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Almost half of known plant viral species rely on proteolytic cleavages as key co-
and post-translational modifications throughout their infection cycle. Most of these
viruses encode their own endopeptidases, proteases with high substrate specificity
that internally cleave large polyprotein precursors for the release of functional sub-
units. Processing of the polyprotein, however, is not an all-or-nothing process in
which endopeptidases act as simple peptide cutters. On the contrary, spatial-temporal
modulation of these polyprotein cleavage events is crucial for a successful viral infection.
In this way, the processing of the polyprotein coordinates viral replication, assembly and
movement, and has significant impact on pathogen fitness and virulence. In this mini-
review, we give an overview of plant viral proteases emphasizing their importance during
viral infections and the varied functionalities that result from their proteolytic activities.

Keywords: viral proteases, viral polyprotein, plant viruses, viral replication, virion formation, host range, defense
and counterdefense

INTRODUCTION

Viruses are the most abundant biological entities in the planet (Suttle, 2007). With the exception of
giant viruses (Wilhelm et al., 2017), viruses share a reduced genome size and optimize a confined
genetic space utilizing several strategies of alternative protein production (Firth and Brierley,
2012; Miras et al., 2017). One of these strategies commonly employed by viruses is to produce
polyproteins that are further processed by proteases into smaller working units. This strategy
ensures production of multiple components required for viral infection in a single molecule and at
the same time saves space in the genome by using a single set of transcriptional and translational
control elements. It also provides the option to yield partially processed protein products with
specific activities, and to alter functionality of a particular protein in a controlled manner (Spall
et al., 1997; Konvalinka et al., 2015). However, gene expression through polyproteins relies on
proteases for its proper functioning and as such, these enzymes play a central role regulating
infectivity and the viral cycle.

Since the discovery of tobacco mosaic virus (TMV) in the late 19th century (Zaitlin, 1998),
more than 4000 viral species have been assigned and classified in a total of 131 families (ICTV,
2017; Simmonds et al., 2017). Out of these, 27 families and 9 orphan genera include plant-
infecting viruses. The largest family of plant viruses is the Geminiviridae, whose members carry
a single stranded DNA genome. In eukaryotes, RNA viruses account, however, for the majority
of the virome diversity (Koonin et al., 2015). The plant virome is dominated by viruses with
positive-stranded RNA genomes, which can be further subdivided into superfamilies based
on RNA-dependent RNA-polymerase (RdRp) phylogenetic relationships: Alphavirus-like, and
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Picornavirus-like (Goldbach et al., 1991; Koonin, 1991; Dolja and
Koonin, 2011), Potyviridae being the largest representative family
of the latter class (Ivanov et al., 2014). Among plant viruses there
are also pararetroviruses and viruses with negative-stranded and
double-stranded RNA genomes.

Synthesis of viral endopeptidases occurs in ∼45% of plant-
infecting species (Figure 1), grouped into 12 families (Figure 2
and Table 1) (ICTV, 2017). These viruses encode three types
of proteases: cysteine (67.2%), aspartic (9.0%), and serine
(23.8%) proteases (Figure 1), which belong to 12 catalytic
families (Table 1), according to the peptidase database MEROPS
(Rawlings et al., 2013). Viral endopeptidases share certain
features that make them distinct from host proteases: (i) they are
smaller, (ii) they present little sequence similarity that might be
restricted to active site residues, (iii) they can adapt to multiple
roles, and (iv) they are very specific in their cutting requirements
(Babe and Craik, 1997; Tong, 2002; Verdaguer et al., 2014). This
stringent specificity of viral proteases makes them successful
targets as biotechnological tools (Kim et al., 2012; Fernandez-
Rodriguez and Voigt, 2016; Tran et al., 2017) and for antiviral
therapies (Shamsi et al., 2016). Different drugs targeting proteases
have been used effectively for treating animal viral infections
(Anderson et al., 2009; Clark et al., 2013; Lv et al., 2015), and have
also had moderate success in the plant world (García et al., 1993;
Gutiérrez-Campos et al., 1999, 2001; Wen et al., 2004; Gholizadeh
et al., 2005; Habib and Fazili, 2007; Kim et al., 2016).

Plant viral proteases carry out multiple roles during viral
infection independent of their protease activity: RNA silencing
suppression, aphid transmission, systemic transport, viral
accumulation, viral particle maturation, etc. (Liu et al., 2009;
Csorba et al., 2015; Valli et al., 2018). As proteases, however, the
primary role they play in viral infection is processing of and from
viral polyproteins. But there is more to this protease activity than
just acting as peptide cutters. Polyprotein processing is not an
all-or-nothing process in which all products are separated at the
same time with perfect efficiency. Cleavage of the polyprotein
into functional units is essential for viral survival and it is a

FIGURE 1 | Plant viral species encoding proteases. Total number of plant viral
species was based on the ICTV Master Species List (ICTV, 2017). Types of
proteases and percentages were calculated counting the total number of
proteases present in each of the accounted viral species.

highly modulated process. Its regulation modifies the time and
place of the final products as well as the possible accumulation
of intermediate products, which can play distinct roles in the
life cycle. In addition, processing of host proteins can also alter
the function of these viral proteases. In general, plant viral
proteases have been understudied when compared to their animal
counterparts in terms of processing regulation and structure,
probably due to the relevant role that the latter play in human
health. Nonetheless, a large amount of information has been
published about plant viral proteases in recent years leading us to
write a review on the subject. This review will give an overview of
different roles that lie behind the proteolytic activity of plant virus
proteases and emphasize their relevance during viral infection.

REPLICATION

Key to viral infection is genome replication. It takes place at
specific sites in the cell, compartments termed viral factories in
which multiple viral and plant factors required for replication
are concentrated (Heinlein, 2015). Involvement of viral proteases
in these factories has been demonstrated for some cases,
but information is not always available. For animal viruses,
the role that endopeptidases play in regulating replication is
well-established (Sawicki and Sawicki, 1994; Racaniello, 2001;
Vasiljeva et al., 2003; Yost and Marcotrigiano, 2013; Rausalu et al.,
2016). Information is scarcer in the case of plant infecting viruses.

The Potyviridae is a family of positive-stranded RNA viruses
that belongs to the picornavirus-like supergroup. It comprises
10 genera and presents the highest protease variety among
plant viruses, coding in their genomes up to five different
proteases with varied specificities [P1 (P1a- and P1b-like), HC,
NIapro, P2-1 (HC-like)] (Adams et al., 2005a,b; Rodamilans
et al., 2013; Revers and García, 2015). One hallmark of
the picorna-like viruses, other than a conserved RdRp, is
the presence of a 3C-like protease in charge of polyprotein
processing. For the Potyviridae, this is NIapro. Indeed, this
is the best characterized plant viral protease, functionally
and structurally, which modulates replication by polyprotein
processing (Carrington and Dougherty, 1987). NIapro is a
chymotrypsin-like cysteine protease that acts in cis and in
trans and it is involved in the generation of intermediate
(such as P3-6K1, CI-6K2, and 6K2-NIa) and final products at
different stages of infection. These products are implicated in
the formation of the replication complex and its anchoring to,
and release from, ER-derived membranes (Restrepo-Hartwig and
Carrington, 1994; Riechmann et al., 1995; Schaad et al., 1997;
Merits et al., 2002; Beauchemin et al., 2007; García et al., 2014;
Cui and Wang, 2016).

The Secoviridae (Thompson et al., 2014), Luteoviridae (Prüfer
et al., 1999; Li et al., 2000), and Solemoviridae families
(Satheshkumar et al., 2004; Sõmera et al., 2015) belong to the
picornavirus-like supergroup and share equivalent proteases.
In the Secoviridae family, studies with the waikavirus rice
tungro spherical virus (RTSV) (Thole and Hull, 1998), the
nepovirus tomato ringspot virus (TomRSV) (Wang et al., 1999;
Wang and Sanfaçon, 2000) and strawberry mottle virus (SMoV)
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FIGURE 2 | Schematic representation of plant viruses and their proteolytic cleavage sites. Triangles represent cleavage sites of endopeptidases. Colors of the
(Continued)

Frontiers in Plant Science | www.frontiersin.org 3 May 2018 | Volume 9 | Article 666

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-00666 May 16, 2018 Time: 17:22 # 4

Rodamilans et al. Plant Viral Proteases

FIGURE 2 | Continued
triangles match the colors of the corresponding endopeptidases: orange for cysteine, blue for serine, yellow for aspartic, purple for unknown and green for plant
proteases; only genomes, or sub-genomes encoding polyproteins subject to proteolytic cleavage are depicted. For each family, a representative species covering
the different endopeptidases are depicted. TSWV is included as representative member of the order Bunyavirales. Scale of the genome map is maintained only
within each viral species. Dotted lines used in the Endornaviridae family indicate that processing is only theoretical. Question mark indicates that the way of
processing is unknown. PPV, Plum pox virus, Potyvirus; CVYV, Cucumber vein yellowing virus, Ipomovirus; BaYMV, Barley yellow mosaic virus, Bymovirus; SMoV,
Strawberry mottle virus, unassigned; PLRV, Potato leafroll virus, Polerovirus; SeMV, Sesbania mosaic virus, Sobemovirus; TYMV, Turnip yellow mosaic virus,
Tymovirus; BYV, Beet yellow virus, Closterovirus; CTV, Citrus tristeza virus, Closterovirus; BBScV, Blueberry scorch virus, Carlavirus; BNYVV, Beet necrotic yellow
vein virus, Benyvirus; CeMV, Cucumis melo alphaendornavirus, Alphaendornavirus; TSWV, Tomato spotted wilt orthotospovirus, Orthotospovirus; AthAtRV,
Arabidopsis thaliana AtRE1 virus, Pseudovirus; AthAthV-At, Arabidopsis thaliana Athila virus, Metavirus; CaMV, Cauliflower mosaic virus, Caulimovirus.

TABLE 1 | Plant viral proteases.

Family Group1 Proteases MEROPS2 family Type/fold Action Suggested specific
function

Potyviridae (+)RNA
Picorna-like

P1a-like S30 Serine/
Chymotrypsin-like

Cis Replication
Counterdefense
Host range

P1b-like S30 Serine
Chymotrypsin -like

Cis Counterdefense

HC C6 Cysteine/
Papain-like

Cis Aphid transmission
Counterdefense
Virion assembly

NIapro C4 Cysteine/
Chymotrypsin -like

Cis/trans Replication
Host range
Superinfection exclusion

P2-1 C6 Cysteine/
Papain-like

Cis Unknown

Secoviridae (+)RNA
Picorna-like

Pro C3 Cysteine/
Chymotrypsin -like

Cis/trans Replication
Counterdefense

Luteoviridae (+)RNA
Picorna-like

Protease S39 Serine/
Chymotrypsin-like

Cis/trans Replication

Solemoviridae (+)RNA
Picorna-like

P1 Unclassified Unknown Cis Counterdefense

Pro S39 Serine/
Chymotrypsin-like

Cis/trans Replication

Tymoviridae (+)RNA
Alpha-like

PRO C21 Cysteine/
Papain-like

Cis/trans Replication
Counterdefense

Closteroviridae (+)RNA
Alpha-like

L/P/L1/L2 C42 Cysteine/
Papain-like

Cis Systemic movement
Host range
Superinfection exclusion

Betaflexiviridae (+)RNA
Alpha-like

PRO C23 Cysteine/
Papain-like

Cis/trans Replication

Benyiviridae (+)RNA
Alpha-like

PCP C36 Cysteine/
Papain-like

Cis/trans Replication
Counterdefense

Endornaviridae dsRNA
Alpha-like

CRR? Unclassified Cysteine? Cis/trans? Unknown

Pseudoviridae (+)RNA
Retrovirus

PR A11 Aspartic/
Pepsin-like

Cis/trans Virion maturation?

Metaviridae (+)RNA
Retrovirus

PR A2 Aspartic/
Pepsin-like

Cis/trans Virion maturation?

Caulimoviridae dsDNA
Pararetrovirus

PR A3 Aspartic/
Pepsin-like

Cis/trans Virion maturation

1Classification of RNA viruses based on Dolja and Koonin (2011).
2MEROPS classification of proteases (Rawlings et al., 2013).

(Mann et al., 2017), have characterized the viral protease (Pro)
and their cleavage sites, but so far little is known about the specific
involvement of these proteases in viral replication. The same is
true for the Luteoviridae family. The serine protease encoded by
the ORF1 of the polerovirus potato leafroll virus (PLRV) is able

to act in cis and in trans and to separate the membrane anchoring
portion, the protease and the genome-linked viral protein (VPg)
domains; whether this is part of a regulatory mechanism for
viral replication is still unknown (Li et al., 2007). Viruses of the
Solemoviridae family express two versions of a polyprotein, from
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ORF2a and ORF2b, having different C terminus. The N-terminal
common part includes a membrane anchor domain, the protease
Pro, and VPg. Polyprotein 2a (P2a) C-terminal part codes for
P10 and P8 proteins. Polyprotein 2ab (P2ab) codes for RdRp
and is originated by ribosomal frameshift. Studies with sesbania
mosaic virus (SeMV) indicate that the serine protease performs
differently in P2a and in P2ab (Nair and Savithri, 2010a,b). In the
first case, processing occurs at the predicted sites separating all
components from the polyprotein. However, in the latter case,
processing of VPg from RdRp is not fulfilled even though the
protease and cleavage sequence are conserved in P2a and P2ab.
This points to a regulatory process in protease activity that might
have an influence in replication considering the inhibitory effect
observed in vitro that VPg has over the polymerase when present
at its N terminus. In addition, mutational analysis of cleavage
sites indicated that all sites at P2a/P2ab are essential for viral
replication, and the products are only functional when released
at the site of replication (Govind et al., 2012) reinforcing the
modulatory role of the protease.

Another example of plant viral protease involved in
replication comes from the Tymoviridae family that belongs
to the alphavirus-like supergroup. Turnip yellow mosaic virus
(TYMV) encodes a papain-like cysteine protease, termed PRO
(Rozanov et al., 1995; Lombardi et al., 2013). Involvement of
PRO in replication comes from two different lines of evidence:
(i) the processing ability of the protease to act in cis and in
trans similarly to the proteases of rubiviruses and alphaviruses,
which share a similar polyprotein structure (Jakubiec et al., 2004,
2007) and (ii) its deubiquitination activity (Camborde et al., 2010;
Chenon et al., 2012). TYMV is the type member of the genus
Tymovirus, a single positive-stranded RNA spherical virus that
produces two overlapping ORFs from a single RNA. One of
them encodes a polyprotein of 206 KDa that contains sequence
domains of methyltransferase (MET), PRO, helicase (HEL) and
RdRp. PRO was shown not only to separate RdRp from the
rest of the polyprotein, but also process HEL in a secondary
event. This and the ability of PRO to act in trans appear to
reflect the evolutionary relationship of this virus to rubiviruses
and alphaviruses, and as it occurs in these animal viruses, it is
likely that temporal regulation of polyprotein processing controls
the synthesis of different RNA species (negative- and positive-
strands). Whether the specific cleavage observed in TYMV also
shuts off the synthesis of negative-strand RNA is still unknown
(Jakubiec et al., 2007). In addition to this, TYMV PRO is a
functional ovarian tumor-like deubiquitylating enzyme (DUB)
and this activity helps PRO to modulate viral replication by
stabilizing the viral polymerase preventing degradation by the
ubiquitin-proteosome system (Camborde et al., 2010; Chenon
et al., 2012; Bailey-Elkin et al., 2014; Jupin et al., 2017).

The alphavirus-like supergroup does not maintain a conserved
protease in all members as the picornavirus-like does. In this way,
the Closteroviridae family, although sharing in ORF1a the MET,
HEL organization followed by RdRp in ORF1b, does not encode a
protease that acts in trans to process these products, but contains
a leader proteinase(s) with autocatalytic activity (Dolja et al.,
2006; Agranovsky, 2016). On the other hand, some members
of the Betaflexiviridae family, do encode in ORF1 similar MET,

PRO, HEL, RdRp domains as members of the Tymoviridae family
do, although there is little information regarding polyprotein
processing and no data regarding involvement of PRO in
replication (Foster and Mills, 1992; Lawrence et al., 1995).
A similar lack of information is encountered in the Benyiviridae
family. Its most studied member, beet necrotic yellow vein virus
(BNYVV), encodes a papain-like cysteine protease domain (PCP)
(Hehn et al., 1997), and it has been hypothesized that it might
act as a DUB to favor RdRp transcription (Pakdel et al., 2015),
similar to the mode of action of the PCP domain of hepatitis E
virus (HEV), although in the latter case, PCP acted as a DUB to
counteract cellular antiviral pathways (Karpe and Lole, 2011).

But not only trans-acting proteases are involved in the
regulation of replication. Recently, the leader protease P1 of
the Potyvirus genus has also been assigned to this role. Work
performed with plum pox virus (PPV) P1 showed that the
N-terminal part of this cis-acting serine proteinase, the most
variable region, acts as a negative regulator of P1 self-processing,
modulating in this way potyviral replication (Pasin et al.,
2014). Removal of the N-terminal part of P1, not only makes
the protein co-factor independent, but also potentiates viral
replication at early times of infection emphasizing the regulatory
role of this protein in the potyviral life cycle. The way PPV
P1 is modulating replication through host factor interactions
resembles the mode of action of the NS2 protease of animal
virus bovine viral diarrhea virus (BVDV) (Lackner et al., 2004,
2006). In this pestivirus, the NS2 protease modulates replication
indirectly by downregulating NS2-NS3 processing. Similarly,
PPV P1 modulates P1HC processing and indirectly affects viral
replication.

VIRAL COUNTERDEFENSE

Sometimes, when a protease potentiates a positive effect on
replication it is not due to a specific role in this viral process, but
it is the consequence of an indirect effect caused by an enhanced
ability of the virus to escape plant defenses. Thus, proteases
could be considered as having a counterdefense role instead of
a role in viral replication. For example, PPV P1 was described
as having a modulatory role in replication, but this is likely
derived from the modulation of the RNA silencing suppressor
HC. It can be considered that P1 is actually modulating host
defense responses and that the effect observed in viral replication
is just a by-product of this role. The same can be argued in
the case of TYMV PRO activity as DUB, which can be viewed
not in terms of modulating replication, but if RdRp degradation
is considered as part of plant defense, it can be viewed as a
counterdefense mechanism (Camborde et al., 2010; Chenon et al.,
2012; Lombardi et al., 2013; Jupin et al., 2017).

Using DUBs as a means of protection against host defenses is
something well-established in the animal viral world. Examples
can be found among viruses of the order Nidovirales such
as the coronavirus severe acute respiratory syndrome-related
coronavirus (SARS-CoV) or the arterivirus equine arteritis virus
(EAV) that use this strategy of interfering with the innate immune
signaling pathway through the DUB activity of their cysteine
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proteases (Clementz et al., 2010; van Kasteren et al., 2013).
The same is true for viruses of the order Picornavirales such
as the aphtovirus foot-and-mouth disease virus (FMDV) and
its Lpro leader protease (Wang et al., 2011a,b). In all these
cases, however, although the counterdefense activity is well-
documented, it appears that the DUB and the protease activity are
not strictly interrelated. In the case of TYMV, these two activities
can be uncoupled by mutations that selectively suppress the DUB
activity without altering PRO (Jupin et al., 2017).

Probably, the best characterized proteases acting as viral
counterdefense barriers by degrading host proteins are the ones
from the Picornaviridae family (Agol and Gmyl, 2010). Thus,
FMDV Lpro not only disrupts the interferon signaling pathway
through its deubiquitinase activity but also cleaves eIF4G shutting
off host cap-dependent translation and downregulating Type I
interferons (Guarné et al., 1998; Chase and Semler, 2012; Liu
et al., 2015). Moreover, FMDV produces, as the rest of the
members of the Picornaviridae family, 3Cpro, a protease that is
in charge of processing the different elements of the polyprotein
acting in cis and in trans, and also degrades several host proteins
in order to potentiate viral transcription and translation (Sun
et al., 2016). In the same family, rhinoviruses and enteroviruses
produce another protease termed 2Apro, which also develops
these degrading functions (Seipelt et al., 1999; Chase and Semler,
2012).

Taking these activities into account it is reasonable to ask the
question of whether the 3C-like proteases of plant picorna-like
viruses perform similar host degrading activities to counteract
plant defenses or not. In the case of NIapro, the 3C-like protease
of the Potyviridae, no specific host proteins affected by its
catalytic activity have been described and, only recently, a study
was published describing possible interacting partners in plants
(Martínez et al., 2016). However, it cannot be ruled out that
NIapro might be processing more proteins than the viral ones
taking into consideration its demonstrated ability to act on
proteins with an engineered target sequence (Rohila et al., 2004;
Cesaratto et al., 2016) or even on proteins with a naturally
occurring target cleavage site, such as the amyloid-β peptide (Han
et al., 2010; Kim et al., 2012). Likewise, NIapro from potato
virus Y (PVY) acts as elicitor of the hypersensitive response
mediated by the gene Ry in potato, and its protease activity,
likely acting on a host factor, appears to be involved in this
eliciting response (Mestre et al., 2000, 2003). More recent studies
have described a role of potyviral NIapro in enhancing aphid
transmission and suggested that this role might be related to its
ability to degrade vacuolar defense proteins (Casteel et al., 2014;
Bak et al., 2017).

Some newly published reports add more information to the
scarce available data about activities of 3C-like proteases related
with defense and counterdefense responses. The RNA silencing
suppressor R78 of the waikavirus maize chlorotic dwarf virus
(MCDV) is cleaved by Pro, raising the possibility that this
cleavage might have some influence in R78 silencing suppression
activity over the course of the infection (Stewart et al., 2017).
Moreover, NIapro of the tritimovirus wheat streak mosaic virus
(WSMV) contributes to prevent superinfection by related viruses,
and it has been suggested that the protease activity of this protein

is required for superinfection exclusion (Tatineni and French,
2016).

VIRION MATURATION

A good example of a viral protease directly involved in virion
formation is togavirin from viruses of the genus Alphavirus.
Structurally related to chymotrypsin-like serine proteases,
togavirin is the actual core protein. It self-processes from the
polyprotein precursor, binds viral RNA, and assembles into
the capsid (Krupovic and Koonin, 2017). Apart from this
versatile endopeptidase, the role of proteases in virion maturation
has been well-studied for animal retroviruses such as human
immunodeficiency virus (HIV), Rous sarcoma virus (RSV) or
murine leukemia virus (MLV), amongst others (Konvalinka et al.,
2015). In these viruses, cleavage of viral polyproteins at specific
sites and in an orderly fashion is crucial for transforming the
immature shell into an active infectious particle. Pseudoviridae
and Metaviridae are two viral families that include plant
retroviruses (Peterson-Burch and Voytas, 2002; Wright and
Voytas, 2002; Eickbush and Jamburuthugoda, 2008), but there
is not much information regarding the regulation of proteolytic
processing. More data is available about the Caulimoviridae, the
single family of plant pararetroviruses (Torruella et al., 1989).
The genome of all replication-competent retroviruses consists of
structural, replication and envelope proteins (gag, pol, and env)
(Marmey et al., 2005). The protease (PR), an aspartate peptidase
with no homology to other viral proteases, is generally included
in the pol domain. Viruses of the Caulimoviridae family, the
only plant viruses with dsDNA genomes, encode the gag-pol
core, but unlike retroviruses, lack an integrase, which is not
required because the caulimoviral DNA is not integrated in the
host chromosome. The type virus of the family is cauliflower
mosaic virus (CaMV), a member of the Caulimovirus genus. The
capsid protein (CP) of this virus is produced as a precursor (pre-
CP) with N- and C-terminal extensions. CP is involved in virion
assembly, packaging of viral RNA and delivery of the genome
to the nucleus. Processing of the CP extensions is thought to
regulate these functions. The N-terminal extension of CP appears
to be involved in keeping the pre-CP in the cytoplasm and
may operate as an anchoring domain for the initiation of viral
assembly, similar to what occurs to HIV viral matrix protein
(Champagne et al., 2004). Virion maturation is completed by
removal of the first 76 aa and about 40 aa from the C terminus
by the viral aspartic proteinase (Karsies et al., 2002; Champagne
et al., 2004). The fact that pre-CP is excluded from the nucleus,
would assure that only mature virions, containing the genomic
DNA, enter in the nucleus (Karsies et al., 2002). Studies done
with another plant pararetrovirus, the badnavirus rice tungro
bacilliform virus (RTBV), showed that its aspartic protease cuts
independently of plant-specific host factors since it retained its
proteolytic activity in baculovirus (Laco et al., 1995) and bacteria
(Marmey et al., 2005). In the case of animal retroviruses, PR is
expressed in an inactive monomeric form and needs to dimerize
to acquire an active conformation in which each unit contributes
an aspartate to the active site. Proper redox environment is likely

Frontiers in Plant Science | www.frontiersin.org 6 May 2018 | Volume 9 | Article 666

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-00666 May 16, 2018 Time: 17:22 # 7

Rodamilans et al. Plant Viral Proteases

to also play a role in PR activation (Ingr et al., 2003; Konvalinka
et al., 2015). Based on active site comparison, it is anticipated that
PR of Caulimoviridae also acts as dimers (Torruella et al., 1989).
Its activation requirements are still pending further investigation.

HOST RANGE DEFINITION

Plant viruses have definite host ranges, which in some cases
are very narrow. The complex network of interactions between
plant and virus that needs to be established in order for the
infection to progress makes it difficult for the virus to have broad
host spectrum. In terms of viral proteases, the best examples
of host range modulation come from the Potyviridae family
(Adams et al., 2005a,b; Revers and García, 2015). Potyviruses,
rymoviruses, and some ipomoviruses have P1a-like leader serine
proteases whose cleavage is essential for virus infectivity (Verchot
and Carrington, 1995). These proteases rely on a plant factor(s)
to develop their proteolytic activity, a feature that separates them
from P1b-like serine proteases in the family and whose cleavage
is co-factor independent (Verchot et al., 1992; Valli et al., 2006;
Rodamilans et al., 2013). The comparison of two PPV isolates,
which differed in their reciprocal capacity of infecting woody and
herbaceous hosts, showed the relevance of P1 among other viral
proteins for host adaptation (Salvador et al., 2008a). Similarly,
analyses of PPV chimeras including P1 sequences of tobacco
vein mottling virus (TVMV) and of virus variants with different
biological properties sorted from a single PPV isolate also pointed
toward the involvement of P1 in host range definition (Salvador
et al., 2008b; Maliogka et al., 2012). All these works show how
relevant P1 is in terms of host spectrum characterization, but
do not necessarily implicate the protease activity of P1 in this
role. More direct evidence of the involvement of P1-mediated
proteolytic processing in compatibility with the host comes from
works performed with P1a of cucumber vein yellowing virus
(CVYV) and P1 of PPV, both P1a-like proteases. In these studies,
it was shown that one of the factors limiting PPV infection in
Cucumis sativus was likely the incompatibility of PPV P1 with a
host co-factor required for its protease activity. Either replacing
P1 with P1a, supposedly compatible with a cucumber co-factor,
or with a host factor-independent P1 mutant, provided PPV the
ability to partially break the non-host resistance of cucumber
(Carbonell et al., 2012; Shan et al., 2015, 2017).

From the same Potyviridae family, NIapro has also been
described to play a role in host range determination. In the
papaya ringspot virus (PRSV), a single amino acid substitution in
this chymotrypsin-like protease allows a host-shift from cucurbits
to papaya, although the specific involvement of the protease
activity of NIapro in this effect is only a possibility (Chen et al.,
2008). More direct evidence of the involvement of the protease
activity of NIapro in host range determination comes from work
performed with PPV (Calvo et al., 2014). This study showed
that alternative adaptation to Nicotiana and Prunus hosts was
determined, not by peculiarities of the NIapro sequence, but by
differences in the NIapro target sequence placed between 6K1 and
CI, suggesting modulation of NIapro processing at this site in a
host-specific manner.

PROTEOLYTIC ACTIVITY-UNRELATED
FUNCTIONS

The small size of the genome of plant RNA viruses forces the
proteins from these viruses to acquire multiple functions. This
is best exemplified by the potyviral protein HC (Valli et al., 2018).
HC is a cysteine proteinase whose first identified function was to
aid in aphid transmission of viral particles (de Mejia et al., 1985).
However, the main function of the potyviral HC appears to be
suppressing antiviral RNA silencing (Anandalakshmi et al., 1998;
Kasschau and Carrington, 1998), and an independent function
of HC in the correct assembly of potyviral virions has been
more recently reported (Valli et al., 2014). Interestingly, all these
HC functions do not rely on its proteolytic activity, as it is
also the case for the RNA silencing suppression activity of the
serine proteinase P1b of the ipomovirus CVYV (Valli et al.,
2008), illustrating how proteolysis-related and -unrelated roles
can concur in a single viral protein. Probably also unrelated to
its protease activity is the role suggested for P1 of tobacco etch
virus (TEV) in stimulating viral RNA translation (Martínez and
Daròs, 2014).

Viral proteinases with functions that appear unrelated to
their proteolytic activity are not restricted to the family
Potyviridae. The self-cleaving leader proteinases of viruses
of the Closteroviridae family are a good example of this.
These proteinases are involved in virus accumulation, systemic
transport, host range expansion or virus superinfection exclusion,
but all these roles appeared to be independent of their protease
activities (Peng et al., 2001, 2003; Liu et al., 2009; Atallah et al.,
2016). Contrary to what was observed for the leader proteinase
of FMDV, the closterovirus proteases show no DUB activity and
have not been described to be involved in further processing of
host or viral proteins.

CONCLUDING REMARKS

It is well-established that viral proteases are not just proteolytic
machines acting without proper modulation of time and/or
space. Much effort has been put into defining what these extra
roles are and characterizing the different mechanisms of action
and their peculiarities. Involved in regulating replication, virion
maturation, host range determination or even displaying a more
active role as viral counterdefense barriers, proteases, when
present, are essential in practically all aspects of the viral cycle.
However, there are still many proteinases from plant viruses
for which information about the integration of its enzymatic
activity in the infection process is still unavailable. Viruses of
the family Endornaviridae are a fine example. These viruses have
been understudied probably because they do not usually cause
any noticeable damage on their hosts. They have a monocistronic
RNA genome that encodes a large polyprotein, but there are
only hints about how this polyprotein is processed (Roossinck
et al., 2011; Sabanadzovic et al., 2016). The case of P1 of the
sobemovirus rice yellow mottle virus (RYMV) is another good
example of a viral protease with a puzzling role (Weinheimer
et al., 2010). RYMV P1, a protein with RNA silencing suppression

Frontiers in Plant Science | www.frontiersin.org 7 May 2018 | Volume 9 | Article 666

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-00666 May 16, 2018 Time: 17:22 # 8

Rodamilans et al. Plant Viral Proteases

activity, is expressed as a mature protein, rather than as part
of a protein precursor; however, in experimental conditions it
displays self-cleaving activity able to precisely remove engineered
C-terminal extensions. Maintaining a function that seems to
be superfluous raises the possibility that this protease, and by
similarity other leader proteases, might have an extra unknown
biological function.

We have focused this short review on the roles of virus-
encoded proteinases in viral infection. However, control of
gene expression by proteolytic processing of protein precursors
not only relies on viral proteinases. For instance, host aspartyl
proteases are in charge of the processing of the primary product
of the M genomic RNA of plant viruses of the order Bunyavirales
to yield two mature glycoproteins (Whitfield et al., 2005; Li et al.,
2015; Shi et al., 2016). The involvement of cellular proteases in
modulating plant virus infection is another exciting target for
future research.
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