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Invasive plant species represent a serious threat to biodiversity precipitating a sustained

global effort to eradicate or at least control the spread of this phenomenon. Current

distribution ranges of many invasive species are likely to be modified in the future by land

cover and climate change. Thus, invasion management can be made more effective

by forecasting the potential spread of invasive species. Rhododendron ponticum (L.)

is an aggressive invasive species which appears well suited to western areas of the

UK. We made use of MAXENT modeling environment to develop a current distribution

model and to assess the likely effects of land cover and climatic conditions (LCCs)

on the future distribution of this species in the Snowdonia National park in Wales.

Six global circulation models (GCMs) and two representative concentration pathways

(RCPs), together with a land cover simulation for 2050 were used to investigate species’

response to future environmental conditions. Having considered a range of environmental

variables as predictors and carried out the AICc-based model selection, we find that

under all LCCs considered in this study, the range of R. ponticum in Wales is likely to

contract in the future. Land cover and topographic variables were found to be the most

important predictors of the distribution of R. ponticum. This information, together with

maps indicating future distribution trends will aid the development of mitigation practices

to control R. ponticum.

Keywords: climate change, invasive species, Maxent, Markov chain, multi-layer perceptron, species distribution

modeling

INTRODUCTION

Invasive alien species are considered the second biggest threat to global biodiversity, after habitat
degradation (Gurevitch and Padilla, 2004; Powell et al., 2013). Invasive plant species alter the
dynamics of plant communities and thus threaten the stability and functioning of established
ecosystems by affecting nutrient cycles and net primary productivity, affecting soil health by
increasing soil acidity, posing risk for pollinators, inhibiting regeneration of native species,
and competing with native flora (Manchester and Bullock, 2000; Ehrenfeld, 2003; Snowdonia
Rhododendron Partnership, 2015; Tiedeken and Stout, 2015). Plant invasion causes significant
economic losses to crop and livestock farmers around the world (Peterson et al., 2008). Various
studies estimate that the global monetary value of direct damage and associated control of invasives
exceeds $100 billion per annum (Pimentel et al., 2005). However, since there are many invasive
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species with no recorded damage costs, the true figure is likely
to be many times higher than these estimates (Bradshaw et al.,
2016). Several studies have highlighted the potential impacts
of global climate change on population dynamics of invasive
species, with secondary effects on host plant communities and
ecosystems (Chapin et al., 2000; Peterson et al., 2008). During
the last century, global average temperatures have increased by
0.85◦C above pre-industrial levels and are expected to further
increase by 0.3–4.8◦C by 2100 (IPCC, 2013). Changes in climatic
conditions may render some regions more or less suitable
for invasive plants thus increasing or decreasing their range
(Bradley et al., 2010). Effects of climate change on invasiveness
of alien species must be considered and any prediction of future
distribution should include a range of climate change scenarios.

Once an invasive species has established itself, one of the
most cost effective ways to reduce its threat is to map its
current distribution and take pre-emptive measures to prevent
further expansion (Alves et al., 2017). Such targeted management
of biological invasions is not possible without information
about the likely future distribution of invasive species. In this
context, species distribution models (SDMs) present a workable
opportunity to examine future changes in species distribution
(Taylor et al., 2012). As climate is a strong determinant of
habitat suitability of plant species (Marino et al., 2011), SDMs
are often driven by environmental variables. Also known as
ecological niche models, they are successfully being used for
projecting the impacts of climate change on plant distributions
(Elith et al., 2006; Ramírez-Albores et al., 2016). In principle,
species are assumed to exist in a “niche” described by ecological
requirements of the species. SDMs characterize these ecological
space of a species and subsequently identify vulnerable locations
based on the environmental suitability of the species (Trivedi
et al., 2008).

In addition to climate, distribution of invasive plant species
is often strongly linked to land cover type. For instance,
transportation corridors, continuous grasslands, forest areas, and
proximity to human settlements are often reported as strong
determinants of species spread (Decker et al., 2012). A score
of SDM studies indicates that land cover is often a far better
predictor of species habitat suitability than climatic variables
(Yang et al., 2013; Alkhamis et al., 2017; Bosso et al., 2017; Guo
et al., 2017; Padalia and Bahuguna, 2017). Changes in land cover
can affect both quality and quantity of suitable habitat, in some
instances the landscape variables alone can accurately predict
the distribution of a species (Hailu et al., 2017). It is therefore
recommended to consider climate and land cover change in
combination when exploring species’ niche shifts in future (Dale,
2017). However, despite the fact that land cover is an integral
part of species’ ecological niche, the majority of SDM studies
investigating species’ future distribution ignore it and assume
that species’ future distribution is only driven by shifts in climatic
variables (Khanum et al., 2013; Khadka and James, 2017; Qin
et al., 2017). The history of climatic changes and human land use
shows that land cover types will shift, any modeling of species’
future distribution based merely on climatic variables may lead
to a severely misleading prediction (de Chazal and Rounsevell,
2009).

In Europe, Rhododendron ponticum (L.) is an invasive plant
species that was introduced to the United Kingdom in the
eighteenth century as an ornamental plant. It is a perennial,
evergreen shrub that generally invades woodlands (Tiedeken
and Stout, 2015), although it has been shown to colonize other
types of habitats too. The main ancestor is reported to be the
population of R. ponticum resident at the southern tip of Spain.
The successful invasion of R. ponticum in the UK is attributed
to a range of its ecological and biological characteristics: it
produces great amounts of seeds which are wind-dispersed, can
tolerate shade and thus outcompetes flora under closed canopies
and can easily colonize low-nutrient sites (Dehnen-Schmutz and
Williamson, 2006). It often prevents germination of native plant
species by casting a dense shade and by releasing toxins into the
soil (Stephenson et al., 2006). Germination of R. ponticum seeds
may occur on a number of substrates, including tree stumps and
mosses covering bare ground (Cross, 1981) The UK invasion
by this shrub has been more intense in Western and North
Western parts, which are the comparatively cooler and wetter
areas of Britain. A genetic analysis of the British population
of R. ponticum has confirmed the presence of genes from
R. catawbiense (Michx), suggesting past hybridization between
the two species. R. catawbiense is a species native to North
America and characterized by greater cold tolerance (Erfmeier
et al., 2011; Snowdonia Rhododendron Partnership, 2015; Die
et al., 2017), a trait that may increase invasiveness of R. ponticum
in the UK. However, an in-depth analysis is still required to
identify the other key environmental factors responsible for
colonization and spread of this species. Of the various parts of
U.K. invaded by R. ponticum, Wales is one of the worst affected
regions. In this study, we focus on the Snowdonia National Park
in Wales where R. ponticum is identified as a major invasive
species affecting large areas of the National Park (Jackson, 2008)
indicating that current environmental, topographic and land
cover conditions in Snowdonia represent a range of conditions
very suitable for R. ponticum.

We examine the current and future distribution of
R. ponticum in Snowdonia National Park, Wales, UK under
current and future land cover and climatic conditions (LCCs).
Our modeling effort aims to, (a) delineate “invasion hotspots”
for R. ponticum in Snowdonia National Park, (b) identify key
ecological factors driving the spread of R. ponticum in the park,
and (c) identify likely spatial patterns of habitat suitability under
future climate conditions to establish a theoretical reference
framework for management plans to combat the potential
invasion of R. ponticum.

MATERIALS AND METHODS

WeusedMAXENT, amaximum-entropy basedmachine learning
algorithm to model the distribution R. ponticum (L.) in
Snowdonia National Park. MAXENT predicts the probability
distribution of a species on the basis of a given set of
environmental variables and presence-only species occurrence
data (Phillips et al., 2004). We selected MAXENT because, (a)
it does not require absence data (Phillips et al., 2006), (b) it
efficiently handles complex interactions between predictor and
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response variables (Elith et al., 2006), (c) being a generative
model, it performs better than discriminative models when it
comes to modeling with presence-only records and, (d) it can
be run with both categorical and continuous data variables
(Elith et al., 2011). There are several known limitations of the
MAXENTmodeling environment; (a) sensitivity to small sample
size and questionable occurrence records (Elith et al., 2011),
(b) use of overly complex models due to user over-reliance on
default model calibration settings (Moreno-Amat et al., 2015),
and (c) biased performance due to errors in sampling effort
or spatial autocorrelation of occurrence records (Veloz, 2009).
In this study, we countered these model limitations by; (a)
using reasonably large sample size and applying recommended
screening and verification of occurrence records, (b) tuning the
model by identifying optimal model calibration settings, and (c)
accounting for sampling bias and applying spatial filters to reduce
spatial autocorrelation.

Pre-processing of Occurrence Records
and Predictor Variables
Presence-only occurrence records of R. ponticum were obtained
from COFNOD (Local Environmental Records Centre in Wales,
UK). A dataset totaling 436 occurrence records originating from
a continuous field observation campaign spanning the period
between 1981 and 2016. COFNOD has confirmed that the entire
area of Snowdonia National Park had been thoroughly surveyed
by ground surveys and remote sensing tools, thus minimizing
the possibility of sampling bias in the dataset. Consequently, in
our modeling effort we covered the entire area of the national
park, generating 10,000 random background points to be selected
from in each replicate run of the model. Spatial uncertainty of
all occurrence records was verified and all duplicate or not geo-
referenced occurrence points were removed. Occurrence data
were spatially rarefied by eliminating all but one point present
within a single grid cell of the predictor variable layers to reduce
spatial autocorrelation. As a result, the number of occurrence
points used for model calibration and verification was reduced
from 452 to 92.

We considered a total of 23 predictor variables (Table 1)
covering Snowdonia National Park at a cell resolution of 30–
arc-seconds (∼1 km, worldclim.org, version 1.4, Hijmans et al.,
2005). These 23 variables were selected on the basis of published
information on plant-habitat associations of R. ponticum. We
included bioclimatic variables, together with a land cover variable
as R. ponticum is a habitat-specialist and thus sensitive to
land cover type. In addition, we included topographic factors
such as slope, aspect and altitude as these factors are also
known to limit the distribution of this species (Erfmeier and
Bruelheide, 2004; Eşen et al., 2004; Stephenson et al., 2006;
Harris et al., 2011). In all, our predictor dataset consisted of
19 climatic variables were complemented by 3 topographic
and 1 land cover variable. A Digital Elevation Model (Shuttle
Radar Topography Mission, https://lta.cr.usgs.gov/SRTM1Arc)
with spatial resolution of 30m was used to derive three
topographic variables: altitude, aspect and slope. Land Cover data
originates from “The European Space Agency CCI” global land

TABLE 1 | Predictor variables used in the study, variables highlighted in bold were

selected to run all models presented in this study.

Code Predictor variable Unit

BIO 1 Annual mean temperature ◦C

BIO 2 Mean diurnal range [monthly (max temp – min

temp)]

◦C

BIO 3 Isothermality (BIO2/BIO7)* 100

BIO 4 Temperature seasonality (standard deviation *100) C of V

BIO 5 Max temperature of warmest month ◦C

BIO 6 Min temperature of coldest mont ◦C

BIO 7 Temperature annual range (BIO5-BIO6) ◦C

BIO 8 Mean temperature of wettest quarter ◦C

BIO 9 Mean temperature of driest quarter ◦C

BIO 10 Mean temperature of warmest quarter ◦C

BIO 11 Mean temperature of coldest quarter ◦C

BIO 12 Annual precipitation mm

BIO 13 Precipitation of wettest month mm

BIO 14 Precipitation of driest month mm

BIO 15 Precipitation seasonality (coefficient of variation) C of V

BIO 16 Precipitation of wettest quarter mm

BIO 17 Precipitation of driest quarter mm

BIO 18 Precipitation of warmest quarter mm

BIO 19 Precipitation of coldest quarter mm

Altitude Altitude m

Aspect Aspect ◦

Slope Slope ◦

Land cover Land cover

cover product available at 300m of spatial resolution (www.esa-
landcover-cci.org). The whole set of 23 variables (19 climatic, 1
land cover, and 3 topographic) was re-sampled to 1 km spatial
resolution and masked to the extent of Snowdonia National
Park. A combination of expert knowledge, published studies
on R. ponticum invasiveness in the UK and statistical methods
was used to select an appropriate set of predictor variables to
reduce the negative impact of multicollinearity and to conform
to statistical assumptions (Syfert et al., 2013). We removed highly
correlated variables by applying a Pearson correlation coefficient
cutoff of r≤ 0.85 to select the variable layers for use in final model
runs (Graham, 2003).

Habitat Suitability Under Climate and Land
Cover Change Scenarios
Projected future climatic conditions for the year 2050 based
on the IPCC 5th assessment report were used to assess the
potential effects of climate change on R. ponticum habitat
suitability in Snowdonia National Park. We used the following
six GCMs projections: BCC-CSM1-1, CCSM4, GISS-E2-R,
MIROC5, HadGEM2-ES, and MPI-ESM-LR. These are some of
the most recent GCMs, also used in the Fifth Assessment IPCC
report and are currently considered the most reliable GCMs
for future climate projections (IPCC, 2014). The assessment
was made under two Representative Concentration Pathways:
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RCP 4.5 and RCP 8.5. RCP 4.5 describes a scenario where
GHG emissions are stabilized and thus represents a stable
scenario, while RCP 8.5 is a scenario depicting an extreme
situation where GHG emissions increase until 2100 (Akhter et al.,
2017).

Land cover for 2050 was simulated in Terrset software
(Eastman, 2006) using recommended protocols (Dadhich and
Hanaoka, 2010; Ozturk, 2015; Ye et al., 2018). Making use of
the Multi-layer Perceptron-Markov Chain (MLP-MC) model, we
projected the future land cover changes of Snowdonia National
Park in 2050 based on historical changes in the land cover
between 2005 and 2015. The land cover maps for 2005 and 2015
were acquired from “The European Space Agency CCI” global
land cover product. Land cover transitions were modeled using
a Multi-layer Perceptron neural network. A transition matrix
was created to quantify the transition potential between the
two time periods. For the sake of simplicity, we assumed that
the transition probabilities (patterns of change) would remain
unchanged in future and used these to predict land cover for
2050. We used a number of driver or explanatory variables to
generate transition potential maps to improve the prediction
accuracy of the model. These driver variables included elevation,
aspect, hillshade, slope, distance to roads, distance to road nodes,
distance to water channels, distance to hydro nodes, distance to
green space sites, and distance to access points. A flow chart of
the land cover and species distribution modeling is shown in
Figure 1.

Maxent Model Complexity and Tuning
The complexity of models resultant in MAXENT environment is
primarily driven by the following two factors; feature type and
regularization parameter (Moreno-Amat et al., 2015). Maxent
offers a range of five function forms known as “feature types”
to explain the relationship between predictor variables and
the probability of species occurrence. These feature types are
labeled as Linear (L), Quadratic (Q), Hinge (H), Product (P),
and Threshold (T) (see Phillips et al., 2004, 2006; Elith et al.,
2011 for details). Maxent allows users to select and combine
different function forms manually or picks functions or their
combinations automatically when left in the default “Auto
Feature” mode. Most of the published MAXENT-based studies
rely on the default options of feature type and regularization
parameters, which means that model complexity and the
risk of over-fitting is completely ignored by the researchers
(Muscarella et al., 2014). The second key factor that determines
the complexity of MAXENT models is the regularization
parameter. As part of the modeling process, MAXENT pushes
or modifies the predictor values (such as variance and mean)
of environmental variables as close as possible to the values
describing actual presence points, which frequently leads to over-
fitting of the model. To counter over-fitting, MAXENT uses the
regularization parameter to control the complexity of models
(the default value is 1). The regularization parameter limits the
number of “features” in the model, depending on the number
of presence records (fewer records allow for fewer features to

FIGURE 1 | Flow chart detailing sequential steps carried out in land cover simulation (Step I) and Maxent based species distribution modeling (Step II) of R. ponticum

in Snowdonia National Park, Wales.
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be included). A higher value of the regularization parameter
penalizes the number of features and thus leads to less complex
models (Merow et al., 2013). Various studies have confirmed
that calibratingMAXENTmodels with default settings frequently
leads to highly complex models, a species-specific tuning of the
model is thus recommended (Moreno-Amat et al., 2015). In this
study, we generated all possible combinations of features types in
combination with a range of regularization parameter values; 0.1,
and then 1–10 with an increment of 1. We then used ENMeval
R package to select the model with the lowest AICc (corrected
Akaike Information Criterion) value which was then used as the
most appropriate (least over-fitted model) out of the whole suite
of models (Warren and Seifert, 2011; Muscarella et al., 2014).

Model Calibration and Evaluation
We ran MAXENT (version 3.3.3a) with the default convergence
threshold of 10−6 and with 5,000 iterations. This number
of iterations was set to allow the model a reasonable scope
for convergence, thus reducing the risk of over-predicting or
under-predicting the model relationships. The selected model
used the “Linear” and “Quadratic” feature types and the
regularization parameter of 2, as indicated by the lowest AICc
value. We processed 20 model replications with bootstrap
resampling which randomly allocated 75% of the occurrence
records to calibration and 25% to validation. We used the
average of the 20 replicate models to produce habitat suitability
maps under current and future scenarios. MAXENT produces
continuous suitability index in its output, 10 percentile training
presence threshold was employed to convert this index into
binary form (suitable and unsuitable habitat; Rebelo and Jones,
2010).

AUC (Area under the receiver operating characteristic curve)
was used to test the performance of the model against actual
observations (Elith et al., 2006). An AUC value of 0.5 shows
that the model does not predict any better than random chance,
whereas a value closer to 1 indicates better performance of the
model. Based on the AUC value, a conventionally used guide
for ranking the model performance is: 0.5–0.6 = Failed; 0.6–
0.7 = Poor; 0.7–0.8 = Fair; 0.8–0.9 = Good; 0.9–1 = Excellent
(Swets, 1988). Jackknife test and percent variable contribution
were used to assess the relative significance of predictor variables.
Fitted response curves were used to visually investigate the
relationship between individual variables and predicted index of
environmental suitability of R. ponticum.

AUC was suggested not be sufficiently reliable for model
evaluation, as an alternative, the Continuous Boyce Index (CBI)
can be utilized a complementary evaluation index (Breiner
et al., 2015). The Boyce index requires presence data only and
measures how much model predictions differ from random
distribution of observed presence across the prediction gradient.
The continuous values of Boyce index vary between −1 and +1.
Positive values indicate a model where predictions are consistent
with the distribution of actual presence data, values close to zero
mean that the model is not different from a random model and
negative values indicate counter predictions (e.g., predicting no
occurrence in areas where actual presence is recorded, Boyce
et al., 2002; Hirzel et al., 2006).

RESULTS

Model Performance
The calibration test of the model specification selected on the
basis of the lowest AICc showed encouraging predictive capacity:
AUCtrain = 80.0, AUCtest = 75.61, and CBI = 0.82. These results
suggest that the predictor variables used duringmodel calibration
can predict the presence of R. ponticum in the Snowdonia
National park with a fairly good degree of accuracy. Current
distribution of R. ponticum on a continuous habitat suitability
map for the present day LCCs is shown in Figure 2.

Comparing the predictor variables used in this model, Land
Cover type contributed the most predictive power (43.3%),
followed by aspect (21.5%), and altitude (15.5%, Table 2). The
Jackknife test suggests that the variable which decreases the gain
the most when omitted is land cover, indicating that it contains
the most information absent in the other variables (Figure 1,
Supplementary Data S1).

Close inspection of individual response curves
(Supplementary Data S1) shows how the logistic prediction
by a variable changes when the rest of the predictor variables
are artificially kept at their average values. Starting with Land
Cover, the only categorical predictor used in this study, it
suggests that the presence of several land use types may have a
major influence on the probability of R. ponticum occurrence
in Snowdonia National park. The likelihood of presence is the
highest in Land Cover type “8” (Mosaic tree and shrub), followed
by Land Cover type “6” (Needle leaved forest). Aspect was
found to be an efficient predictor of R. ponticum distribution,
indicating that the probability of occurrence is the highest in
Northern Aspect (azimuth values ranging from 337.5 to 360◦).
The response curve of Altitude shows that the probability of
presence is negatively correlated with this variable as increasing
altitude suggests a gradual decrease in the probability of species
occurrence. Precipitation seasonality (BIO 15) was shown to
be negatively correlated to the probability of the presence of
R. ponticum; the species is not likely to tolerate higher seasonal
variability in precipitation in Wales. It is noteworthy that
the probability of species occurrence decreases from 67 to as
low as 27 within a narrow band defined by 22 and 25mm
of precipitation seasonality. Response curve of BIO 9 (Mean
Temperature of the Driest Quarter) shows a similar trend,
R. ponticum probability of occurrence decreases as the mean
temperature of the driest quarter increases. BIO 2 (Mean Diurnal
Range) and BIO 3 are only two climatic variables which appear
to be positively correlated with the probability of R. ponticum
occurrence. BIO 4 (the coefficient of variation of the mean
of monthly temperatures, represents the seasonal variation in
temperature) and Slope contributed the least to the model.
Response curves of both these variables suggest that probability
of species occurrence would decrease with increasing values of
these variables.

Our land cover change simulation of Snowdonia National
Park for the year 2050 revealed that broadleaved deciduous trees,
needleleaved evergreen trees and grasslands may experience a
contraction in their extent, while the area under herbaceous
cover, mosaic tree and shrub, mosaic herbaceous cover and shrub,
or herbaceous cover may increase (Table 3).
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FIGURE 2 | Continuous habitat suitability map of R. ponticum generated in Maxent model under current LCCs in Snowdonia National Park. Blue dots on the map

show current distribution of species occurrence records.

TABLE 2 | Analysis of variable contribution.

Variable Percent contribution

Land cover 43.3

Aspect 21.5

Altitude 15.5

Bio15 9.4

Bio3 4.1

Bio9 3.4

Bio2 1.6

Slope 0.9

Bio4 0.3

Habitat Suitability Under Current and
Future Land Use and Climate Change
Scenarios
Binary maps of predicted distribution of R. ponticum in
Snowdonia National park under current and future LCCs are
shown in Supplementary Data S2. Based on the output of our
model, nearly 50% of the total area of the park (1,050 of 2,132
km2) is currently suitable for R. ponticum invasion. Looking

into the future, the extent of habitat suitable for R. ponticum in
Snowdonia National park is likely to be negatively affected by
land cover and climate change under all considered scenarios
(Table 4).

Under RCP 4.5, minimum contraction (−3.45%) is predicted
under MIROC5 while maximum contraction (−40.13%) in
suitable area may take place under MPI-ESM-LR. Under RCP
8.5, minimum (−7.97%) and maximum (−46.78%) reduction in
suitability range for R. ponticum may be expected under GCMs
HadGEM2-ES and MPI-ESM-LR, respectively. A comparison of
the current habitat suitability with the minimum and maximum
future range contraction (binary maps) is shown in Figure 3.
Results indicate that most of the northern, northeastern and
central areas of the national park are likely to become unsuitable
for R. ponticum by 2050 (in case of maximum contraction under
GCMMPI-ESM, RCP 8.5). Detailed habitat suitability maps of all
future LCCs are presented in Supplementary Data S2.

DISCUSSION

This study presents the first attempt to delineate current
distribution and investigate the impacts of changing landscape
and climate on future distribution of R. ponticum in Snowdonia
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TABLE 3 | Change in area (sq. km) under the 16 land cover classes of Snowdonia

National Park between current (2015) and projected (2050) maps.

Class

ID

Land use class 2015 (km2) 2050 (km2) Change (%)

1 Cropland 0.5586 0.5586 0

2 Herbaceous cover 3.72 4.9 +28.7

3 Mosaic cropland 8.19 8.19 0

4 Mosaic natural vegetation 6.08 6.08 0

5 Broadleaved Deciduous Trees 19.61 12.53 −36.1

6 Needleleaved Evergreen Trees 229.64 223.62 −2.62

7 Needleleaved Deciduous Trees 0.3724 0.3724 0

8 Mosaic tree and shrub 141.44 147.84 +4.52

9 Mosaic herbaceous cover 627.55 637.98 +1.66

10 Grassland 930.37 925.28 −0.54

11 Sparse vegetation 85.15 85.15 0

12 Shrub or herbaceous cover 25.75 25.94 +0.73

13 Urban areas 2.85 2.85 0

14 Bare areas 10.42 10.42 0

15 Unconsolidated bare areas 1.55 1.55 0

16 Water bodies 32.27 32.27 0

National Park. Both current and future distributions of this
invasive plant are governed by an interaction of a range of
factors. In the case of R. ponticum in Snowdonia, land cover
and topography have been shown as the most influential,
complemented by a range of climatic factors.

Land use has repeatedly been shown to be the key
predictor variable determining plant species distribution (Yang
et al., 2013). R. ponticum can invade a range of land cover
categories, including natural to semi-natural, upland heaths,
and occasionally grasslands. In Britain, earlier studies reporting
on its occurrence suggest that woodland is the land cover
type most affected by the invasion of R. ponticum (Dehnen-
Schmutz et al., 2004). Our findings are in agreement with these
reports; R. ponticum has the highest probability of occurrence
in land cover categories representing “6: Mosaic Tree & Shrub”
and “8: Needle Leaved Forest.” There are numerous reasons
why R. ponticum favors woodland in Wales, for example, the
availability of a microenvironment suitable for seed germination
(Stephenson et al., 2006) or growing under tree canopies to
spread “under-cover” and thus avoid eradiation likely play a
role. Crucially, the presence of dead plant material or moss
cover may be critical to R. ponticum establishment (Cross,
1981). In our study, Mosaic Tree & Shrub and Forests were
the land cover categories which are likely to contain these
substrates in the understory. Both of these land cover categories
favored by R. ponticum are predicted to experience only a
minor change (a decrease of −2.62% in category “6” while an
increase of 4.52% in category “8”). Thus, the range contraction
in R. ponticum seems to be much larger than the predicted
change of suitable habitat types. This suggests that the predicted
contraction in R. ponticum future range may not be primarily
governed by land cover changes. These results are in agreement
with some earlier studies suggesting that species’ range may

TABLE 4 | Variation in suitable area (in %) for R. ponticum in Snowdonia National

Park for current time with those identified in land cover and six future climate

change scenarios for 2050 at two Representative Concentration Pathways (4.5

and 8.5).

GCM’s RCP 4.5 (%) RCP 8.5 (%)

BCC-CSM1-1 −39.23 −31.84

CCSM4 −10.73 −19.13

GISS-E2-R −35.67 −44.07

HadGEM2-ES −8.39 −7.97

MIROC5 −3.45 −12.91

MPI–ESM-LR −40.13 −46.78

drastically contract even if there is only a little shift in land
cover types (Charbonnel et al., 2016). Among topographic
variables, aspect makes a major contribution in our model.
We show that R. ponticum clearly favors the northern aspect
for its establishment and growth. North-facing slopes at the
latitude of Wales are likely to offer greater soil moisture,
in addition to lower direct insulation intensity. Many other
studies on R. ponticum, R. simsii, and R. ferrugineum suggest
that northern slopes (in the Northern hemisphere) offer more
favorable conditions for Rhododendron growth (Taylor et al.,
2013; Christiaens et al., 2014; Francon et al., 2017). Our results
show that the probability of occurrence of R. ponticum in
Snowdonia is negatively correlated with slope. Earlier studies
have suggested that shallow-slope areas are typically those with
high soil moisture and nutrient availability, thus offering more
favorable microenvironment for plant proliferation (Kang et al.,
2016). Altitude explained a minor share of the variation in
the training set of occurrence observations in this study. Even
though altitude is considered an indirect variable since it has
no direct effect on plant growth and physiology, it acts as a
very good proxy of other un-measured or un-used variables.
The reported altitudinal range of Rhododendron in Snowdonia
National Park is well within the global range inhabited by
this species. Therefore, it is likely that altitude per se does
not represent a set of critically limiting variables in our study,
but more likely acts as a proxy for auxiliary variables such
as hydrology, exposure to light, wind speed, soil type and
others which are not included in our model. There is strong
evidence that the inclusion of indirect variables can enhance the
predictive performance of SDMs, however their collinearity with
direct variables must be addressed (Austin, 2002; West et al.,
2016).

For climatic variables, our results indicate that both
temperature- and precipitation-related variables make significant
contribution to model prediction, which is in agreement with
earlier studies which posit that the future distribution of
R. ponticum in Wales may be affected by climatic predictors
(Kang et al., 2016). Under all GCMs considered here, habitat
suitability range decreases from the current situation. Global
mean temperatures may increase by as much as 4◦C by the
end of next century (IPCC, 2014). Increasing temperature and
changes in precipitation are likely to impact species distribution
(Bezeng et al., 2017), however, existing investigations paint a
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FIGURE 3 | Comparison of suitable habitat range of R. ponticum in Snowdonia National Park under current LCCs with the minimum and maximum range contraction

scenarios in future LCCs. (A) Binary habitat suitability map of R. ponticum (current land cover and climatic conditions). (B) Binary habitat suitability map of R. ponticum

(minimum range contraction scenario) GCM MIROC 5 RCP 4.5. (C) Binary habitat suitability map of R. ponticum (maximum range contraction scenario) GCM

MPI-ESM-LR RCP 8.5.

mixed picture; plant species may experience an increase or a
decrease of their current range (Thomas et al., 2004; Bradley
et al., 2010). A study investigating potential changes in the
future distribution of a 100 of the world’s worst invasive species
concluded that potential range of the majority of these species
would increase (Bellard et al., 2013). Contrary to this, there is
evidence of a range reduction of over 80 invasive species in South
Africa under varying climate change scenarios (Bezeng et al.,
2017). Similarly, many other ecological modeling studies have
reported a possible contraction in suitable habitat of different
species (Smale and Wernberg, 2013). There are studies even
predicting a complete loss of species’ suitable habitat (Midgley
et al., 2002; Bomhard et al., 2005; Sarmento Cabral et al., 2013).
Detailed studies are thus required to investigate how an existing
plant invasion will be modified by changing climatic conditions;
it is not likely that all invasive species will benefit from new
conditions.

The fact that R. ponticum is an alien invasive species in the
area under consideration is an important aspect of this study.
Invasion is a dynamic process guided by an inherited set of
traits and environmental conditions (Erfmeier and Bruelheide,
2004). One of the ways to build a species distribution model
is to use climatic data and occurrence records from the native
range of the invasive species under consideration and to project
it to the invaded region (Kaplan et al., 2012). However, we argue
that this approach may yield a poorly performing model due
to the mismatch between key environmental variables between
native and invaded regions. This argument is borne out by

the notion that invasives are a good example of species with a
potential to expand their range beyond the climatic envelope
defined in their native range (Rödder and Lötters, 2009). A
number of studies have confirmed this idea by concluding
that invaded locations cannot necessarily be predicted from
native distribution records of invasive species (Fernández and
Hamilton, 2015). If the goal is to evaluate range expansion
of invasive species then it could be useful to fit the model
with data from native range (Araújo and Guisan, 2006), but
when building models to predict changes in the invaded area
under climate change scenarios, it may be much more useful
to use data describing affected location (Jeschke and Strayer,
2008).

Recommendations for Future Studies
Given that 14 out of 19 climatic variables originally considered
for this study were excluded due to high correlation with variables
chosen for the best performing model, an in-depth analysis of the
sensitivity of R. ponticum distribution to the remaining variables
may reveal interesting insights. We made use of only six GCMs
and two RCPs scenarios for the sake of simplicity, but further
studies including more numerous GCMs and RCPs may prove
useful for improved prediction of future distribution and a better
understanding of the sensitivity of R. ponticum to climate change.
In line with the consideration of native vs. invaded climate
envelope, further studies should compare model performance
based on training on native and invaded climatic envelope
range. Distribution models may be improved by the inclusion of
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high resolution variables derived from remote sensing and lidar
(canopy height, cover, vertical distribution ratio etc.), variables
such as vegetation density or stand height have been shown to
significantly improve SDMs (Yang et al., 2013; Ackers et al., 2015).
In this study, the land cover variable is considered as a proxy for
the soil properties (Davis et al., 2014). For example, R. ponticum
is known to grow under semi-shade on moist, loamy soils. Thus,
the land cover types “Forest” “Bog & Mosses” & “Herbaceous
cover” can be thought to act as proxy for these soil types while
land cover types such as “open fields,” “bare land”, “urban areas,”
and “rocks” can be considered the areas where soils types are
the least favorable for this species. Results of this study confirm
these observations. We however, recommend incorporating soil
variables for future studies to further improve the accuracy of the
model.

In this study, we projected land cover changes from 2015 to
2050 based on the land cover transition potential between 2005
and 2015. This is a simplistic and frequently adopted, “business-
as-usual” approach of land use change modeling, which however
may not be realistic. We suggest that the impact of contrasting
socio-economic scenarios on likely future land use should be
included to achieve a more representative prediction of future
distribution.

CONCLUSIONS

This study presents the results of correlative ecological modeling
exercise based on an assumption that land cover and climatic
variables have a dominant role in current and future distribution
of R. ponticum and that the ecological niche for this species
remains conserved across time. We show that, contrary
to expectation, future distribution range of this species in
Snowdonia National Park may decrease as a result of projected
climate and land use changes. An extension of this modeling
approach to the entire landscape of UKmight help to understand

the combined effects of these predictor variables to future
distribution of R. ponticum across the country.
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