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Protein complex formation has been extensively studied using Förster resonance

energy transfer (FRET) measured by Fluorescence Lifetime Imaging Microscopy (FLIM).

However, implementing this technology to detect protein interactions in living multicellular

organism at single-cell resolution and under native condition is still difficult to achieve.

Here we describe the optimization of the labeling conditions to detect FRET-FLIM in living

plants. This study exemplifies optimization procedure involving the identification of the

optimal position for the labels either at the N or C terminal region and the selection of

the bright and suitable, fluorescent proteins as donor and acceptor labels for the FRET

study. With an effective optimization strategy, we were able to detect the interaction

between the stem cell regulators SHORT-ROOT and SCARECROW at endogenous

expression levels in the root pole of living Arabidopsis embryos and developing lateral

roots by FRET-FLIM. Using this approach we show that the spatial profile of interaction

between two transcription factors can be highly modulated in reoccurring and structurally

resembling organs, thus providing new information on the dynamic redistribution of

nuclear protein complex configurations in different developmental stages. In principle, our

optimization procedure for transcription factor complexes is applicable to any biological

system.

Keywords: protein complexes, protein-protein interaction, fluorescent proteins, in vivo FRET-FLIM, SHORT-ROOT,

SCARECROW

INTRODUCTION

In living organisms, many cellular functions are executed by protein complexes. Over the decades,
the concept of “protein-protein interaction networks” has emerged: rather than working as
monomeric entities, most cellular proteins are known to dynamically engage in binding events.
To understand the dynamic nature of these protein complexes, it is crucial to correlate the in vivo
spatiotemporal interactions between key proteins and their impact on different biological processes.
This holds true especially in a multicellular context, where heterogeneity of protein complexes
between cell populations can lead to different outcomes in distinct cells within an intact organism.
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Protein interactions are frequently studied with biochemical
methods. These methods can be arduous, especially for
protein complexes of low abundance. Improvements of protein
purification procedures and the increased sensitivity of mass
spectrometers have dramatically enhanced protein complex
detectability (Bensimon et al., 2012; Pardo and Choudhary,
2012; Young et al., 2012; Aryal et al., 2014; Jorge et al.,
2016; Wendrich et al., 2017). In addition, automated methods
have been developed to isolate specific cell populations, further
allowing high throughput proteome-wide analysis of protein
complexes in selected cellular environments (Bridgeman et al.,
2010; Petricka et al., 2012). Despite these technical advances,
biochemical methods remain challenging when dealing with
dynamic interactions in transient protein complexes.

Alternatively, fluorescence-based microscopic techniques
have been developed to study protein-protein interactions.
Bimolecular fluorescence complementation (BiFC) assays are
commonly employed to visualize protein interaction in living
cells, where two non-fluorescent fragments of a fluorescent
protein can form a bimolecular fluorescent complex upon
interaction (Hu et al., 2002). Successful BiFC applications in
intact living organisms have been reported (Zhang et al., 2004;
Gohl et al., 2010; Hudry et al., 2011; Smaczniak et al., 2012).
However, the irreversible formation of bimolecular complexes
limits its use to follow dynamic protein interactions (Lalonde
et al., 2008; Horstman et al., 2014; Xing et al., 2016). Conversely,
other strategies such as employing Förster resonance energy
transfer (FRET) can provide better means to visualize and
quantify dynamic protein complexes in living cells (Weidtkamp-
Peters and Stahl, 2017), with the spatial information presented as
a microscopic lifetime image. FRET describes the phenomenon
of energy transfer from an excited donor fluorophore to a non-
excited acceptor chromophore in its direct vicinity through
dipole-dipole coupling (Förster, 1948; Figure 1A). Since FRET
only occurs when the two fluorophores are within a short radius
(on the scale of several nanometers), direct protein-protein
interaction can be detected by tagging candidate proteins with
appropriate fluorophores, such as different green fluorescent
protein (GFP) variants (Kremers and Goedhart, 2009). Upon
interaction, FRET will lead to a decreased donor emission,
relative to that measured in a non-FRET situation, and an
elevated acceptor emission (Clegg, 2009). These changes in
emission intensities can be used to reflect the level of protein
interaction by directly monitoring donor-acceptor emission ratio
changes or measuring donor emission recovery after acceptor
photobleaching (Gu et al., 2004; Adjobo-Hermans et al., 2011).
However, these emission level-based techniques are highly
dependent on the concentrations and good signal-to-noise ratios
of both donor and acceptor, which are often difficult to achieve
for lowly expressed proteins at endogenous levels.

FRET can also be quantified by measuring the fluorescence
lifetime decrease of the donor molecules by fluorescence lifetime
imaging microscopy (FLIM) (Gadella et al., 1993). Applications
of FRET-FLIM have been mostly applied to analyze protein-
protein interaction in living cells or as means to analyze
biosensors (Tonaco et al., 2006; Crosby et al., 2011; Kardash

et al., 2011; Bücherl et al., 2013; Stahl et al., 2013). Since
accurate FRET-FLIM measurements are less dependent on
emission intensity, it can be especially useful to detect interaction
between proteins under native conditions without resorting to
overexpression, which can alter cell states. Therefore, dynamic
protein complex association at cellular resolution can be detected
non-invasively using a microscopy-based approach (Bücherl
et al., 2013). With these technical advantages, one would be able
to follow and quantify such interactions in living multicellular
organisms and determine their specificity in different cell types
and developmental contexts.

Recently we have shown that FRET-FLIM can be used to
study transcription factor associations in the model organism
Arabidopsis thaliana (Long et al., 2017), particularly in the root
tip which is ideal for live imaging with confocal microscopy
due to its transparency and its simple, organized structure.
We exploited the intensively-studied interaction between the
two GRAS domain transcription factors SHORT-ROOT (SHR)
and SCARECROW (SCR) (Di Laurenzio et al., 1996; Helariutta
et al., 2000). SHR and SCR control the radial pattern of the
Arabidopsis root through generating formative cell divisions
in the stem cell called the cortex-endodermis initial (CEI) (Di
Laurenzio et al., 1996; Helariutta et al., 2000). SHR is also
required for endodermal specification (Helariutta et al., 2000;
Long et al., 2015a,b; Moreno-Risueno et al., 2015). SHR transcript
is produced in the vasculature and its proteinmoves outward into
the surrounding cell layer consisting the quiescent center (QC),
CEI and endodermis, collectively called as the U-shaped domain
(Nakajima et al., 2001; Supplementary Figure 1). SHR physically
interacts with SCR in the U-shaped domain of the main root,
and the interaction is more pronounced in the CEI to regulate
downstream target expressions such as CYCLIN D6;1 (CYCD6;1)
to promote formative divisions (Cui et al., 2007; Cruz-Ramírez
et al., 2012; Long et al., 2015a, 2017).

Here, we provide a guideline for utilizing the FRET-FLIM
technology to visualize and quantify protein interactions at
physiological conditions in living Arabidopsis roots at cellular
resolution, with SCR and SHR as the example protein pair.
We extended our analysis to Arabidopsis lateral roots and
embryos to show that in vivo FRET-FLIM can also be applied
to visualize interactions in other organs. In this study, we
addressed the key optimization steps for transcription factors as
prerequisites for measurable FRET to occur in living Arabidopsis
tissues. These include (1) testing position of fluorescent tags
at amino- and carboxyl-termini of each tested protein, (2)
evaluating fluorophores suitability, and (3) in vivo fusion protein
functionality.

Our work demonstrates that in vivo FRET-FLIM can be
used to visualize nuclear protein interactions in a living, intact
organism and provides evidence that the level of interaction
between transcription factors can be heterogeneous throughout
their domain of co-localization, and their interaction pattern can
change depending on the developmental stage. Our optimization
set up and procedure to detect in vivo protein-protein interaction
can in principle be applied to any protein pair in any biological
system.
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FIGURE 1 | Optimization of tagging orientation for FRET-FLIM detection. (A) Illustration of FRET principle. D, donor fluorophore; A, acceptor fluorophore; r, distance

between D and A; R0, Förster radius for D and A. (B) Illustration emphasizing the necessity to optimize tagging orientation for FRET. X and Y, two proteins of interest.

Limited to no FRET might be observed when fluorophores are located at the distant ends of X and Y, yielding false negative result. (C) Arabidopsis mesophyll

protoplast co-expressing SCR:mTq and SHR:SYFP2. Dotted line circles the nucleus. (D) Scatterplots showing distribution of phase lifetime τφ against modulation

lifetime τmod from protoplast measurements. Each FRET pair was plotted against the same positive and donor-only samples. n > 10 for each sample. (E) Bar chart

showing FRET efficiency E derived from τφ and τmod in (D), error bars represent standard errors within one set of experiment. * represent p-values, **, 10−20 < p <

10−2; ***p < 10−20, p-values calculated by Student’s t-test compared to the donor-only samples.
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MATERIALS AND METHODS

DNA Constructs
Coding sequences (CDS) of SCFP3A, mTurquoise, SYFP2,
mCherry,mStrawberry andmRFP (Kremers et al., 2006; Goedhart
et al., 2007) were subcloned into multiple Gateway cassettes
with flanking attB sites. A general SV40 nuclear localizing
signal (NLS) (Lassner et al., 1991) was attached to the N-
terminal of mTq and SYFP2 to generate NLS-mTq and NLS-
SYFP2. For C-terminal tagging, fluorescent protein sequences
were recombined into pGEMTeasyR2R3 vector by Gateway
BP reaction; while pGEMTeasyR1R2-derived entry clones were
generated for N-terminal tagging. SHR and SCR coding sequence
in pDONR221-derived entry clones (Welch et al., 2007) were
used for C-terminal tagging clones; while for N-terminal
tagging SHR and SCR were subcloned into pGEMTeasyR2R3.
For protoplast transfection, 35S promoter-driven fusions of
SHR and SCR with N- or C-terminal tagging were created
in pB7m34GW or pH7m34GW binary vectors (Karimi et al.,
2007) by multiple Gateway LR reactions (Invitrogen). Positive
controls of 35S::NLS-SYFP2:mTq and 35S::NLS-SYFP2:SCFP3A
were generated by combining previously described tags in
entry clones. Root expression vectors of SHR and SCR were
created similarly with endogenous pSHR and pSCR promoters
(Long et al., 2015a). For better stem cell niche localization (see
below), pSHR::SYFP2-SHR11a was generated by site-directed
mutagenesis (QuikChange II, Aligent) from pSHR::SYFP2:SHR
vector. For HeLa cell expression, SYFP-11a-SHR was generated
by subcloning SHR CDS with flanking restriction sites (5′-BsrGI-
SHR-BamHI-3′) into pSYFP2-C1 (Kremers et al., 2006) followed
by site-directed mutagenesis as described. SCR-mCherry was
generated by subcloning SCR CDS with flanking restriction sites
(5′-KpnI-SCR-AgeI-3′) into pmTurquoise-N1 (Goedhart et al.,
2010), followed by swappingmTurquoise withmCherry (5′-AgeI-
mCherry-NotI-3′) (Goedhart et al., 2007). Primers for cloning are
listed in Supplementary Table 1.

Arabidopsis Growth Condition and
Transformation
Arabidopsis thaliana ecotype Columbia (Col-0) plants containing
SHR and SCR transgenes were grown as previously described
(Long et al., 2017). Stably transformed lines were generated by
Agrobacterium tumefaciens-mediated transformation via floral
dip method (Clough and Bent, 1998).

Protoplast Preparation and Transfection
A. thaliana Col-0 mesophyll protoplasts were prepared and
transfected according to (Díaz-Triviño et al. (2017). A. thaliana
Col-0 tissue culture protoplasts were prepared and transfected
according to Axelos et al. (1992). Ten microgram donor vector
and 20 µg acceptor vector were transfected.

Transfection of Heterologous Systems
HeLa cell culture and transfection were as described in Jiang et al.
(2014), constructs were transfected using FuGENE 6 protocol
(Promega).

Fluorescence Lifetime Imaging Microscopy
in Protoplasts
Living transfected protoplasts were collected in LabTek
chambered coverglass (Nunc) for frequency-domain FLIM
measurements. Samples with cyan fluorescent donors were
acquired according to Goedhart et al. (2010) and samples with
yellow fluorescent donor were acquired according to Goedhart
et al. (2007). Briefly, CFP-variants were excited with a 440 nm
modulated diode laser (LDH-M-C-440; PicoQuant) at 75.1
MHz, the light was reflected by a 455DCLP dichroic mirror and
emission was passed through a D480/40 band-pass emission
filter (Chroma Technology). SYFP2 fluorescence was excited
with a 514 nm Argon laser (Melles-Griot) intensity-modulated
at a frequency of 75.1 MHz and the light was reflected by a
525DCXR dichroic mirror and emission was passed through
a HQ545/30 band-pass emission filter (Chroma Technology).
Emission was detected using a radio frequency (RF)-modulated
image intensifier (Lambert Instruments II18MD) coupled to
a charge-coupled device (CCD) camera (Photometrics HQ)
as detector. FLIM stacks of 18 phase images were acquired
in permutated recording order with an exposure time of 50-
1000ms per image depending on sample brightness. The average
fluorescence lifetime of individual nuclei was quantified from
which an average lifetime for the sample was determined. FRET
efficiency was calculated as described in Goedhart et al. (2007)
More than 10 cells were analyzed for each sample.

Confocal Microscopy
Protoplasts, Arabidopsis embryos and lateral roots were imaged
with a LSM 710 laser-scanning confocal microscope (Carl Zeiss
GmbH) with an Objective C-Apochromat 40x/1.2W Corr M27.
A 2 air unit (AU) pinhole was set for weak SHR expression. Cyan
fluorescence was detected at 465–500 nm with 458 nm excitation
and 458/514 beam splitter; yellow detected at 520–560 nm with
514 nm excitation and 458/514 beam splitter; and red detected
at 600–660 nm with 543 nm excitation and 488/543/633 beam
splitter, respectively. Images were takenwith no offset, and signal-
to-noise ratio (SNR) was calculated as follows:

SNR =
S

N
(1)

where S is the nuclear fluorescence signal from imaged root
endodermis, and N auto-fluorescence signal in the adjacent
non-fluorescent area in the root to emphasize the challenge of
measurement in Arabidopsis root with high background signal.
More than 10 roots were analyzed for each SNR calculation,
except for pSCR::SCR:mStrawberry (n = 8), pSCR::SCR:mCherry
(n= 7) and pSHR::SHR:mRFP (n= 9).

Fluorescence Lifetime Imaging Microscopy
in Living Arabidopsis
Roots of 6 dpg seedlings were mounted in water for
measurements in LRP. Late heart-/early torpedo-stage embryos
were mounted in 5% glucose for measurements. FLIM was
performed on a confocal laser scanning microscope (Zeiss
LSM 780) additionally equipped with a single-photon counting
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device with picosecond time resolution (PicoQuant Hydra Harp
400). SYFP2 fluorescence was excited at 485 nm using a linearly
polarized diode laser (LDH-D-C-485) operated at a repetition
rate of 32 MHz. Excitation power was around 1 µW at the
objective C-Apochromat 40x/1.2W Corr M27). The emitted
light was collected in the same objective and separated into
its perpendicular and parallel polarization (Thorlabs PBS 101,
Thorlabs GmbH, Germany). Fluorescence was then detected by
Tau-SPADs (PicoQuant) in a narrow range of SYFP2’s emission
spectrum (band-pass filter: HC535/30 AHF). Images were taken
with 12.6 µs pixel time and a resolution of 0.1 µm/pixel for roots
and embryos and 0.21 µm/pixel for LRP (Zoom 4 and 2, 256
× 256). A series of 60 frames were merged into one image and
further analyzed (Widengren et al., 2006).

Single-Pixel Fluorescence Lifetime
Analysis
The fluorescence lifetime of SYFP2 was determined and analyzed
pixel-wise in merged images to increase photon numbers for
analysis using the software tools “AnI-3SF” and “Margarita”
developed in Prof. C.A.M Seidel group [Software Package for
Multiparameter Fluorescence Spectroscopy, Full Correlation
and Multiparameter Fluorescence Imaging (http://www.mpc.
uni-duesseldorf.de/en/software/software-package.html)] for
Multiparameter Fluorescence Image Spectroscopy (MFIS)
(Kudryavtsev et al., 2007; Weidtkamp-Peters et al., 2009). In
fluorescence lifetime measurements, high spatial resolution
microscopy and low excitation power prevent photo bleaching;
the number of photons per pixel is exceptionally low, ranging
from 100 to 2,000 photons per pixel. Therefore, a model to fit
the data with a minimal number of parameters has to be applied
in conjunction with a maximum likelihood estimator (MLE)
(Schaffer et al., 1999; Eggeling et al., 2001; Widengren et al.,
2006; Weidtkamp-Peters et al., 2009; Sisamakis et al., 2010). The
decay of SYFP2 is approximated in the subsequent fluorescence
lifetime analysis by an (fluorescence-weighted) average lifetime,
τ . We therefore used a monoexponential model function with
two variables (fluorescence lifetime τ and scatter contribution
γ ); as described elsewhere (Stahl et al., 2013), fitted with
MLE. The instrument response function was measured using
the dye erythrosine, which exhibits a very short fluorescence
lifetime, which is additionally quenched in an aqueous, saturated
potassium iodide solution.

FRET-FLIM Quantification in Living
Arabidopsis
Nuclear areas of no smaller than 25 pixels, based on the
nuclei’s appearances after the 100-photon-per-pixel background
subtraction, were selected from independent cells. Cellular
fluorescence lifetimes were computed by least-square fitting
the Gaussian peaks of each cells’ lifetime distributions.
Fluorescence lifetimes at the same cell position were pooled from
independent measurements without normalization, enabled by
the robust FRET-FLIM acquisition between samples and between
experiments. Reduction of fluorescence lifetime (1τ ) between
donor-only and FRET samples were calculated from the means

of donor-only and FRET samples at each cell position, with
inclusion of fractional standard errors. Significances, between
donor-only and FRET samples at specific cell positions in the
same or different experiments, were resolved by Student’s t-test
with critical value of p < 0.01.

RESULTS

Experimental Design for in Vivo FRET-FLIM
Optimization
Our optimization procedure featured an ex vivo to in vivo
pipeline, where we first employed the transient Arabidopsis
protoplast expression system as a convenient tool to test a large
number of FRET-FLIM pair combinations to select optimal
positions of fluorescent tags and system-specific fluorophores,
before evaluating protein functionality in Arabidopsis roots.
For rapid data acquisition, we exploited widefield frequency-
domain FLIM (Supplementary Figure 2A; Verveer and Hanley,
2009) measurements for protoplast samples with high transgene
expression levels. Lifetime measurements in living Arabidopsis
tissues were conducted with time-correlated single photon
counting (TCSPC)-based time-domain FLIM (Supplementary
Figure 2B; Gerritsen et al., 2009) with confocal imaging of lowly-
expressed proteins at endogenous levels.

Position of Fluorescent Tags
Close proximity between the donor and the acceptor is a
prerequisite for achieving measureable FRET (Figure 1B). We
first optimized the tagging position to detect FRET between SHR
and SCR with a cyan-emitting mTurquoise (mTq) (Goedhart
et al., 2010) as donor and a yellow-emitting SYFP2 (Kremers
et al., 2006) as acceptor in Arabidopsis protoplasts. We
fused mTq and SYFP2 to either the amino- or carboxyl-
termini of the SHR and SCR proteins. We constructed
SCR:mTq, mTq:SCR, SHR:SYFP2, and SYFP2:SHR under the
constitutive promoter of Cauliflower Mosaic Virus 35S RNA
(35S) by the Gateway cloning system, and introduced them
into Arabidopsis protoplasts as pairs (example in Figure 1C).
As a negative control, we co-transfected SYFP2:SHR with a
nuclear-localizing mTq (NLS-mTq), while for positive control
we constructed a nuclear-localizing fusion between SYFP2 and
mTq (NLS-SYFP2:mTq), where constitutive FRET occurs. Upon
paired co-transfection, we measured lifetimes for each SHR-
SCR combination by frequency-domain FLIM measurements.
Frequency domain FLIM measurements yield a fluorescence
lifetime based on the phase shift (τφ) and demodulation (τmod)
of the fluorescence emission relative to the modulated excitation
source (Supplementary Figure 2A; Verveer and Hanley, 2009).
From these lifetimes and the lifetime of the donor-only sample,
the average FRET efficiency was calculated, yielding Eφ and
Emod (Supplementary Figure 2A). As shown in Figures 1D,E,
different combinations of tagging orientations gave varying
levels of lifetime changes, i.e., different shifts of lifetimes in the
scatterplots. This results in the unequal FRET efficiencies in the
bar chart. The SCR:mTq SYFP2:SHR combination scored the
highest FRET efficiency of Eφ = 24.6%± 1.8% and Emod = 11.2%
± 0.9% (Figures 1D,E; Long et al., 2017). These results suggest
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that the carboxyl-terminus of SCR and the amino-terminus of
SHR are in close proximity. Up to 33.3% FRET efficiency was
measured in the positive control NLS-SYFP2::mTq (Figure 1E),
comparable to the previous reported value (Goedhart et al.,
2010). The NLS-mTq SYFP2:SHR negative control gave near-
ground level FRET (Figure 1E), indicating that FRET between
each SHR-SCR combination reflects specific binding. To achieve
the highest sensitivity, we selected carboxyl-terminal-tagged SCR
and amino-terminal-tagged SHR for further optimizations and
analyses.

Suitability of the Fluorophores
The brightness and quantum yield of the fluorescent proteins
depends on pH, temperature and other conditions introduced by
different biological systems. To identify the optimal fluorophores
suitable for FRET-FLIM measurement in Arabidopsis, we
compared the performances of several fluorescent proteins in
protoplasts and roots (Tables 1, 2).

First, we evaluated whether cyan fluorescent protein (CFP)
variants SCFP3A and mTq, in the context of our FRET pair
combination SCR and SHR, could be used in a common cyan-
yellow FRET-FLIM setup in plant cells (Kremers et al., 2006;
Hamers et al., 2014). As shown in Figure 2A, SCR:mTq yielded
a higher FRET efficiency than SCR:SCFP3A in combination
with SYFP2:SHR in protoplasts, most likely due to mTq’s
higher quantum yield. However, SCR:SCFP3A SYFP2:SHR
measurements were more precise (Figure 2A, Supplementary
Figure 3A). The reduced precision of mTq-SYFP2 measurements
might reflect suboptimal mTq performance in plant nuclei (see
Discussion).

We next tested the performance of SCFP3A, mTq and
SYFP2 in Arabidopsis roots. Since SHR and SCR co-
localize in the U-shaped domain, it is essential to detect
them in these cells to assess where they interact. Under
endogenous promoters, both cyan-variant-tagged SCR and SHR
transgenic lines displayed low fluorescence levels relative to the
background: signal of pSCR::SCR:SCFP3A, pSCR::SCR:mTq, and
pSHR::SHR:SCFP3A could be detected in the endodermis with
low signal-to-noise ratios (SNR); while endodermal signal of
pSHR::SHR:mTq was indistinguishable from background signal
(Figure 2B).

TABLE 1 | Summary of fluorophores used in this study and their performance in

transient systems.

Fluorophore Expression under

constitutive

promoters in

transient systems

FRET efficiency Recommended

for TF

expression and

FLIM

experiments

SCFP3A High Good +++

mTurquoise High Very good +++

SYFP2 High Good +++

mCherry Moderate Good +++

mStrawberry Moderate Moderate ++

mRFP High Good +++

Since FRET-FLIM is more dependent on donor fluorescence,
the poor detection of these two cyan variants made them
unsuitable as donor tags in this system. On the contrary,
pSCR::SCR:SYFP2 and pSHR::SYFP2:SHR yielded readily
detectable emissions supported by higher SNR (Figure 2B),
hence we favored SYFP2 as donor tag. Since it has been
previously shown that red fluorescent proteins are efficient FRET
acceptors for SYFP2 with Förster radii > 5.6 nm (Goedhart et al.,
2007), we proceeded to optimize the labeling conditions for
yellow-red FRET pairs.

Three red-emitting variants, mStrawberry, mCherry and
mRFP, were tested for their performance as mentioned above.
In protoplasts, SHR and SCR tagged with all three red variants
and SYFP2 gave comparable FRET efficiency, with SYFP2-
mStrawberry pair slightly lower (Figure 2A, Supplementary
Figure 3B). When expressed in roots, pSCR::SCR:mRFP
exhibited higher detectability than pSCR::SCR:mStrawberry and
pSCR::SCR:mCherry, making mRFP a better choice. In the case of
SHR, all the red variants displayed low detectability correlating
with low signal-to-noise ratios (SNR) (Figure 2B). Considering
that sufficient FRET analysis requires more acceptor molecules
than donors, or “donor saturation,” SCR is then more suitable as
acceptor due to its higher endogenous expression level than SHR
(Long et al., 2017, Table 3). Therefore, we selected SYFP2:SHR
and SCR:mRFP for in vivo FRET-FLIM studies.

In Vivo Fusion Protein Functionality
Tagging proteins of interest with fluorescent proteins has a
potential pitfall: the resulting fusions might reduce biological
function due to undesired conformational changes or steric
hindrance introduced by the tags. Measurements carried out
with such non-functional or dysfunctional fusions might not
accurately reflect their endogenous behaviors. Therefore, it is

TABLE 2 | Overview on the fluorophores performance when used under native

promotors in living Arabidopsis roots.

Fluorophore In vivo

expression

under

endogenous or

tissue specific

promoters

In vivo

signal-to-noise ratio

Suitable for TF

expression and FLIM

experiments

SCFP3A Low Moderate (Not suitable because

of high background)

mTurquoise Very low to not

detectable

Low (Not suitable because

of low detectability)

SYFP2 High Good +

mCherry Very low Low (Not suitable because

of low detectability)

mStrawberry Very low Low (Not suitable because

of low detectability)

mRFP High Good* +

*The intensity is depending on the promoter activity, while for SCR promoter the levels

were suitable for this study, mRFP intensity is too low for SHR as an acceptor under its

endogenous promoter.
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FIGURE 2 | Selection of an appropriate fluorescent protein pair for FRET-FLIM analysis. (A) Bar chart of FRET efficiency Eφ and Emod between SCR and SHR tagged

with different fluorescent proteins, with error bars of standard error of mean, n > 10 for each sample. *p < 10−2, p-values calculated by Student’s t-test compared to

the donor-only samples. (B) Confocal images of roots expressing SCR and SHR tagged with different fluorescent proteins, with signal-to-noise ratio (SNR) calculated

from endodermal nuclear fluorescence signal. Scale bar, 50µm. Each image displays the overlay image of transmission and fluorescent channels in the left half and

the fluorescence channel in the right half from the same root.

crucial to evaluate the functionality of fusion proteins before
FRET-FLIM measurements.

The C terminal fusion pSCR::SCR:mRFP was reported to be
functional (Long et al., 2015a, 2017). For SHR fusion, despite
its high detectability in the endodermis, we noticed that only
11% of the roots harboring pSHR::SYFP2:SHR showed clearly
visible signal in the stem cell niche (Figure 3b), while such
signal was readily visible in 80% of roots harboring the carboxyl-
terminal-tagged pSHR::SHR:SYFP2 (Figure 3a). This indicated

that SYFP2:SHRmight not move efficiently between certain cells.
As previously shown, SHR movement from the vasculature is
essential for root growth regulation, and altering its mobility
can cause abnormal CEI division and disrupted root architecture
(Cui et al., 2007; Vatén et al., 2011; Koizumi et al., 2012; Long
et al., 2015a). Additionally, SHR and SCR co-localize in the
endodermis and stem cell niche, it is thus essential to have
sufficient SHR movement into the stem cell niche to measure
SHR-SCR interaction. Since amino-terminal tagging on SHR
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TABLE 3 | Summary of the performance of fluorophore pairs used in this study.

FRET pair Suitability for FRET-FLIM

in transient systems

Suitability for native

FRET-FLIM*

SCFP3A—SYFP2 +++ –

mTurquoise—SYFP2 ++ –

SYFP2—mCherry ++ –

SYFP2—mStrawberry ++ –

SYFP2—mRFP +++ +

*Note that this is strictly dependent on the level of expression and the stability of the protein

of interest.

was not reported to disrupt SHR movement (Heidstra et al.,
2004), we reasoned that the Gateway linker between SYFP2
and SHR might cause an undesired conformational change to
the fusion, and attempted to restore SYFP2:SHR mobility by
linker alteration. A typical attB2 Gateway recombination site
with flanking sequence is recommended to be 27 base pairs
after recombination (Invitrogen), translating to a linker of 9
amino acids DPAFLYKVA between SYFP2 and SHR. Although
longer, more flexible linkers are usually favored for functional
tagging, farther tag displacement can potentially increase the
distance and reduce the probability of spatial association between
donor and acceptor fluorophores beyond the Förster radii,
thereby reducing FRET. Thus, we shortened the linker using
site-directed mutagenesis, and generated pSHR::SYFP2-SHR11a
by removing 5 amino acids, reducing it from DPAFLYKVA to
DKVA, similar in length to the described functional N-terminal
SHR fusion (Heidstra et al., 2004). Both linkers are estimated
to be shorter than the 5.6 nm Förster radius for SYFP2-mRFP
pair (Goedhart et al., 2007). As shown in Figure 3c, up to 71%
of the roots harboring pSHR::SYFP2-SHR11a showed significant
improvement of SHR fusion signal in the stem cell niche. The
linker alteration of SYFP2-SHR11a did not change the FRET
efficiency between SHR and SCR in protoplasts (Supplementary
Figures 3A,B), indicating that neither fluorophore distance
nor dipole orientation was disrupted. This enabled us to
measure FRET-FLIM between SHR and SCR in their endogenous
conditions.

Our optimization procedure revealed that the combination
of analysis in protoplasts (ex vivo) and intact plants (in vivo)
is essential for the selection of the appropriate donor-acceptor
pairs and protein fusions strategies for in vivo FRET-FLIM
measurements. A summary of choosing the optimal fluorophores
ex vivo and in vivo as well as additional considerations of using
this technology can be found in Supplementary Materials.

In Vivo FRET-FLIM in Different
Developmental Contexts
In a previous study, we implemented in vivo FRET-FLIM
measurements between SYFP2-SHR11a and SCR:mRFP in the
Arabidopsis primary root meristem, and showed that SHR and
SCR interact in theQC, CEI and endodermis in Arabidopsis roots
(Long et al., 2017). The primary root meristem is pre-established
in the embryotic root pole (ten Hove et al., 2015), while de novo

FIGURE 3 | Improvement of SHR fusion protein mobility. Confocal images of

roots expressing SHR fusion proteins differentially tagged with SYFP2, with

signal-to-noise ratio (SNR) calculated from endodermal nuclear fluorescence

signal. (a) pSHR::SHR:SYFP2, (b) pSHR::SYFP2:SHR, (c)

pSHR::SYFP2-SHR11a, n > 10 for each sample. Scale bar, 50µm. For every

image, the left half displays the overlay image and the right half fluorescence

channel from the same root.

root meristems repetitively emerge in the forms of lateral roots,
adventitious roots and during root regeneration (Verstraeten
et al., 2014; Efroni et al., 2016). Although highly resembling
in structure and sharing the transcriptional regulatory network,
the precise regulatory mechanisms have been proposed to differ
between these root meristems (Lucas et al., 2011; Verstraeten
et al., 2014; Efroni et al., 2016; Du and Scheres, 2017). To
explore the SHR-SCR interaction profile in other developmental
contexts, we extend the application of in vivo FRET-FLIM
measurements to Arabidopsis embryos and developing lateral
roots.

In heart stage embryos, SHR and SCR expression domains
at the root pole resemble those in the postembryonic roots
(Figure 4a). Similar to the observations in the primary
root meristem (Long et al., 2017), we found that SYFP2-
SHR11a exhibited strong FRET with SCR:mRFP in QC, CEI
and endodermis of late heart-/early torpedo-stage embryos
(Figures 4b,c). Interestingly, FRET between SYFP2-SHR11a and
SCR:mRFP in the embryo was enhanced in QC and the first
endodermal cell (endodermis 1), to similar levels occurring in the
CEI (Figure 4c). This observation might reflect enhanced SHR-
SCR interaction or closer SHR-SCR association in multimeric
protein complexes in these embryonic cells. Alternatively, the
contribution of high background signal (reduced SNR in
Figure 4a) with generally shorter lifetimes in the embryos might
have influenced FRET detections and resulted in a general
lifetime reduction. To distinguish between these possibilities,
detailed expression analysis of direct target genes of SHR-SCR
complex like CYCD6;1 during embryogenesis, as well as creating
mutations in the SHR-SCR interaction domain, will be necessary
to fully understand these observations. Nevertheless, our in vivo
FRET-FLIM results hint that, despite the structural resemblance
and developmental similarity, the underlying molecular wiring
regulating embryonic root can be different from the root tip.

New root meristems are formed from differentiated root tissue
in a process called lateral root formation. Lateral root primordia
(LRP) initiation is marked by a series of cell divisions originating
from the vasculature, particularly the pericycle cells opposing the
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FIGURE 4 | In vivo FRET-FLIM of SHR-SCR in embryos and lateral roots. (a) Early torpedo stage Arabidopsis embryo co-expressing pSHR::SYFP2-SHR11a and

pSCR::SCR:mRFP, with signal-to-noise ratio (SNR) calculated from endodermal nuclear fluorescence signal. Scale bar, 50µm. Yellow fluorescence channel (left) and

red fluorescence channel (right) were overlaid with transmission image from the same root. (b) Heatmaps of fluorescence lifetime in donor-only and sample embryo.

(c) Quantification of lifetime change (1τ ) in single cells. Column color matches with tissue type illustrated in this figure. Circles indicate p-value calculated by Student’s

t-test of sample lifetimes comparing to donor-only lifetimes at each cell position, with the dotted line marking the 0.01 significant value. Donor embryos n = 18, FRET

sample embryos n = 34. (d) Arabidopsis stage IV LRP co-expressing pSHR::SYFP2-SHR11a and pSCR::SCR:mRFP. Scale bar, 50µm. OL1 and OL2, outer layer 1

and 2; IL, inner layer; Vas, primary root vasculature. Arrowheads point to OL2 cells where SHR and SCR co-localize. (e) Fluorescence lifetime heatmaps of donor-only

and sample LRP. OL2 cells were numbered with OL2-1 in the middle of the LRP and OL2-2 and−3 progressively further from LRP midline. (f) Quantification of FRET

between SYFP2-SHR11a and SCR:mRFP measured in (e). Donor LRP n = 13, FRET sample LRP n = 17. (g) Arabidopsis emerged lateral root co-expressing

pSHR::SYFP2-SHR11a and pSCR::SCR:mRFP. Scale bar, 50µm. Yellow fluorescence channel (upper) and red fluorescence channel (lower) were overlaid with

transmission image from the same root. (h) Fluorescence lifetime heatmaps of donor-only and sample emerged lateral root. (i) Quantification of FRET between

SYFP2-SHR11a and SCR:mRFP measured in (h). Donor lateral roots n = 11, FRET sample lateral roots n = 3. Vas LRP, vasculature of LRP.

xylem pole (Malamy and Benfey, 1997). Using in vivo FRET-
FLIM, we studied the interaction between SHR and SCR during
lateral root formation. As shown in Figure 4d, SHR and SCR only
co-localized in a subset of cells in the developing stage IV LRP:
SCR:mRFP was detected in both of the two outer layers (OL1
and OL2), while SYFP2-SHR11a resided in the OL2 nuclei and
maintained nuclear-and-cytoplasmic localization in the inner
layer (IL), similar to mature vasculature. Within OL2 where
SYFP2-SHR11a and SCR:mRFP co-localized, FRETwas detected
higher in the central cells (OL2-1, Figure 4e,f). In contrast, OL2
cells displaced from LRP midline (OL2-2 and OL2-3, Figure 4f)
exhibited lower FRET levels similar to those in the endodermis

in the primary root (Long et al., 2017). No FRET was detected in
the IL or vasculature due to the absence of detectable SCR:mRFP
(Figure 4f).

After emergence, the lateral root morphology resembles the
primary root, with similar cellular organization and expression
patterns of SHR and SCR (Figure 4g). However, the FRET levels
between SYFP2-SHR11a and SCR:mRFP in emerged lateral
roots were generally higher with no significant difference between
QC, CEI and endodermis (Figure 4i).

Analyses between SYFP2-SHR11a and SCR:mRFP in
Arabidopsis embryos and LRP show that in vivo FRET-FLIM
can be utilized within different developmental contexts. The
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generally preserved but slightly altered interaction patterns
further suggests that the transcriptional regulations of SHR
and SCR may exhibit different network topology in different
developmental stages.

FRET-FLIM of Plant Proteins in
Heterologous System
Interaction between SHR and SCR has been shown by many
approaches including assays in mammalian cells (Long et al.,
2017). To assess whether this interaction can be detected
by FRET-FLIM in a system devoided from plant specific
transcriptional regulations, we measured FRET-FLIM between
SYFP2-SHR11a and SCR-mRFP the HeLa cells and we could
detect interaction (Supplementary Figures 4C,D), albeit at a lower
level. This demonstrates that plant protein interaction can be
analyzed in heterologous systems like animal cells.

DISCUSSION

In the present study, we outline an optimization procedure of the
labeling conditions for applying the FRET-FLIM technology to
inspect nuclear protein interactions in living plants. We show
that protein complex formation can be mapped to specific cells
in different organs in vivo and that the interaction domain
is spatially modulated during development. This technique
therefore overcomes previous limitations to studying protein
complex dynamics at cellular resolution.

We show that fluorophores exhibit different performances
in plant cells when fused to two interacting transcription
factors. For example, mTq is well recognized as a preferred
CFP variant for use as a FRET donor (Goedhart et al.,
2010). In the Arabidopsis root, endodermal signal was low for
SCR:mTq and undetectable for SHR:mTq (Figure 2B) relative
to autofluorescence. Such low mTq detectability, however, was
not reported when expressed at high levels (Figure 1C; Hecker
et al., 2015) or localized to cell membranes, cytoplasm or
cytoskeleton in intact Arabidopsis plants (Roppolo et al., 2011;
Peremyslov et al., 2012; Waadt et al., 2014). This is possibly due
to high expression levels of these fusion proteins concentrated at
different subcellular domains, or might suggest that mTq protein
is sensitive to the plant nuclear microenvironment. Nevertheless,
our optimization procedure highlights the importance of
selecting appropriate fluorophores for different cellular and
subcellular conditions (see Supplementary Materials). Linker
optimization between the protein-of-interest and the fluorophore
is also crucial for ensuring close proximity, favorable dipole
orientation and fusion protein functionality. Our studies
confirmed that the linker introduced by common Gateway
recombination site is sufficiently short for FRET between SHR
and SCR, although functionality of N-terminal SHR fusion was
only restored with shortened linker without compromising FRET
detection (Figure 3). It is therefore important to optimize fusion
linkers for functional in vivo FRET studies.

Optimizing FRET-FLIM in living Arabidopsis roots allowed
visualization of spatiotemporal bindings between endogenous
SHR and SCR during different developmental stages, which

cannot be addressed by in vivo over-expressions or cell
lines (Long et al., 2017). We found that the FRET levels
between SYFP2-SHR11a and SCR:mRFP vary among different
developmental contexts, and among different cell types within
each developmental stage. The enhanced FRET-FLIM signals in
CEI reflect a specific conformation of a multimeric complex
modified by the presence of other binding partners (Long
et al., 2017). We have recently shown that SHR and SCR
interact with the BIRD protein JACKDAW which regulate
SHR intercellular mobility and transcriptional activity, and
that SHR-SCR-JKD complexes display distinct conformations
within the U-shaped domain (Long et al., 2015a, 2017). The
cell cycle regulator RETINOBLASTOMA-RELATED (RBR) also
physically associates with the SHR-SCR complex to repress
ectopic formative divisions in the endodermis (Cruz-Ramírez
et al., 2012). The in vivo binding dynamics of RBR and other
interacting BIRD proteins to the SHR-SCR complexes have not
yet been tested. To this end, extending our optimized in vivo
FRET-FLIM technique for proteins interacting with SHR-SCR
complex to create a protein interaction map at cellular resolution
will be a big step toward understanding the cell-specific protein
complex dynamics in vivo and their functions during different
stages of Arabidopsis development.

The discovery of SHR-SCR interaction heterogeneity
highlights the spatiotemporal sensitivity of in vivo FRET-FLIM.
However, FRET requires the donor and acceptor being within
the stringent Förster radius and the fluorophore dipoles parallel
to each other, making it especially sensitive to close-ranged
protein associations but inefficient to detect interactions between
far-end-tagged proteins due to functionality obligations or
associations of proteins within big protein complexes that exceed
Förster radii. Meanwhile, single molecule spectroscopy analyses
such as fluorescence correlation spectroscopy (FCS)-based
techniques, can detect protein-protein association without
Förster radius requirement. While single molecule tracking of
SHR-SCR complex using FCS was in line with our findings
(Clark et al., 2016), however, it was proven impractical in the
stem cell niche due to high background level, while in vivo
FRET-FLIM succeeded in obtaining interaction information
thanks to the stringently controlled fitting procedure. To sum
up, one can obtain a broader spectrum of information regarding
protein-protein interaction by combining FRET-FLIM and
FCS-based techniques in vivo.

Nevertheless, our heterologous analyses forecast future
applications of in vivo FRET-FLIM in studying protein-protein
interactions in other biological systems. Indeed, attempts of
applying FRET-FLIM measurements in living animals or intact
tumors to study interactions between exogenous proteins or
monitor biosensors have been reported (Kelleher et al., 2009;
Kardash et al., 2011; Venugopal et al., 2012; Nobis et al.,
2013), promising the possibility of in vivo FRET-FLIM usage.
Multiphoton FRET-FLIM (Peter et al., 2005) may further
enhance SNR, improve detection depth in thicker tissues and
reduce photobleaching, although the near-infrared excitation
will likely require additional optimizations to address potential
cross-excitation and signal bleedthrough for the SYFP2-mRFP
pair. Following our optimization procedure, endogenous protein
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interactions should be readily analyzable in living animals and
other multicellular organisms.

In conclusion, optimization of FRET-FLIM allows detection
of protein complexes in living tissue at cellular resolution. Our
optimization procedure is, in principle, appropriate for any
protein interaction pair and in various subcellular compartments
(Stahl et al., 2013; Somssich et al., 2015; Weidtkamp-Peters
and Stahl, 2017). Additionally, homo-FRET measured by
fluorescence anisotropy can help in further deciphering protein
complex compositions. Low abundance of certain proteins and
potential limitations in engineering effective fusions without
disrupting protein function still remain as major challenges for
in vivo FRET-FLIM measurements. Technical advances will rely
on continuous improvements of fluorescent tags and detection
sensitivity. Characterizing and implementing mTurquoise2,
mScarlet (Bindels et al., 2017) and other fluorophores with
high quantum yield in future FRET-FLIM measurements, in
addition to the application of other microscopic techniques such
as single-molecule FRET-FLIM or FCS-based techniques in living
organisms, will allow us to precisely monitor the composition of
multiprotein complexes and their dynamics in vivo.
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