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Phenotyping with proximal sensors allow high-precision measurements of plant traits
both in the controlled conditions and in the field. In this work, using machine learning, an
integrated analysis was done from the data obtained from spectroradiometer, infrared
thermometer, and chlorophyll fluorescence measurements to identify most predictive
proxy measurements for studying Septoria tritici blotch (STB) disease of wheat. The
random forest (RF) models for chlorosis and necrosis identified photosystem II quantum
yield (QY) and vegetative indices (VIs) associated with the biochemical composition of
leaves as the top predictive variables for identifying disease symptoms. The RF model
for chlorosis was validated with a validation set (R2: 0.80) and in an independent test set
(R2: 0.55). Based on the results, it can be concluded that the proxy measurements for
photosystem II, chlorophyll content, carotenoid, and anthocyanin levels and leaf surface
temperature can be successfully used to detect STB. Further validation of these results
in the field will enable application of these predictive variables for detection of STB in the
field.

Keywords: Septoria tritici blotch, wheat, proximal phenotyping, disease detection, machine learning, random
forest, machine learning

INTRODUCTION

Septoria tritici blotch (STB) caused by Zymoseptoria tritici is currently one of the most devastating
foliar diseases of wheat in Northwestern Europe causing yield losses every year (Fones and Gurr,
2015; Chawade et al., 2018). It is a hemibiotrophic fungus which penetrates host leaves through
stomata and grows very slowly in the intercellular spaces of the mesophyll cells. The latent phase
varies between 14–28 days under field conditions and 9–14 days under laboratory conditions
(Kema et al., 1996; Shetty et al., 2003; Keon et al., 2007). This symptomless period has been referred
to as ‘biotrophic’ (Kema et al., 2000), however, after more detailed transcriptomic and metabolic
analysis, this term has become debatable (Rudd et al., 2015; Sánchez-Vallet et al., 2015). After a
latent period, the fungus switches to necrotrophic phase and the infected leaves become chlorotic
and develop into necrotic irregularly-shaped blotches (lesions) in which fungal asexual fruiting
sporulation structures called pycnidia develop (Steinberg, 2015; Kettles and Kanyuka, 2016).

A cultivar with a high level of resistance can provide an effective mode to control the disease
severity, but so far, cultivars with complete resistance are not developed (Chartrain et al., 2004).
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STB is typically controlled by fungicides and due to the
intensive chemical control, Z. tritici populations can rapidly
evolve resistance to fungicides (Goodwin et al., 2011). For STB,
best practice requires that the fungicides should be sprayed
early on in the latent period, as the fungicide application
has limited effectiveness in the necrotrophic phase (Fones and
Gurr, 2015). Detection of STB in the latent stage can provide
more efficient disease control by fungicides, thus minimizing
directional selection that favors mutations encoding high level of
resistance to fungicides in the Z. tritici populations.

Optical imaging techniques such as RGB, thermal,
fluorescence, multi- and hyper-spectral imaging were applied to
detect various plant diseases (Mahlein, 2016). Colonization of
fungal pathogens cause multiple biochemical, physiological and
morphological alterations in leaf tissue and it can be inferred
from the reflectance of light at visible (VIS, 400–700 nm) and
near-infrared (NIR, 700–2000 nm) regions of the electromagnetic
spectrum. Hyperspectral imaging can be used to detect foliar
diseases in early pathogenesis stage before visible symptoms
appear (Kuska et al., 2015; Xie et al., 2016; Thomas et al., 2017).
Hyperspectral imaging in VIS/NIR ranges was demonstrated
as a powerful tool for detection and/or differentiation of foliar
fungal diseases in barley (Kuska et al., 2015; Thomas et al., 2017),
cucumber (Berdugo et al., 2014), sugar beet (Mahlein et al.,
2012b), wheat (Ashourloo et al., 2014a,b; Cao et al., 2015; Iori
et al., 2015), tomato (Xie et al., 2016), oilseed rape (Baranowski
et al., 2015), and strawberries (Yeh et al., 2016).

Visible range is mainly influenced by leaf pigments like
chlorophyll and carotenoid content and NIR is influenced by
leaf structure, internal scattering processes and by leaf water
content (Mahlein, 2016). Spectral vegetation indices (VIs) are
mathematical equations and transformations derived from two or
more wavelengths in the electromagnetic spectrum (Araus et al.,
2001). Application of VIs is a common approach to investigate
or identify changes in plant physiology and morphology. VIs
were developed as proxies to evaluate various plant properties
such as leaf area (Rouse et al., 1974), water content (Penuelas
et al., 1995), and leaf pigment content (Gitelson et al., 2002;
Sims and Gamon, 2002). Among the indices developed, NDVI
(Normalized Difference Vegetation Index) is most commonly
used as it can estimate nutrient requirements of plants and is thus
used for optimizing fertilizer input in the fields (Raun et al., 2002).
More than 100 VIs have been developed so far and summarized
earlier (Devadas et al., 2008; Agapiou et al., 2012; Pietragalla et al.,
2012; Lehnert et al., 2017).

Advances in sensor phenotyping technologies will generate big
data. Therefore, extracting patterns and features from this big
data requires machine learning (ML) tools (Singh et al., 2016).
Application of the ML methods for prediction of various diseases
from spectral reflectance data was reviewed recently (Lowe et al.,
2017). Using spectral reflectance data, yellow rust in wheat was
detected with quadratic discriminant analysis (Bravo et al., 2003;
Lowe et al., 2017), multilayer perceptron (Moshou et al., 2004),
and regression (Huang et al., 2007). While leaf rust was detected
with maximum likelihood classification (Ashourloo et al., 2014b)
and powdery mildew with Fishers linear discriminant analysis
(Zhang et al., 2012). Thus, spectral reflectance phenotyping and

ML methods hold promise for disease detection at early stages of
infection.

Early detection of disease symptoms allows taking control
measures to avoid further spread of pathogen and consequent
yield losses. Disease monitoring methods are time-consuming,
can be affected by subjective bias and expensive (Bock et al.,
2010). Therefore, there is an increasing demand for innovative
and reliable disease monitoring method (Bravo et al., 2003;
Mahlein et al., 2012a). The aim of the present study was to
evaluate the possibility of identifying disease progression stages of
STB on wheat with proximal phenotyping and machine-learning.

MATERIALS AND METHODS

Fungal Inoculation
The Z. tritici isolate was isolated from typical STB lesions
on leaves of winter wheat collected in 2015 in a field in
Lomma, Sweden. The inoculum was obtained from stock conidial
suspensions of the isolate stored at −80◦C in a sterile 1:1
glycerol–water solution. The fungal isolate was retrieved by
adding 10 µl of the spore suspension to Petri dishes containing
fresh 4-4-4 agar-malt-yeast medium (YMSA) with antibiotic
Kanamycin (50 µg/ml) (Saidi et al., 2012). The isolate was spread
on the medium by adding 1 ml of sterile water after 1 day of
growth. Petri dishes with the isolate were incubated at 20◦C
with 12 h photoperiod. Conidial suspensions were prepared by
first flooding the surface of the 10-day-old cultures with sterile
distilled water and then by scraping the agar surface with a
sterilized paint brush to release conidia. The spore concentration
was measured using a Neubauer counting chamber. Thereafter,
0.1% TWEEN20 (Sigma) was added to the spore suspension and
the final spore concentration was adjusted to 107 spores ml−1.

Plant Material
Two independent experiments were conducted under
greenhouse conditions. In the first experiment (training
and validation set), 10 winter wheat cultivars/breeding lines
(Stigg, Oakley, Nelson, Mariboss, Kovas DS, Julius, Hereford,
SW05317, SW75638, and Target) were evaluated for resistance
to STB. Whereas, in the second experiment (test set) two winter
wheat cultivars (Kranich and Nimbus) were evaluated for STB
resistance. For both experiments, seeds were germinated for
2 days on a moist filter paper in Petri dishes. Germinated seeds
were sown in plastic pots (8 cm × 8 cm × 8 cm) filled with
peat substrate Blomjord Exclusive (Emmaljunga Torvmull AB,
Sweden). For each genotype, two seeds were sown per pot in
three replications in a randomized block design. Plants were
grown in a greenhouse at 22◦C (day) and 18◦C (night) with a
16 h photoperiod.

Inoculation Procedure
Seedlings were inoculated following the full emergence of the
third leaf and about 21 days after planting. The conidial
suspension was applied to both sides of marked second and third
leaf using a flat paintbrush (bristle length 15 mm). The control
plants were inoculated with water. Following inoculation, plant
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leaves were allowed to dry for 1 h before transferring to the
humidity chamber. Plants were kept under the plastic tent at
close to 100% humidity for 48 h before being returned to the
greenhouse conditions.

Disease Assessment
Disease severity was visually assessed at time-points 15, 17, 18,
20, 21, and 23 for the training and validation set and at 6, 8,
10, 13, 14, 15, and 16 days post-inoculation (dpi) for the test
set. Percentage of the inoculated leaf surface (from 0 to 100%)
presented the following symptoms: chlorosis [the percentage of
chlorotic area (CHL)] and necrosis [the percentage of necrotic
area (NEC)]. The symptoms and lesion development over the
assessment period were summarized by area under the disease
progress curve (AUDPC). Minitab software (Version 17.1.0) was
used for statistical calculations. Differences in AUDPC were
investigated with ANOVA (PROC GLM) and comparisons of
means with Tukey’s test.

Sensor Phenotyping
In the training and validation set, sensor phenotyping was done
at time points 14, 15, 17, and 18 dpi for the infected plants while
for the mock-inoculated plants, sensor phenotyping was done at
14 dpi. In the test set, sensor phenotyping was done for both
mock-inoculated and infected plants at 6, 8, 10, 13, 14, 15, and
16 dpi. Earlier time-points were additionally included in the test
set to evaluate the possibility to detect disease symptoms earlier
in the disease progression with the developed computational
models. A handheld active light fluorometer (FluorPen FP 100-
MAX, Photon Systems Instruments, Czechia) with detachable
leaf-clips was used for measuring QY (Photosystem II quantum
yield). For QY measurements, for each plant, two leaf-clips
were attached to the control or infected leaves and were dark
adapted for 15 min prior to the measurements. Thereafter, the
leaves were removed from the plants and spectral reflectivity
(350–1150 nm) of the leaves were recorded with a resolution
of 1 nm with a handheld spectroradiometer sensor Apogee PS-
100 (Apogee Instruments, Inc., United States) using a reflectance
probe with an internal light source (AS-003, Apogee Instruments,
Inc., United States). The spectroradiometer was calibrated against
a white reference standard Apogee AS-004 (Apogee Instruments,
Inc., United States) prior to the measurements. The leaf
temperature was measured with a infrared thermometer Apogee
MI-210 (Apogee Instruments, Inc., United States). Finally, the
leaves were scanned with Epson Perfection V200 scanner.

Spectral Data Analysis and Machine
Learning
The obtained raw spectral reflectance data files were analyzed
further to remove noise, detect outliers and calculate VIs
using the open-source software Specalyzer1 and the hsdar R
package (Lehnert et al., 2017). Data quality of the spectral
files was inspected manually in Specalyzer. Each replicate
consisting of two plants was considered as a sample. For spectral

1www.specalyzer.org

measurements from all samples, areas around the edges of the
spectra were trimmed due to low signal-to-noise ratio and the
region from 420 to 1000 nm was retained for further analysis.
Finally, 119 previously known VIs were estimated from the
spectral data in Specalyzer for further analysis (Supplementary
File 1). Thus, in total, 121 variables were obtained for each sample
consisting of 119 VIs, QY, and leaf surface temperature. PCA
(principal component analysis) was performed in the software
Simca 14.1 (Umetrics, Sweden) and the data was scaled by unit
variance (UV) scaling method for PCA.

Random forest (RF) regression models were built from the
training set with 121 samples from eight cultivars/breeding lines
and was validated on the validation set of 30 samples from
two lines (SW75638 and Target) consisting 6 uninfected and 24
infected samples. Recursive feature elimination algorithm (RFE)
from the R package Caret (Kuhn et al., 2016) was used for
feature selection with parameters: function “rfFuncs,” method
“repeatedcv” and repeats 10. Separate prediction models were
thereafter built with the features selected with RFE for chlorosis
and necrosis using the R package Caret. Common parameters
for building the models were the variables selected by RFE,
eight cultivars from the training set, ntrees 2000, resampling
method “repeatedcv,” number 10, repeats 10 and importance
“True.” Percentage of chlorosis and necrosis were used as scoring
parameters for model training and testing. The models were
tested on a test set consisting of 94 samples with equal number of
infected and uninfected samples from the winter wheat cultivars
Kranich and Nimbus.

RESULTS

Genotype Variation for STB Severity
In the training set, 10 genotypes showed good variation in STB
severity across all time points upon infection (Figure 1). Cultivar
Stigg had less chlorotic and necrotic symptoms compared to the
cultivar Hereford and the breeding line SW75638. The chlorotic
symptoms were visible by 14 dpi but were more pronounced by
16 dpi in most genotypes. Necrotic symptoms appeared by 16
dpi in the susceptible genotype but Stigg did not show many
necrotic symptoms even at 18 dpi. AUDPC was calculated based
on scoring for chlorosis and necrosis at all timepoints to quantify
resistance (Figure 2). A significant difference (p < 0.01) among
the 10 winter wheat genotypes was observed in AUDPC of NEC.
Target, Stigg, and Nelson revealed highest level of resistance and
the most susceptible cultivars in this experiment were Hereford
and SW75638 (Figure 2). A significant correlation (r = 0.86,
p < 0.001) was also found between the AUDPC of CHL and
NEC. In the test set, clear differences in the chlorotic and
necrotic symptoms were observed among the two winter wheat
cultivars Nimbus and Kranich (Figure 3). Disease symptoms
appeared much earlier in Nimbus (at 13 dpi) compared to
Kranich. Quantification of CHL and NEC by AUDPC in the
test set showed significant differences between the two cultivars
(p < 0.01, Figure 4). Cultivar Kranich exhibited a higher level of
resistance compared to Nimbus in both STB disease development
stages (CHL and NEC).
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FIGURE 1 | Septoria tritici blotch (STB) symptoms on 10 winter wheat cultivars at (A) 14 dpi control; (B) 14 dpi infected; (C) 15 dpi infected; (D) 16 dpi infected; and
(E) 18 dpi infected. Cultivars are sorted based on the necrotic symptoms.

FIGURE 2 | The area under the disease progress curve (AUDPC) for STB
among the 10 different cultivars and breeding lines. Means that do not share a
letter are significantly different at p < 0.05 (Tukey multiple comparison test).
Ordered based on the necrotic symptoms.

Multivariate Analysis
Clustering of samples from the training and the test set were
studied by PCA of 121 variables consisting of 119 VIs, leaf surface
temperature and QY measurements from each sample. In the
PCA of the training set, the first and the second components

explained 60.2 and 16.3% of the variation respectively (Figure 5).
Most of the samples from the early time points clustered together
(14 and 15 dpi), whereas, samples from the later time points (17
and 18 dpi) were more scattered. The first component explained
the variability in the disease progression over time while the
second component explained the inter-cultivar variation during
disease progression. Thus, disease progression over time was the
major variability in the data explained by the PCA. In Figure 5,
it can be observed that the variability in the data increases with
the disease progression. The control samples at 14 dpi have the
lowest variability and are thus relatively tightly clustered followed
by increasing separation among the infected samples from 14 to
18 dpi. The results from PCA indicates that the 10 cultivars in
the training set have physiological differences in their response
to the infection which is also corroborated by disease symptoms
evaluated with AUDPC analysis (Figure 2). In the PCA plot
from the test set, the two PCA components explained 56.6 and
18.3% variation respectively (Figure 6). Similar to the PCA from
the training set, in the test set, the first component explained
the variability in the disease progression over time, additionally,
some separation was also observed among the control samples
as the control samples from the later time-points separated from
earlier time-points. This suggests physiological differences in
the control plants occurring over a duration of 10 days (6–16
dpi). Among the infected plants, sample separation in Nimbus
(susceptible) is detected at 13 dpi whereas in Kranich (resistant)
the separation was at 15 dpi. Also, a clear and distinct separation
of Nimbus samples at 16 dpi is observed. This indicates distinct
differences in the physiological status of Kranich and Nimbus
genotypes upon STB infection and these differences become
apparent after 13 dpi with the sensor measurements.

A heatmap was prepared for the test set from the relative
intensities of the sensor phenotyping data obtained from the
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FIGURE 3 | Symptoms of STB on two winter wheat cultivars. (A) Kranich, (B) Nimbus, with representative pictures of the disease symptoms after 6, 8, 10, 13, 14,
15, and 16 dpi.

FIGURE 4 | The area under the disease progress curve (AUDPC) for STB for
the two cultivars Kranich and Nimbus (two sample t-test, ∗p < 0.01).

ratio of the data from the infected plants to that of the mock-
inoculated plants (Figure 7). Based on the dendrogram, two
clusters were obtained at the highest level of tree branching,
cluster-I consisted of 30 variables and cluster II 91 variables. As
can be seen from the heatmap, lower relative intensities were
recorded for several VIs in cluster-II at the later time-points in
both cultivars and distinctly lower intensities were observed in
the susceptible cultivar Nimbus. Variables in cluster-II negatively
correlate with STB symptoms as the intensities of these variables
decrease with increase in necrosis. Several variables in cluster-II
were affected by necrosis already upon the first visible symptoms
of necrosis at 13 dpi in the susceptible cultivar Nimbus. In the

resistant cultivar Kranich, relatively less pronounced changes in
intensities of variables from cluster-II were seen. Furthermore,
unlike in Nimbus, variables in cluster-II were not affected at
earlier time-points in Kranich which is in accordance with the
delayed necrosis symptoms observed in Kranich.

Correlation analysis of the sensor data was done between
the training and the test set to analyze the reproducibility of
the measurements over time and genotypes. At first, for each
experiment, correlation analysis was done separately for each
of the 121 variables and the respective CHL measurement of
the sample, thereafter, correlations obtained for each variable
from the two experiments were compared. A high coefficient
of determination (R2 = 0.91) was obtained indicating good
reproducibility of the measurements under similar conditions
across time and genotypes (Figure 8).

STB Detection With Random Forest
To identify and evaluate key predictive variables for STB
infection, automated feature selection was done followed by
building RF models with the selected features. For chlorosis,
the feature elimination algorithm RFE identified four variables
QY, D2 (derivative index), LRDSI1 (leaf rust disease severity
index) and LRDSI2 as most predictive. While for necrosis,
five variables namely QY, MCARI2/OSAVI2, ARI (anthocyanin
reflectance index), SR8 (simple ratio 8) and D1 were identified
by the RFE algorithm as important. RF regression models
were developed separately for CHL and NEC from the
training set and the selected variables. The percentage of
variation explained by the models was 45.41% for chlorosis
and 21.04% for necrosis with a mean of squared residuals
of 581 and 284 respectively. The variables QY was identified
as predictive in both chlorosis and necrosis models and
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FIGURE 5 | Principal component analysis (PCA) from the vegetation indices, QY and leaf temperature of 10 winter wheat cultivars and breeding lines (training and
validation set) after 14, 15, 17, and 18 days post-infection. Elliptical region represents the normal operating area by Hotelling’s T2 tolerance with 95% confidence. Sti:
Stigg; Oak: Oakley; Nel: Nelson; Mar: Mariboss; Kov: Kovas DS; Jul: Julius; Her: Hereford; SW0: SW05317; SW7: SW75638; and Tar: Target.

FIGURE 6 | Principal component analysis from the vegetation indices, QY and leaf temperature of two winter wheat cultivars (test set) N: Nimbus and K: Kranich
across different time points. Elliptical region represents the normal operating area by Hotelling’s T2 tolerance with 95% confidence.

had significantly different (p < 0.05) levels in the infected
plants compared to the mock-inoculated plants (Figure 9).
Leaf surface temperature was not selected as a predictive

variable although there were significant differences in the
surface temperature of the infected and mock-inoculated plants
(Figure 9).
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FIGURE 7 | The relative intensities of various vegetation indices of two winter
wheat cultivars after infection with STB across different time points.

The two RF models were tested on a validation set consisting
of 30 samples from the genotypes SW75638 and Target and an
independent test set of 94 samples from two cultivars Kranich
and Nimbus. The samples were predicted separately with the RF
models built for CHL and NEC. A simple linear regression was
calculated to estimate the relationship between the observed and
the predicted STB infection. For the validation set, chlorosis was
predicted with R2: 0.80 and necrosis with R2: 0.92, while for the
test set, chlorosis was predicted with R2: 0.55 (Figure 10).

DISCUSSION

In the present work, sensor phenotyping with spectral reflectance,
chlorophyll fluorescence, and leaf temperature was performed to

FIGURE 8 | Scatter plot and the simple linear regression line between training
and test set.

evaluate the possibility of detecting different STB developmental
stages. In this study, the number of indices affected by the disease
increased upon disease progression (Figure 7), an observation
which was also previously discussed (Ashourloo et al., 2014b).
This is due to the magnitude of changes in the leaf morphology
and physiology brought upon by disease progression. Sensor
phenotyping clearly separated control and infected plants based
on the progression of the disease (Figures 5, 6). This separation is
influenced by the underlying genetic resistance of the genotypes
to STB.

In this work, different indices were identified as top predictive
indices for chlorosis and necrosis except for QY which was
common in both. This can be due to the distinctly different
leaf composition in these two stages. QY (PSII) was affected by
STB in the susceptible genotype Nimbus at an early stage of
disease progression but was not affected to the same extent in
Kranich (Figure 9). Previously, chlorophyll fluorescence kinetics
were studied for powdery mildew and leaf rust infection in wheat
and early detection of infection was possible with chlorophyll
fluorescence measurements but not with NDVI (Kuckenberg
et al., 2008). In this work, leaf infrared temperature was not
selected as a top predictive variable by RF. Leaf temperature was
significantly different in the control and infected plants of the two
cultivars from the test set at 15 dpi. In the susceptible cultivar
Nimbus, statistically significant difference of 1.5◦C (p < 0.05)
was observed between the control and the infected plants at
time point 15 dpi with higher temperature recorded from the
infected plants (Figure 9). These results confirm the results from
a previous work where the canopy temperature measured with an
infrared thermometer positively correlated (r = 0.48–0.74) with
STB coverage in the field (Eyal and Blum, 1989).

The top predictive VIs for chlorosis were D2, LRDSI1, and
LRDSI2. The derivative index D1 and D2 correlated well with
the natural steady state chlorophyll fluorescence emission by
photosystem I and II in the range 639–730 nm (Zarco-Tejada
et al., 2003). Both LRDSI1 and LRDSI2 were developed for
detecting wheat leaf rust with prediction accuracies of >85%
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FIGURE 9 | Differences in QY (A,C) and leaf surface temperature (B,D) in Nimbus (A,B) and Kranich (C,D) across different time points (two sample t-test, ∗p < 0.05).

FIGURE 10 | Scatter plot and the simple linear regression line between predicted and observed STB infection scores. (A) Chlorosis in the validation set, (B) necrosis
in the validation set, (C) chlorosis in the test set.

(Ashourloo et al., 2014a). Thus, the predictive VIs for chlorosis
detect the levels of chlorophyll fluorescence and anthocyanin
levels in the leaves.

Top predictive VIs for necrosis were MCARI2.OSAVI2, ARI,
SR8, and D1. In the previous work, MCARI2.OSAVI2 was
developed for measuring chlorophyll content while tolerating
leaf area index (Wu et al., 2008). ARI was developed for
estimating anthocyanin reflectance in senescing and stressed
leaves (Gitelson et al., 2007). SR8 was developed to estimate
carotenoid content in conifer forest (Hernández-Clemente et al.,
2012). Thus the top predictive indices for necrosis identified in
this work suggests differing levels of chlorophyll, anthocyanin,
and carotenoid content in the infected leaves.

Spectral reflectance was previously used to develop spectral
indices for detection of different plant diseases. In wheat, leaf

rust was detected for plants in a controlled environment with
the VIs NBNDVI, NDVI, PRI, GI, and RVSI with an accuracy
of over 60% (Ashourloo et al., 2014b). Ashourloo et al. (2014a)
developed two new VIs LRDSI1 and LRDSI2 to detect leaf
rust in a controlled environment with the R2: 0.9. By proximal
and airborne hyperspectral phenotyping, Huang et al. (2007)
identified photochemical reflectance index (PRI) as the most
predictive VI (R2: 0.97) for yellow rust detection in wheat. Cao
et al. (2015) studied 17 VIs for prediction of powdery mildew
in wheat under field conditions and reported that difference
vegetation index (DVI), triangular vegetation index (TVI) and
the area of red edge peak significantly correlated with powdery
mildew severity. The RF models developed in this work for
detection of STB utilize several variables and thus provide a
possibility to uniquely detect STB in wheat with various sensors.
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STB was detected by NDVI and land surface temperature using
satellite imaging with MODIS (moderate-resolution imaging
spectroradiometer) and the spatial modeling conducted with
linear regression trees and boosted regression trees was suggested
as a promising approach for studying STB spread using satellite
imaging (Wakie et al., 2016). In this work, NDVI was not detected
as a top predictive index, however, the predictive VIs identified
in this work can be further validated in the field conditions by
proximal and remote sensing.

Further work with parallel measurements of different diseases
with various sensors under both greenhouse and field conditions
is required to understand the overlap of various predictive VIs.

Septoria tritici blotch resistance traits can be further combined
with STB escape and tolerance traits to further reduce the disease
progression and maintain yields under disease pressure. Some
of the traits identified for STB escape are early vigor, growth
rate, plant height, leaf length, leaf spacing, prostrate leaves, leaf
insertion angle, flag leaf emergence, and heading time (Arraiano
et al., 2009; Brown et al., 2015). Disease tolerance can be explained
by the maintenance of yield in spite of the disease pressure. The
tolerance trait was studied in a susceptible wheat cultivar ‘Miriam’
which maintained yield even under disease pressure by increasing
photosynthesis in the residual green area of the infected leaves
(Kuckenberg et al., 2008). Using affordable high-throughput
phenotyping (Armoniené et al., 2018), and genotyping, the
escape and tolerance traits can be combined with the resistance
traits for developing improved wheat varieties. Furthermore, the
sensor data can be integrated with transcriptomics, proteomics,
and metabolomics data to improve our understanding of the
underlying biological mechanisms. RF was selected in this work
as it is equally effective for classification and regression (Díaz-
Uriarte and Alvarez de Andrés, 2006) and has been successfully
used earlier for disease detection in plants (Chawade et al., 2016).
RF is efficient at identifying predictive information from data
integrated from various sources and thus it can be explored

further for systems-level understanding of responses of plants to
various stresses.

CONCLUSION

This work has resulted in identifying top predictive indices for
detecting STB. Different predictive variables were selected by
the RF model for prediction of chlorosis and necrosis in leaves.
From this work, it can be concluded that precision phenotyping
with proximal sensors holds the potential for detecting STB and
further validation of the identified indices in the field conditions
will enable implementation of these precision phenotyping
techniques in the field for detection of STB.
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