediction scores, and we chose a cut-off score of 0.8 to label the prediction class.

TABLE 3 | Performance comparison of MU-LOC with existing tools for predicting plant mitochondrial proteins with N-terminal pre-sequences (independent testing set 2).

Tool Parameter Specificity Sensitivity Accuracy Precision MCC

MU-LOC(DNN) Default 0.964 0.692 0.937 0.682 0.652

MU-LOC(SVM) Default 0.974 0.662 0.943 0.741 0.669

TargetP Sperschneider et al., 2017b 0.891 0.646 0.867 0.396 0.440

Predotar Sperschneider et al., 2017b 0.944 0.600 0.910 0.542 0.520

YLoc Sperschneider et al., 2017b 0.940 0.462 0.893 0.462 0.400

MitoProt II Probability > 0.8a 0.842 0.600 0.817 0.295 0.329

MitoFates Default 0.966 0.615 0.931 0.667 0.602

LOCALIZER Sperschneider et al., 2017b 0.952 0.600 0.917 0.582 0.540

For the performance metrics used, the higher the value, the better the prediction accuracy. Results with the best performance are highlighted in bold. aThe webserver
of MitoProt II only provides the prediction scores, and we chose a cut-off score of 0.8 to label the prediction class. bWe cited the performance metrics reported by
Sperschneider et al. (2017) since the exact same testing set was used.
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1,086 and 4,708 proteins were identified as candidates of
mitochondrial proteins, respectively (Supplementary Figure S4).
Our predictions at the estimated specificity of 0.95 covered
53% (560 out of 1,060) potato mitochondrial proteins currently
discovered (Salvato et al., 2014). The predicted Arabidopsis and
potato mitochondrial proteomes at a specificity level of 0.95 were
summarized in Supplementary Table S9.

We further analyzed functions of our predicted mitochondrial
proteome at estimated 95% specificity for A. thaliana and
S. tuberosum, respectively. First, we utilized the gene ontology
annotation for Arabidopsis by TAIR (Lamesch et al., 2012;
Gene Ontology Consortium, 2015). Among 3,205 predicted
mitochondrial protein candidates, 2,741 genes had clear cellular
component terms, out of which 1,350 predictions were annotated
to be located in mitochondrion (p-value < 0.0001 for one-
sided Fisher’s exact test compared with genome-wide background
distribution of mitochondrial GO annotations). This suggested
that approximately half of our predictions were likely to be
true. The other half without clear mitochondrial localization
information could contain false positives and proteins that
are still poorly annotated so far. On the other hand, potato
gene annotations are still far from complete. We used a
reliable genome-scale annotation, GoMapMan ontology of both
Arabidopsis and potato for this study (Ramsak et al., 2014). We
found that pentatricopeptide repeat (PPR) proteins annotated in
GoMapMan were among the most frequent annotation terms
(361 and 625 occurrences in our predicted candidates for
Arabidopsis and potato, respectively). Recent studies found that
most PPR proteins are located in plant mitochondria and involve
in important RNA-linked processes such as RNA editing and
RNA splicing (Moller, 2016). However, only 71 PPR proteins
have been found in mitochondria by experiments (Salvato et al.,
2014; Moller, 2016). Therefore, our predictions may provide
useful insight into the involvement of PPR proteins in plant
mitochondria. All our predictions at an estimated specificity
of 0.95 and their functional annotations were summarized in
Supplementary Table S9.

DISCUSSION

Identifying the proteins belonging to the plant mitochondrial
proteome is a crucial step in the study of mitochondrial
metabolism. The proteins imported into plant mitochondria play
important roles in complex metabolic processes and regulatory
mechanisms (Millar et al., 2011; Welchen et al., 2014). Current
computational tools have relatively poor performance when
applied to this problem (Rao et al., 2016). In this work,
we developed MU-LOC, a new approach for the large-scale
prediction of plant mitochondrial targeting. After exploring
various types of features, we included both sequence-based and
functional genomic features in a supervised machine-learning
framework, including amino acid composition, protein position
weight matrix, and gene co-expression information. These
features captured complementary information from different
aspects. We then combined all the features and trained a DNN
model with the help of GPU computing. Cross-validation and

two independent testing results indicate that MU-LOC is robust
and outperforms existing tools in predicting mitochondrially
localized proteins in plants. When more plant mitochondrial
data become available, the improvement of MU-LOC(DNN) over
existing tools may be more significant given the nature of DNN.
We also applied our DNN models to Arabidopsis and potato
proteome, and provided candidate lists of mitochondrial proteins
in the two plants. We hope that our predicted mitochondrial
proteins in Arabidopsis and potato could be a useful resource for
future experiments.

We used both sequence-based and functional features
for localization prediction. The sequence-based features were
extracted from the N-terminal and the whole protein sequences.
The feature selection process indicated that the global PSSM
feature from whole sequences contributed the most to the
prediction performance. In addition, the gene co-expression
feature was demonstrated to be useful for predicting plant
mitochondrial targeting. Currently, our model uses only
Arabidopsis gene co-expression information. For proteins from
other species, our current solution is to use BLAST to find the
best Arabidopsis hit. In case we cannot find matches satisfying
the e-value cut-off, we assign all zeros to this feature and rely on
the sequence-based information to make prediction. For future
development, we will include more co-expression data for other
plants from public databases such as NCBI GEO (Barrett et al.,
2013) and ATTED-II (Aoki et al., 2016). In this way, the co-
expression feature will be more accurate and useful. It is worth
mentioning that unlike most other prediction methods, neither
the global PSSM nor the gene co-expression feature used by
MU-LOC requires N-terminal mitochondrial targeting signals.
Therefore, compared with other tools, MU-LOC is capable of
predicting not only mitochondrial proteins with N-terminal
targeting sequences, but also those lacking pre-sequences. In fact,
MU-LOC outperforms existing tools in predicting both general
mitochondrial targeting and proteins possessing N-terminal pre-
sequences in plants, which serves as a practical advantage because
for the majority of plant mitochondrial proteins the presence of a
pre-sequence is unknown.

We built both DNN and SVM models for the predictions.
Both methods achieved good performance on two independent
testing sets. SVM outperformed DNN methods slightly on
independent testing set 2 (Table 3). The positive data in this
testing set were plant mitochondrial proteins having N-terminal
pre-sequences, representing a small fraction of all proteins
localized in mitochondria. In real applications, we may or may
not have the N-terminal pre-sequences, as either they do not
exist, or no experimental data or reliable prediction is available.
Hence, the general plant mitochondrial targeting prediction
(with or without N-terminal targeting signals) more reflects real-
world problems. DNN performs better than SVM (Table 2 and
Figure 5) in this case (independent testing set 1). On the other
hand, unlike some other areas such as image processing, we
did not observe a dramatic improvement of DNN compared
with traditional machine-learning methods. One reason could
be that DNN generally needs more data to train and our 2,000
training sample size might still not be big enough. Second, some
more advanced DNN architectures such as convolutional neural
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network (CNN) and RNN may be able to capture the spatial
relationships among amino acids better. This will be our future
work.

Although MU-LOC showed better prediction performance
over existing methods, there are some limitations. Most of the
limitations are common to current localization prediction tools,
and we will address some of them in our future work. First,
no prediction tools can provide tissue- or condition-specific
localization predictions. Since the data we collected were from
multiple sources under various conditions, our predictions in
most cases gave a general probability of a plant protein being
localized in mitochondria. Second, we are aware of several new
data sources that we have not fully utilized in this work. For
example, the updated SUBA4 database was recently released
and the cropPAL database contains subcellular localization data
for rice, wheat, maize, and barley (Hooper et al., 2016, 2017).
We plan to include these new datasets in future versions of
our tool. Third, a large number of proteins can be targeted
to multiple subcellular compartments. For instance, some plant
proteins are imported to both mitochondria and chloroplasts
(Peeters and Small, 2001; Carrie and Small, 2013). Accordingly,
we can adapt the output layer of our neural networks or
integrate other machine-learning algorithms to our framework
to handle this multi-label classification problem. Fourth, many
plant proteins still lack accurate targeting information. These
unlabeled data are not used in our current supervised learning
framework. Deep learning has the ability of utilizing unlabeled
data in an unsupervised or semi-supervised scenario. Therefore,
in the future, we will explore including unlabeled data in our
predictive framework. In addition, there is room to explore other
types of deep-learning architectures (e.g., CNN and RNN) to
further improve the performance. We will also include additional
localization data, and expand our methods to other species and
more organelles.
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