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Avoidance of disadvantageous genetic correlations among growth duration and yield

traits is critical in developing crop varieties that efficiently use light and energy resources

and produce high yields. To understand the genetic basis underlying the correlations

among heading date and three major yield traits in rice, we investigated the four traits in

a diverse and representative core collection of 266 cultivated rice accessions in both

long-day and short-day environments, and conducted the genome-wide association

study using 4.6 million single nucleotide polymorphisms (SNPs). There were clear positive

correlation between heading date and grain number per panicle, and negative correlation

between grain number per panicle and panicle number, as well as different degrees of

correlations among other traits in different subspecies and environments. We detected

47 pleiotropic genes in 15 pleiotropic quantitative trait loci (pQTLs), 18 pleiotropic genes

containing 37 pleiotropic SNPs in 8 pQTLs, 27 pQTLs with r2 of linkage disequilibrium

higher than 0.2, and 39 pairs of interactive genes from 8 metabolic pathways that

may contribute to the above phenotypic correlations, but these genetic bases were

different for correlations among different traits. Distributions of haplotypes revealed that

selection for pleiotropic genes or interactive genes controlling different traits focused on

genotypes with weak effect or on those balancing two traits that maximized production

but sometimes their utilization strategies depend on the traits and environment. Detection

of pQTLs and interactive genes and associated molecular markers will provide an ability

to overcome disadvantageous correlations and to utilize the advantageous correlations

among traits through marker-assisted selection in breeding.

Keywords: genetic correlation, genomewide association study, pleiotropic gene, pleiotropic QTL, gene interaction

INTRODUCTION

Rice (Oryza sativa L.) is the staple food of a large proportion of the world population. Development
of elite varieties that use light and soil resources efficiently to produce high yield is an important
way to eliminate food shortages resulting from population growth and reductions in the area of
arable land (Takeda and Matsuoka, 2008). However, in practice, it is difficult to develop varieties
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that produce high yields under conditions of shortened growth
duration (Okada et al., 2017). Rice breeders also often face
the problem of negative correlations among different yield
traits (Sandhu et al., 2013; Ranawake and Amarasinghe, 2014),
such as grain number per panicle (GNP), panicle number
per plant (PN), kilo-grain weight (KGW), and rate of seed
setting (Sakamoto and Matsuoka, 2008; Zhao et al., 2016). Many
published works suggest that there is a disadvantageous positive
correlation between heading date (HD) and GNP, but negative
correlations among yield traits (Das and Sarma, 2015; Kharb
et al., 2016). Most high-yield varieties have long growth duration
in regions with adequate light and energy resources because
longer growth duration provides more metabolic activity and
nutrition for grain filling (Okada et al., 2017). However, longer
growth duration becomes a key limiting factor for widespread
production planting, especially in high latitude and high altitude
regions. Modern breeding has therefore targeted development of
high-yielding varieties with moderate growth duration, such as
Shanyou 63 (Zhu et al., 2016) with optimal growth duration of
138 days, 120–130 GNP, medium PN and KGW of 29 g, but also
maintains higher yield than those with short growth duration
(http://www.ricedata.cn/variety/index.htm). Thus it is feasible to
balance the relationships among traits by breaking constraints
and to uncover the genetic basis underlying correlations among
HD and yield.

Mapping of quantitative trait locus (QTL) has revealed
many pleiotropic QTLs (pQTLs) that contributing to the
correlations among HD and yield traits at the genomic level.
Approximately 734, 209, 239, and 223 widely dispersed QTLs
for HD, GNP, PN, and KGW were mapped using different
segregating populations respectively (http://www.gramene.org/),
which densely distributing across the 12 chromosomes (Ni et al.,
2009). By searching their shared markers at those QTLs, we
detected more than 27-42 pQTLs per combination of two traits
(Supplementary Figure 1 and Supplementary Table 6), namely
the common QTLs between two traits. However, only few of
them were reported to be pleiotropy by mapping in the same
population and in a single environment. For example, one pQTL
that contributed to the phenotypic variations of both HD and
GNP was detected using a recombination inbred line derived
from the cross Zhenshan 97B×Miyang 46 (Zhuang et al., 2002).
However, most of the other pQTLs detected are not yet to be
confirmed by mapping in the same population and in a single
environment.

With increasing numbers of QTLs being cloned
(Supplementary Tables 11–14), several pleiotropic genes
(designated pGenes, the genes with pleiotropy for different
traits of interest, that is, commonly associated with the traits of
interest in GWAS results) related to the four traits in pQTLs

Abbreviations: 3KRGP, 3000 Rice Genomes Project; CMLM, Compressed mixed

linear model; CS, Changsha; GNP, Grain number per panicle; GWAS, Genome-

wide association study; HD, Heading date; iGene, Interactive gene; KGW, Kilo-

grain weight; LD, Linkage disequilibrium; MAS, Marker-assisted selection; MCC,

Mini core collection; OD, Opposite direction effect; pGene, Pleiotropic gene;

PN, Panicle number per plant; Pqtl, Pleiotropic QTL; pSNP, Pleiotropic SNP;

PVC, Phenotypic variance contribution; QTL, Quantitative trait locus; SD, Same

direction effect; SY, Sanya; SNP, Single nucleotide polymorphism.

have become evident. Among them, Ghd7, DTH8, and RFL have
important roles in regulation of HD and GNP (Rao et al., 2008;
Xue et al., 2008; Wei et al., 2010). AID1 and RFL are pGenes that
control HD and PN. AID1 mutant plants have fewer tillers and
show delayed flowering by up to 15 days compared to the wild
type (Zhu et al., 2004). The expression level of RFL affects HD
and vegetative axillary meristems (Rao et al., 2008). HGW has
a fundamental role in the ubiquitination pathway in control of
HD and KGW (Li et al., 2012). LAX1, OsSPL14 and RFL affect
GNP and PN by having opposite roles in production of tillers
and panicle branches (Komatsu et al., 2003; Rao et al., 2008; Jiao
et al., 2010; Miura et al., 2010). GSD1 is an important regulator
of GNP and KGW, with a role in regulating photoassimilate
translocation through the symplastic pathway to impact grain
setting (Gui et al., 2014). The literature about related to pQTLs
and pGenes suggests that pleiotropic effects among agronomic
traits are very common, but study on its discovery and our
understanding of the genetic basis is still quite limited.

Facilitated with high-throughput sequencing technology,
genome-wide association study (GWAS) using high quality
single nucleotide polymorphisms (SNPs) has been proved to
be a good approach to explain the genetic basis of complex
quantitative traits (Huang et al., 2010, 2011). It may also provide
an efficient tool to discover the genetic basis of correlations
among agronomic traits since GWAS has demonstrated the
advantages in improving the efficiency of detecting natural
variations, and in saving time for QTLmapping and gene cloning,
and especially in detecting QTLs controlling multiple agronomic
traits in different environments (Myles et al., 2009). In this study,
we estimated the phenotypic correlations among HD and yield
traits for different rice subspecies in two typical environments
using a representative mini core collection (MCC) of the global
cultivated rice (Zhang et al., 2011), and carried out GWAS
in indica, japonica and the full populations using high quality
SNPs from the whole genome. Our aim was to identify QTLs
simultaneously controlling growth duration and yield traits, to
analyze the genetic bases contributing to correlations among
them, and to investigate possible utilization pattern for the QTLs
with different genetic bases in breeding practice so as to gain
from the positive correlation or avoid the negative correlation.
The study sheds light on understanding of the genetic basis
underlying the correlations among four traits and provides QTLs
and markers to breeders for further improving the important
agronomic traits that are subject to both positive and negative
correlations.

MATERIALS AND METHODS

Populations for GWAS
The 266 rice varieties of the MCC for GWAS included 87 non-
Chinese cultivated varieties that represented a global collection
of more than 9,000 foreign rice accessions, and 179 varieties
selected from more than 50,000 Chinese varieties conserved in
the Chinese National Gene Bank, and representing more than
70% of the genetic diversity in the respective germplasm sets
(Zhang et al., 2011). The MCC thus has a wide geographic
and morphological representation (Supplementary Table 1 and
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Supplementary Figure 2A). It comprises 151 landraces, 114
improved varieties from 24 provinces in China and 35 other
countries; it covers all maturity types, including 70 early-season,
100 intermediate-season, and 87 late season varieties.

The phylogenetic relationships of the 266 varieties were
determined using genetic distance calculated from 1.8 million
high quality SNPs, and the resulting neighbor-joining tree
(Supplementary Figure 2B) as well as the principal-component
analysis (PCA) (Supplementary Figure 3) showed that they
comprised two divergent subspecies groups, Oryza sativa ssp.
indica with 157 varieties, and ssp. japonica with 109 varieties.

Phenotyping for MCC
Phenotypes of MCC were evaluated in two rice-growing
environments (Supplementary Figure 4); one was grown from
November 2012 to April 2013 at Sanya (SY) in Hainan province

(18◦20
′

N), representing a short-day environment; the other was
grown from May to October 2013 at Changsha (CS) in Hunan

province (28◦11
′

N), representing a long-day environment. All
varieties were planted in a randomized complete block design
with two replications. Strong and uniform seedlings were
transplanted according to a standard design of three rows × 10
plants / row, with a relatively low density of 150,000 plants per
hectare so as to avoid interaction between density and genotype.
Field management, including irrigation, fertilization, and disease
and pest control, followed local plot trial management.

The middle five plants in the middle row for each variety were
sampled for phenotyping that included HD and the three major
yield factors, PN, GNP and KGW. HD of each accession was
recorded when the first inflorescence of more than 50% of plants
had emerged above the flag leaf sheath; GNP was the mean of
grains number on the main panicles of five plants; PN was the
mean number of productive panicles from the five plants; and
KGW was estimated from the weights of 100 fully filled grains.

Genome Sequencing and SNP
Identification
As a subset of the 3,000 Rice Genomes Project (3KRGP), the
whole genome sequence of the entire MCC, was carried out
using high-throughput sequencing on the HiSeq2000 platform
of BGI-Shenzhen (Li, 2014; Alexandrov et al., 2015; Sun et al.,
2017). Clean reads showed an average sequencing depth of 14×,
covering 94.0% of the Nipponbare reference genome (Kawahara
et al., 2013). Using the same method as 3KRGP, we called
10.7 million non-redundant SNPs in the MCC. By quality
control, we obtained 4.6 million high quality SNPs with minor
allele frequency ≤ 5% and missing rate ≤ 50% across the 266
accessions, 12.35 SNPs per kb in the rice genome on average
approximately.

GWAS and QTL Detection
GWAS for indica, japonica and full populations on traits
HD, GNP, PN and KGW were separately implemented using
the compressed mixed linear model (CMLM) that took
into account population structure estimated by principal
component (PC) and kinship so as to reduce false positives
(Kang et al., 2008; Price et al., 2010; Zhang Z. et al.,

2010; Yang et al., 2014). The principal component (PC) and
kinship were conducted using the 4.6 million SNPs by an
R implementation (www.R-project.org) available as part of
the GAPIT software package (version 3.0.2) (Lipka et al.,
2012).

Given that most of multi-test adjustment methods especially
the Bonferroni correction are too stringent because not all
markers are independent due to linkage disequilibrium (LD)
among markers, missing QTL with small effect usually makes
GWAS not as straightforward as previously thought (Liu et al.,
2016). Instead of multi-test adjustment method, in this study we
used the permutation test, which was proven to be an effective
strategy to define the genome-wide significant threshold of a
complex agronomic trait controlled by multiple alleles with
minor effect, and had better control of population structure
(Huang et al., 2015; Yano et al., 2016). We divided the phenotype
(Y) of each accession into the original genotypic effect (G) and
the fixed effect of population structure (Ps). Ps was estimated
by the average effect of each PC on each individual through
regression analysis of each PC on Y; the remainder was G after
excluding Ps from Y. G was randomly reshuffled as Gr, and the
new phenotype of each accession was Ps + Gr. We executed
permutation test using CMLM with the same parameters of
GWAS, a total of 1,000 sets of Ps + Gr were performed for
the four traits with the same number of PC. To improve
the computational efficiency, the SNPs whose P-values were
greater than 2 in the GWAS using original phenotypes were
included in the permutation test. Any SNP whose -log10(P)
was higher than -log10(P_perm), where P_perm was the lowest
P-value in 1,000 permutation tests, was considered to be real
association between the SNP and the original phenotype in the
GWAS.

LD length in cultivated rice is approximately 120 and 170 kb
for indica and japonica, respectively (Mather et al., 2007; Huang
et al., 2010). We therefore defined one QTL by the bin that
included at least three significant SNPs with a physical distance
<70 kb between two adjacent significant SNPs.

Hitch-Hiking Effects Among SNPs Within
pQTL on Phenotypic Correlation
To investigate the role of LD on phenotypic correlation (such
as HD vs. GNP) through hitch-hiking effects of QTL controlling
one trait (such as HD) with other traits (such as GNP), we firstly
calculated the average r2 (LD) of all pairs between significant
SNPs in HD QTL and significant SNPs in GNP QTL using
HAPLOVIEW, the detail is demonstrated in the schematic
diagram (Supplementary Figure 11A). We calculated the Pearson
correlation coefficient (rHD2GNP) between average r2 of LD and
differences between phenotypic variance contributions (PVC)
to GNP for HD QTL and GNP QTL (i.e., PVC to GNP for
significant SNPs within GNP QTL in GNP GWAS minus PVC
to GNP for significant SNPs within HD QTL in GNP GWAS).
This rHD2GNP thus accounted for the hitch-hiking effect of
HD QTL on GNP. Similarly, we also calculated the hitch-
hiking effect of GNP QTL on HD QTL, rGNP2HD, and other
combinations.
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Effects of SNP or Haplotypes and Their
Distribution Among Different Variety Types
We investigated the significance of effects on related traits
of alleles of each pleiotropic SNP (pSNP; that is, a SNP
simultaneously associated with two different traits), haplotypes
of pQTLs, and interactive genes (iGenes, the genes that
simultaneously control different traits of interest by interaction
among those genes) by multiple comparison analysis of GLM
in SPSS (version 19.0). Alleles with significantly higher effect on
some traits such as HDwere denoted as increased effect alleles for
that trait, and those with significantly lower effect were denoted
as decreased effect alleles. For pSNPs or haplotypes, for example,
pleiotropy between HD and GNP, we classified their effects into
four types: the same direction (SD) with both increased effect on
HD and GNP, or SD with both decreased effect on HD and GNP,
the opposite direction (OD) with increased effect on HD but
decreased effect on GNP, or OD with decreased effect on HD but
increased effect on GNP. We then calculated the distribution of
alleles with different kinds of effects among four types of varieties,
including indica landraces, improved indica varieties, japonica
landraces, and improved japonica varieties.

RESULTS

Phenotypic Variation and Correlation
Phenotypes of the four traits for the whole MCC and
two subspecies at SY and CS showed continuous Gaussian
distribution (Supplementary Figure 5) and wide variation. The
coefficient of variation at SY was higher than that at CS; however,
the phenotypic means for the MCC indicated longer HD, higher
GNP and PN, and lower KGW at CS than at SY. For subspecies

(Supplementary Table 2), japonica had longer HD, more GNP
and PN, and lower KGW than indica in both environments.
Pearson’s correlation analysis (Figure 1 and Supplementary Table
3) indicated that in general the correlations among traits were
stronger at SY than that at CS. This may be attributed to the
smaller range of variation in HD due to high temperature at
CS, but some correlations also appeared as subgroup-specific or
environment-specific. There was a significant positive correlation
between HD and GNP and a significant negative correlation
between GNP and PN in all populations and environments.
Longer HD significantly decreased PN and KGW in both
subspecies at SY, but its impact on these two traits depended
on subspecies at CS, where HD was negatively correlated with
KGW, but not PN in indica and the reverse in japonica. The
interplay between GNP and KGWdepended on subspecies, being
significantly negative only in japonica. The interplay between
PN and KGW was very weak, being only significantly negative
in indica at SY. These findings implicate the genetic foundation
underlying phenotypic correlation, which was also impacted by
environment to some extent.

Detection of pQTL by GWAS
GWAS was performed to dissect the underlying genetic basis
of correlations among the four agronomic traits for the full
population (266 lines) and each subspecies, the differences
of which contributed to 94% of population structure and
differentiation using CMLM (Huang et al., 2010; Lipka et al.,
2012; Figure 2A and Supplementary Figures 6–9). With the
permutation test threshold to evaluate significant SNP, we
identified 77, 65, 71 and 81 QTLs associated with HD, GNP,
PN and KGW, respectively (Supplementary Tables 4, 5), and the

FIGURE 1 | Phenotype distribution of grain number per panicle (GNP), panicle number (PN) and kilo-grain weight (KGW) along with increase of heading date (HD) in

different subspecies at Sanya (A) and Changsha (B), and correlations among the four traits at Sanya (C) and Changsha (D). *, significant correlation at the 0.05 level

(two tails); **, significant correlation at the 0.01 level (two tails).
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FIGURE 2 | Display of pleiotropic quantitative trait loci (QTLs) identified in the genome-wide association study (GWAS). (A) Circos diagram illustrates QTLs contributing

to different traits from GWAS and linkage analysis (LA). Here, the inner four layers from the inside represent QTLs for HD, GNP, PN, and KGW, respectively; the outer

four layers represent the frequency of each bin for HD, GNP, PN and KGW covered by LA-QTL respectively; the outside red fonts represent pleiotropic QTLs and the

black fonts represent cloned genes. (B) Venn diagram of pleiotropic QTLs from GWAS among the four traits in same population and environment.

reported QTL clusters had high coverage percentages to GWAS
QTL (Figure 2A and Supplementary Table 6). Among them,
only a few QTLs were repeatedly detected in both environments,

which had 2, 6, 3, 7 QTLs for HD, GNP, PN, KGW in the full
population, 4, 1, 0, 1 QTLs in indica, and 0, 3, 1, 1 QTLs in
japonica, respectively. The low proportion of common QTLs
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between SY and CS was partly ascribed to the different light
and temperature conditions. The number of QTLs in indica was
higher than in japonica, and was consistent with lower variation
in japonica than in indica (Garris et al., 2005). Within these
QTLs, 6 cloned genes were significantly associated including
OsMADS50, RFT1, Hd3a regulating HD, TUT1 relating to PN,
and OsPPKL2, FLO7 involved in KGW, and a further 8, 2, 4, and
8 cloned genes located in the scope of QTLs.

There were 46 pQTLs, each of which was shared in GWAS
by two different traits in the same population and environment
(Figure 2B and Supplementary Figure 10). Among them, 16, 9,
9, 8, 11, 11 pQTLs were detected between HD and GNP, HD,
and PN, HD and KGW, GNP and PN, GNP and KGW, and PN
and KGW, respectively. There was high correspondence between
pQTL number and the degree of phenotypic correlation among
traits. For example, the number of pQTLs between HD and
GNP was the highest (Figure 3), corresponding to the highest
correlation between HD and GNP. These pQTLs may shed light
on the genetic basis underling the correlations among traits.

Genetic Analysis of pQTL
There were at least two genetic bases to explain the pleiotropic
phenomenon: pGene (Rao et al., 2008; Miura et al., 2010; Li et al.,
2012; Lu et al., 2012) or linkage of genes controlling different
traits (Bai et al., 2011; Luo et al., 2013). To distinguish these two
fundamental genetic bases, we annotated all significant SNPs, and
found 47 pGenes in 15 pQTLs, 18 pGenes containing 37 pSNPs
in 8 pQTLs, while other 38 pQTLs did not contain any pSNP.We
hardly distinguished the real pGenes from the linkage between
genes when two pGenes were found in one QTL, unless functions

FIGURE 3 | Percentages of pleiotropic QTLs for different combinations relative

to the total QTL number of each corresponding trait revealed by GWAS. Here,

“A”, all pleiotropic QTLs in the same population and environment; “B”,

pleiotropic QTLs with r2 of Llinkage disequilibrium (LD) > 0.2; “C”, pleiotropic

QTLs containing pleiotropic genes; “D”, pleiotropic QTLs containing pleiotropic

genes with pleiotropic SNPs. Two bars in each pair of traits (such as HD GNP)

in “D” and elsewhere are percentages of pleiotropic QTLs relative to the QTLs

of the first trait (such as HD) and the second trait (such as GNP), respectively.

of all pGenes were validated. Here we focused on two sets of genes
or SNPs, one set was the cloned pGenes and pSNPs within pQTLs
and the other was pQTLs with unknown pGenes or without any
pGene or pSNP, in order to investigate the contribution of pGenes
or pSNPs and the contribution of linkage between different genes
or SNPs within pQTLs to the phenotypic correlations among
traits and their utilization in breeding.

Among the 37 pSNPs (Supplementary Tables 7, 8), the most
pSNPs and pGenes were between HD and GNP (26 pSNPs and
12 pGenes containing pSNPs) in 5 pQTLs, followed by PN and
KGW (8 and 4), and GNP and PN (2 and 2) in 1 and 2 pQTLs.
The pQTLs between HD and GNP accounted for 6.49 and 7.69%
of the QTLs for HD and GNP), respectively, pQTLs between PN
and KGW accounted for 1.41 and 1.25%, and pQTLs between
GNP and PN accounted for 3.08 and 2.82%, respectively. Among
the 47 pGenes (Supplementary Tables 7, 8), the most pQTLs and
pGenes were between HD and GNP (8 pQTLs containing 22
pGenes), followed by GNP and PN (4 and 15), PN and KGW
(2 and 7), HD and PN (2 and 5), GNP and KGW (2 and 2),
and HD and KGW (1 and 1). The pQTLs between HD and
GNP accounted for 10.39 and 12.31% of the QTLs for HD and
GNP, respectively, pQTLs between GNP and PN accounted for
6.15 and 5.63%, pQTLs between PN and KGW accounted for
2.82 and 2.47%, pQTLs between HD and PN accounted for 2.60
and 2.82%, pQTLs between GNP and KGW accounted for 3.08
and 2.47%, and pQTLs between HD and KGW accounted for
1.30 and 1.23%. The number of pQTLs containing pSNPs and
pGenes represented high correspondence with the strength of
phenotypic correlation (Figure 3). Among these pGenes, Ghd7
and HYR were cloned. HYR (LOC_Os03g02650) was reported
to control the chlorophyll levels and chloroplast number, and to
further affect plant biomass including GNP and PN (Ambavaram
et al., 2014). In our study, HYR was pleiotropy between HD and
GNP (Figure 4A). Haplotype analysis (Figures 4B,C) indicated
that this gene clearly differentiated between the two subspecies,
that Hap1 and Hap 3 mainly presented in indica and Hap2
was mainly in japonica. The varieties carrying Hap1 showed
significantly longer HD and more GNP than Hap3, possibly
explaining the positive correlation between HD and GNP. Indica
varieties grow in the low latitudes where their growth is not
limited by the light and energy resources (Londo et al., 2006),
thus the Hap1 of HYR was mainly selected in indica in order
to sufficiently make use of the long season to increase yield,
especially GNP. In contrast, japonica varieties grow in the higher
latitudes where their growth duration is usually limited (Londo
et al., 2006), consequently Hap2 of HYR was mainly selected in
japonica to maintain a balance between HD and GNP. The effect
of pSNPs (Figures 4D,E) showed that the percentage of pSNPs
with SD was 100% for HD vs GNP, completely explaining the
strong positive phenotypic correlation between HD and GNP.
But for PN vs KGW, 62.50% pSNPs appeared OD effect, being
consistent with the moderate strength of negative phenotypic
correlation between PN and KGW. The distribution of pSNPs
with SD or OD in landraces and improved varieties (Figure 4F)
indicated that genotypes with earlier HD and fewer GNP were
higher in proportion in japonica than in indica. The subspecific
differentiation attributed to the adaptions of two subspecies to
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FIGURE 4 | Analysis of pleiotropic genes and SNPs. (A) Local Manhattan plots from 450,000 to 1,450,000 on Chromosome 3 for GWAS of HD and GNP in indica

(ind.) at Sanya (SY). Here, colored dots represent SNPs in pleiotropic gene HYR (LOC_Os03g02650). (B) Gene structure of HYR and its haplotype distribution

between the two subspecies. (C) Differences for HD and GNP at SY among different haplotypes in pleiotropic gene HYR, different letters in box plots label significant

differences (P < 0.05) using Duncan’s test. (D) Correlations of effects calculated using pleiotropic SNPs among different traits. (E) Haplotype percentages of

pleiotropic SNPs with SD or OD. (F) Distribution of pleiotropic SNPs with SD or OD in landrace (LAN) and improved varieties (IMP) for HD and GNP, PN and KGW in

indica and japonica. I, increased effect; D, decreased effect; SD, same direction effect; OD, opposite direction effect.

different light and energy resources (Khush, 1997; Garris et al.,
2005), that is, japonica has decreased its growth duration in order
to ripen normally at the cost of decreasing GNP to some extent.
For pSNPs between PN and KGW, breeders tended to select the
genotypes with more PN but lower KGW in indica, but with the
reverse situation in japonica.

To estimate the effect of linkage between genes or QTLs on
phenotypic correlation between pairs of traits, we calculated the
average r2 (LD) between QTLs of two traits belonging to the
same pQTL. Among 46 pQTLs, the LD of approximately 5%
of combinations exceeded 0.6 (Supplementary Figure 11B). The
number of pQTLs indicated the consistent trend of distribution
among six combinations at each of four r2 (LD) levels (> 0.2, >
0.4, > 0.6 and > 0.8) (Supplementary Figure 11C). Among 27
pQTLs with LD stronger than 0.2, there were 9, 3, 4, 6, 4, and
5 pQTLs in combinations between HD and GNP, HD and PN,
HD and KGW, GNP and PN, GNP and KGW, PN and KGW,
respectively. pQTLs betweenHD andGNPwith LD stronger than

0.2 accounted for 11.69 and 13.85% of the QTLs for HD and
GNP, respectively; those between HD and PN accounted for 3.90
and 4.23%, those between HD and KGW accounted for 9.23 and
8.45%, those between GNP and PN accounted for 6.15 and 4.94%,
those between GNP and KGW accounted for 5.19 and 4.94%,
and those between PN and KGW accounted for 7.04 and 6.17%,
respectively. These percentages represented roughly the strength
of phenotypic correlation between the corresponding traits.
The correlation analysis (Figure 5A) between PVC differences
and r2 (LD) of pQTLs showed that the interplay influence
decreased along with the LD decay in one pQTL, indicating
the contribution of LD to the phenotypic correlation. The effect
of these pQTLs on different traits (Figures 5B,C) indicated
that 96.15% of haplotypes showed SD effects for HD vs GNP,
only 30.77 and 75% of haplotypes showed OD effects for GNP
vs PN and PN vs KGW, implying their weaker contributions
to phenotypic correlation than pSNPs. The distribution of
haplotypes with SD or OD in landraces and improved varieties

Frontiers in Plant Science | www.frontiersin.org 7 May 2018 | Volume 9 | Article 650

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Li et al. Genetic Correlation Among Agronomic Traits

FIGURE 5 | Analysis of pleiotropic QTLs. (A) Correlations between LD of two adjacent QTLs and differences of phenotypic variance contributions (PVC). Red, yellow,

blue and green represent the traits of calculated PVC respectively, and each combination has two corresponding results of correlation analysis. (B) Correlations of

effect which were calculated using pleiotropic QTLs (r2 of LD > 0.2) among different traits. (C) Haplotype percentage of pleiotropic QTLs (r2 of LD > 0.2) with SD or

OD. (D) Distribution of pleiotropic QTLs (r2 of LD > 0.2) with SD or OD in LAN and IMP for HD and GNP, GNP and PN, PN and KGW in indica and japonica. I,

increased effect; D, decreased effect; SD, same direction effect; OD, opposite direction effect; LAN, landrace varieties; IMP, improved varieties.

(Figure 5D) revealed the possibility of breaking the phenotypic
correlations by recombination, which may result to produce

haplotypes with earlier HD but increased GNP, and haplotypes
with more PN and higher KGW simultaneously. The above

results indicated that linkage between genes for different traits

contributes partially to the phenotypic correlation, but their
constraints on improving different traits simultaneously can be

broken by recombination.

Shared Pathways Contribute to Phenotypic
Correlation
In addition to pQTL, it was reported that interaction between
D53 and IPA1 in the strigolactone signal pathway can
simultaneously control plant height and tiller number in
rice (Song et al., 2017). We investigated the contribution of
genetic interaction among genes involved in the same pathway
to the phenotypic correlation. By pathway searching in the
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KEGG database (http://www.kegg.jp/) for all cloned genes and
significantly associated genes related to the four traits, we
discovered 15 pathways in which two or more genes were
involved in regulation of multiple traits and in which at least one
of them was cloned. In the 15 pathways (Supplementary Table 9)
there were 75 new candidate genes (14 for HD, 28 for GNP, 15
for PN, and 18 for KGW) and 27 cloned genes. These pathways
included arginine and proline metabolism, biosynthesis of amino
acids, carbon fixation in photosynthetic organisms, carbon
metabolism, carotenoid biosynthesis, circadian rhythm-plant,
diterpenoid biosynthesis, glycolysis-gluconeogenesis, nitrogen
metabolism, plant hormone signal transduction, plant-pathogen
interaction, porphyrin and chlorophyll metabolism, starch and
sucrose metabolism, ubiquitin mediated proteolysis and zeatin
biosynthesis. Through interaction analysis among genes within
the same pathway (Supplementary Table 10), we detected 39
pairs of iGenes in 8 pathways, including 11 iGenes in 5
pathways for HD and GNP, 3 in 2 for HD and PN, 4 in
3 for HD and KGW, 7 in 5 for GNP and PN, 6 in 4 for
GNP and KGW, and 8 in 4 for PN and KGW. The higher
number of iGenes and pathways represented a trend with
stronger correlations among traits (Figure 6A), and apparently
indicating their contribution to phenotypic correlations among
the four traits. For example, in the carotenoid biosynthetic
pathway (Figure 6E) we found thatOsCCD7 (LOC_Os04g46470)
and CYP97A4 (LOC_Os02g57290) interactively control PN
and GNP by determining the production of carotenoid, i.e.,
strigolactone or abscisic acid. It has been shown that ABA
is a regulator of strigolactone biosynthesis (López-Ráez et al.,
2010; Cheng et al., 2017). OsCCD7 (LOC_Os04g46470) was
reported to negatively control tiller number, PN and GNP
(Kulkarni et al., 2014), CYP97A4 was expressed in the root
and stalk junction from which tillers emerge (Lv et al.,
2012). Data in the RiceXpro database (http://ricexpro.dna.affrc.
go.jp/) also showed high expression level of CYP97A4 in
inflorescences of Nipponbare. The above results suggest that
OsCCD7 (LOC_Os04g46470) and CYP97A4 (LOC_Os02g57290)
might jointly control GNP and PN by interaction in the
carotenoid biosynthetic pathway. The effect of haplotypes for
each pair of iGenes on the traits (Figures 6B,C) indicated that
100.00% of haplotypes were SD for HD vs. GNP, and 100,
96.55, and 100% of haplotypes were OD for HD vs KGW,
GNP vs. PN, and PN vs. KGW. These results implied that the
contribution of iGenes to phenotypic correlation was higher
than pQTLs with r2 LD > 0.2. The distribution of haplotypes
with SD or OD in landraces and improved varieties (Figure 6D)
indicated that breeders tended to select genotypes with longer
growth duration with a hope to increase GNP of indica varieties
grown at low latitudes, but select genotypes with shorter growth
duration so as to guarantee timely maturity of japonica varieties
grown at high latitudes (Londo et al., 2006). Moreover, breeders
preferred the haplotypes with more GNP and fewer PN when
the effects of their haplotypes were opposite direction, because
increased planting density can compensate for disadvantages of
fewer PN. Consequently, only a small proportion of varieties
containing the haplotypes in iGenes that increase both GNP
and PN.

DISCUSSION

A common phenomenon in crop production is phenotypic
correlations among agronomic traits. Many of these phenotypic
correlations are constraints to crop production and breeding
progress. For example, the positive correlation between HD
and yield traits usually limits planting region or reduces the
production efficiency in regions with restricted light and heat
resources, and the negative correlations among yield traits have
been the critical constraints when yield reach certain levels.
Using the diverse rice MCC and whole genome sequence, we
investigated the possible genetic basis underlying correlations
among HD and yield traits based on GWAS and interaction
analysis. Our results provided not only more information about
pSNP, pGene, or pQTL, but also theoretical guidance to develop
the varieties with short growth duration and high yield.

Genetic Bases of Correlations Among HD
and Yield Traits
Previous study supported at least two genetic bases underlying
correlations among traits in rice, i.e., pGenes (Supplementary
Figures 12–15) and linkage between two genes controlling
different traits (Bai et al., 2011; Luo et al., 2013). Our results
not only confirmed the two genetic bases, but also suggested a
third one, i.e., the interaction between genes within the same
biological pathway. Although it was not definitively reported that
interactive genes within the same biological pathway contribute
to correlations between traits, Song et al. (2017) reported
that interaction between D53 and IPA1 in the strigolactone
signal pathway can simultaneously control the plant height and
tiller number. We identified 39 pairs of iGenes in 8 pathways
contributing to phenotypic correlation among growth duration
and yield traits. Among those pathways five contain at least
five candidate genes involved in controlling correlations among
traits by gene-gene interaction. These five pathways involved
two classes of metabolism, one related to energy metabolism,
including carbon metabolism, glycolysis / gluconeogenesis, and
starch and sucrose metabolism; the other one related to plant
hormones, including plant hormone - signal transduction and
carotenoid biosynthesis. Energy metabolism is fundamental for
development of almost all agronomic traits, and thus contributes
to phenotypic correlations among traits. For example, the Moc2
mutant has significantly reduced tiller numbers and a dwarf
phenotype; Moc2 encodes cytosolic fructose-1,6-bisphosphatase
1 (FBP1), which is a key enzyme in the sucrose biosynthesis
pathway (Koumoto et al., 2013). Several genes involving
in plant hormone biosynthesis and signal transduction are
reported to control different traits. For example, D10 encodes a
carotenoid cleavage dioxygenase and functions in strigolactone
biosynthesis, and can regulate the tiller number and plant height
simultaneously (Zhang S. et al., 2010). Our results indicated that
OsCCD7 (LOC_Os04g46470) and CYP97A4 (LOC_Os02g57290)
might together control GNP and PN by interaction in carotenoid
biosynthetic pathway. The contributions of these three genetic
bases to correlations among traits varied. Percentages of SD and
OD indicated that in general the contributions of pSNPs or
pGenes were the strongest, followed by iGenes within pathways,
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FIGURE 6 | Analysis of shared pathways containing interactive genes. (A) Numbers of pathways, pathways containing interactive genes and pairs of interactive genes

detected by GWAS. (B) Correlations of effect which were calculated using interactive genes among different traits. (C) Haplotype percentages of interactive genes

with SD or OD. (D) Distribution of interactive genes from pathways with SD or OD in LAN and IMP for HD and GNP, HD and KGW, GNP and PN, GNP and KGW in

indica and japonica. (E) Pleiotropy of genes regulating GNP (yellow) and PN (blue) by genetic interaction in the partial sketchy pathway of carotenoid biosynthesis

based on the KEGG database (http://www.kegg.jp/), including in known genes and candidate genes from GWAS. Black solid arrows, direct synthetic steps; black

dotted arrows, indirect synthetic steps; brown dotted lines, significant interactions among participating genes; I, increased effect; D, decreased effect; SD, same

direction effect; OD, opposite direction effect; LAN, landrace varieties; IMP, improved varieties.

Frontiers in Plant Science | www.frontiersin.org 10 May 2018 | Volume 9 | Article 650

http://www.kegg.jp/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Li et al. Genetic Correlation Among Agronomic Traits

and linkage between genes was the lowest. The number of pSNPs,
pQTLs and iGenes among different traits (Supplementary Table
8) also indicated different genetic bases for correlations among
traits. Correlations between HD and GNP, GNP, and PN can
attribute to all three genetic bases, and correlation between PN
and KGW is mainly ascribed to pSNPs or pGenes. Of course, the
resolution of GWAS cannot distinguish pGenes from pQTL that
contain more than two tightly linked genes and cannot validate
iGenes, these need to be confirmed using additional mapping
populations and molecular approaches.

Implementation of Genetic Correlations in
Molecular Breeding by Marker Assisted
Selection (MAS)
Disadvantageous correlations among agronomic traits are
important constraints to maximizing the potential of each trait.
Therefore, breaking or weakening correlations is one of the
problems faced by breeders. Our results reveal the diverse genetic
bases of phenotypic correlation in rice and different strategies
for improving the related traits. It is a difficult task to develop
varieties with short growth duration and more GNP due to
the high proportion of pGenes, pQTLs and interactions in
the same pathways, in which the genotype with short growth
duration is accompanied by few GNP in majority of the cases.
To overcome the contradictory effect of pGenes or iGenes,
farmers and breeders tend to utilize genotypes with weak
sensitivity to day-length so as to develop the varieties that
adapt the long-day environment with the cost of moderately
decreased GNP during the domestication of japonica (Xue
et al., 2008). In pQTLs, genotypes with short growth duration
and higher GNP were developed by breaking the linkage
between genes controlling growth duration and genes controlling
GNP (Figure 5D), except for the selection of genotypes with
weak effect. This practice suggests a potential to overcome
disadvantageous correlations between growth duration and GNP,
that is, we can monitor the genotypic relationship between genes
with tight linkage by molecular markers and thereby identify the
rare advantageous genotypic combinations during breeding. It is
undeniable that the positive correlation between growth duration
and GNP is advantageous in environments where the light and
temperature resources are adequate for the growth and harvest
of indica varieties in low latitudes and altitudes (Khush, 1997;
Londo et al., 2006). Our results indicated that the phenotypic
correlations and their genetic bases (including pGenes, pQTLs
and iGenes) vary in different environments and sometimesare
environment-specific, and their utilization strategies during
domestication and breeding as indicated above depends on the

geographic location, especially the latitude and altitude. Our
reported QTLs, pGenes, pQTLs and iGenes were clearly labeled
by the locations where they detected (Supplementary Tables
4, 6, 7, 9, 10), this will facilitate their utilization in breeding
and further study such as the molecular mechanism of GxE
interaction.

In summary, phenotypic correlations among growth duration
and yield traits can be advantageous or disadvantageous
depending on variety types and environments. Selection
for pGenes or iGenes needs to focus on the genotypes
with weak effects when two traits show disadvantageous
negative correlations or on genotypes with strong effect
when two traits have advantageous positive correlations.
Discovery of pQTLs attributed to different genes with strong
LD or iGenes will provide breeders the opportunities to
overcome the disadvantageous phenotypic correlations among
traits by breaking the disadvantageous linkages or genotype
combination for two genes, and also provide the opportunities
to improve the breeding efficiency by simultaneously selecting
two trait pairs with advantageous phenotypic correlation
through MAS.
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