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Studies of long-distance transport of tracer isotopes in plants offer a high potential

for functional phenotyping, but so far measurement time is a bottleneck because

continuous time series of at least 1 h are required to obtain reliable estimates of transport

properties. Hence, usual throughput values are between 0.5 and 1 samples h−1. Here,

we propose to increase sample throughput by introducing temporal gaps in the data

acquisition of each plant sample and measuring multiple plants one after each other in

a rotating scheme. In contrast to common time series analysis methods, mechanistic

tracer transport models allow the analysis of interrupted time series. The uncertainties

of the model parameter estimates are used as a measure of how much information

was lost compared to complete time series. A case study was set up to systematically

investigate different experimental schedules for different throughput scenarios ranging

from 1 to 12 samples h−1. Selected designs with only a small amount of data points

were found to be sufficient for an adequate parameter estimation, implying that the

presented approach enables a substantial increase of sample throughput. The presented

general framework for automated generation and evaluation of experimental schedules

allows the determination of a maximal sample throughput and the respective optimal

measurement schedule depending on the required statistical reliability of data acquired

by future experiments.

Keywords: tracer transport, phloem, modeling, PET, data analysis, 11C, design of experiments, experimental

scheduling

INTRODUCTION

Studying long-distance transport in plants is of high interest for the investigation of functional
traits under the influence of diverse environmental factors (Van Bel, 2003; Jahnke et al., 2009).
Non-invasive methods using short-lived radioisotopes have been established to detect the transport
of radioactive tracer in vivo (Jahnke et al., 1998, 2009; Minchin and Thorpe, 2003; Alexoff et al.,
2011; Garbout et al., 2012; Weisenberger et al., 2013; Hubeau and Steppe, 2015; Nakanishi,
2017). For example, after labeling a plant with 11CO2, transported

11C can be detected and localized
within the supplied plant organs from outside with positron emission tomography (PET) or
scintillation detectors. These methods yield spatially and temporally resolved data of the tracer
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distribution within the plant, which can be analyzed by
mathematical methods in order to estimate transport properties
such as tracer transport velocities and leakage along the transport
pathway (Tyree, 1975; Minchin and Thorpe, 2003; Suwa et al.,
2008; Bühler et al., 2011, 2014, 2017; Converse et al., 2015).
Further development of PET scanners dedicated for plant
research (Streun et al., 2014, 2016) offers a high potential for plant
phenotyping (Fiorani and Schurr, 2013; Hubeau and Steppe,
2015), but for this purpose the sample throughput needs to be
increased. In view of the limited availability and high operating
costs of radioisotope production and PET devices dedicated
to plant research, a suitable way to increase throughput is by
reducing the time of data acquisition per plant sample. Up to
date, common tracer experiments in plants typically take at least
1 h of data acquisition plus sample handling times, limiting the
throughput to not more than 1 sample per hour (Troughton
et al., 1977; Jahnke et al., 2009; De Schepper et al., 2013; Converse
et al., 2015). Increasing the throughput by simply shortening the
data acquisition time will not work because information about
transport properties as well as storage is typically spread over
a large part of the time series (Bühler et al., 2011). Instead,
the idea of the present study is to reach a higher sample
throughput by introducing temporal gaps in the data acquisition
of each sample, thus enabling to label multiple plants one after
another with a temporal offset and to subsequently measure
these plants in a rotating scheme. The resulting interrupted time
series will always contain less information about the transport
properties than a complete measurement. Thus the task was
to identify experimental schedules regarding the distribution
of gaps in data acquisition which maximize the throughput
and at the same time minimize the loss of information. For
this kind of evaluation, a model-based data analysis (Bühler
et al., 2011, 2014) needs to be applied, because purely data
driven methods (Minchin and Thorpe, 2003; Suwa et al., 2008;
Converse et al., 2015) require uninterrupted time series. For
the compartmental models established by Bühler et al. (2014),
increasing gaps in the time series lead to higher uncertainties in
the fitted model parameters. Thus the uncertainties can be used
to rank experimental schedules according to the amount of lost
information. To do this in a systematic way, a case study was set
up, using a compartmental model and added noise to create data
sets mimicking typical experimental data. These data sets were
then used to evaluate a huge number of different experimental
schedules. The working hypothesis was that the proposed scheme
of interrupted time series created by rotational measurement
should allow a substantial increase in sample throughput while
maintaining a sufficient quality of data analysis.

NUMERICAL METHODS

Model Definition
The general class of compartmental tracer transport models was
introduced in Bühler et al. (2014). This model class consists
of up to N parallel compartments where all compartments are
interconnected and allow exchange of tracer with individual
exchange rates eij from compartment i to compartment j. Within
the direction of spatial transport, tracer moves due to respective

convection vk and diffusion dk in all compartments k, (k =

1... N). Accordingly, the underlying system of partial differential
equations (PDEs) is defined as

∂ρk

∂t
= −vk

∂ρk

∂x
+ dk

∂2ρk

∂x2
+

N
∑
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akjρj (1)

with ρk = ρk (x, t) as tracer density distribution in space and
time. The exchange between compartments i and j with exchange
rate eij as well as the decay of tracer with decay rate λ is combined
in aij as
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Tracer entering the system is described either by a spatial
initial condition or by a time dependent boundary condition
(Bühler et al., 2014). From this general model class single model
instances can be derived by allowing only a certain set of model
parameters to be non-zero. In Bühler et al. (2014), a model filter
was presented which sorts out all redundant models as well as
useless models that would have non-functional compartments.
For up to 5 model parameters (without diffusion) a family
of 48 individual models was established, sorted by complexity
and numbered consecutively from M01 to M48. In the present
study, mainly model M13 (Figure 1) was used for numerical
calculations since it has been shown to be universally applicable
to typical experimental data (De Schepper et al., 2013; Bühler
et al., 2014).

This model consists of three compartments with four
model parameters that characterize the transport properties.
Convection is controlled by v1 and takes place in the first
compartment only. Additionally, tracer can exchange (e12) and
back-exchange (e21) from the first to the second compartment.
Moreover, tracer can be stored in the third compartment (e23).

Forward Simulation and Inverse Problem
The PDE in Equation (1) was spatially discretized using finite
volume schemes as described in Bühler et al. (2017). Here, a
linear fifth order upwind scheme was used (Shu, 2009). This
discretization method produces quite accurate results when the
initial condition is sufficiently smooth, and, at the same time, is
very quick to solve (Bühler et al., 2017). The spatial discretization
results in a system of ordinary differential equations (ODEs)
which then was solved with a standard fifth order Runge-Kutta

Frontiers in Plant Science | www.frontiersin.org 2 June 2018 | Volume 9 | Article 773

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Bühler et al. Design of Tracer Transport Experiments

FIGURE 1 | Sketch of model M13 from Bühler et al. (2014). There is transport

in the first compartment with velocity v1, exchange and back-exchange from

the first to the second compartment with exchange rates e12 and e21,

respectively, and storage in the third compartment with exchange rate e23.

time solver (Dormand and Prince, 1980). Finally, the result of a
forward simulation is the sum of tracer over all compartments,

ρ (x, t) =

N
∑

k=1

ρk (x, t) .

The procedure of fitting the model to a given data set
was described in Bühler et al. (2014). A nonlinear least
squares optimization method was used for estimation of model
parameters (lsqnonlin, Matlab R2016a, The MathWorks, Inc.).

Parameter Uncertainties
The model fitting yields estimates of the model parameters
and the Jacobian matrix of the parameters at the optimum.
Asymptotic standard errors of the parameter estimates were
estimated from the square roots of the diagonal elements of
the covariance matrix Cov of the model parameters. Cov was

approximated by Cov = s2(JTJ)
−1

, using the variance s2 of
the fit and the Jacobian J of the estimated model parameters at
the minimum (Johnson and Faunt, 1992). Though this method
to estimate standard errors neglects the covariances between
the estimated parameters, it is preferable here to the Monte
Carlo bootstrap method used in Bühler et al. (2014), because
it is computationally much less expensive and also applicable
to the very small data sets considered in this study. Example
comparisons showed that the results of both methods are very
similar for large data sets used in this study.

Implementation
All numerical routines have been implemented in MATLAB
(R2016a, MathWorks, Inc.). The code is publicly available at
https://github.com/ForschungszentrumJuelich/mdate.

EXPERIMENTAL DESIGN

When measuring multiple plants, each individual sample can be
labeled with a temporal offset to its predecessor, and the plants

are subsequently measured in a rotating scheme (Figure 2). The
temporal distance (gap size d) between successive measurements
of the same plant depends on the total number of plants
measured, the length of the measurement window w, as well as
the handling time Th needed for transporting samples in and out
of the measurement setup.

An experimental design is then defined by the following
experimental parameters: (1) starting time point Tstart, (2)
window width w, (3) number of windows Nw, (4) handling
time Th, and (4) gap length between windows d. The gap d
between two respective measurement windows is defined as
a multiple of w + Th, ensuring that all further samples can
be measured subsequently using the same experimental design.
This procedure allows investigating the experimental design for
one sample only which then represents all consecutive sample
measurements. The construction of the experimental designs is
depicted in Figure 3.

One of the main properties of each experimental design is the
mean sample rate SR which represents the number of samples
that can be measured per time unit. This sample rate is given
by SR = (Nw · (w + Th))

−1. The cumulated time of sample
measurement can be calculated as Nw · w for each design.

CASE STUDY

Reference Data
For this study a general reference data set was created with
model M13 and artificial noise. A Gaussian distribution ρ0 (x) =
exp

(

−(x− x0)
2/2σ 2

)

served as a continuous initial tracer
distribution function at time t0 = 0 with x0 as distance from
the beginning of the experimental field of view at x = 0 and σ

as width of the input curve. One of the major advantages of the
spatial initial condition is the ability to deal with temporal gaps
in the analyzed data and with tracer leaving the field of view,
both cases in which a reconstruction of a temporal boundary
condition is not possible. Also, implementing a spatial initial
condition allows high convergence orders of the PDE solver at
the boundaries of the field of view (Bühler et al., 2017). The
parameters x0 and σ as well as the amplitude of the simulated
tracer distribution within the field of view need to be fitted along
with the model parameters. For fitting the model to experimental
data, also the temporal position of the initial condition, t0, might
need to be estimated, because a temporal shift of experimental
data could affect the fit quality. Nevertheless, estimating t0
requires a continuous interpolation of the data to the shifted time
grid. This interpolation can cause small numerical oscillations of
the non-linear optimization near the minimum which can affect
the comparison of different experimental designs. For this reason,
t0 was set to zero and not fitted in this study.

For the calculation of the reference data set, the parameter
values of model M13 were set to v = 2.0mm min−1, e12 = 0.3
min−1, e21 = 0.1 min−1, e23 = 0.05 min−1, and σ = 5mm, x0 =
60mm for the initial condition. The choice of model parameters
was based on the fit parameters of model M13 to PET data of
sugar beet in Bühler et al. (2014). The forward simulation was
evaluated at 11 spatial positions from x = 0 to 100mm in steps
of 10mm and with a temporal resolution of 1min for a total
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FIGURE 2 | Consecutive measurement of multiple plant samples. For the pulse labeling experiment of plant 1 the data acquisition begins at time point Tstart and is

interrupted regularly to allow interlaced measuring of multiple samples.

FIGURE 3 | Schematic construction of measuring scenarios. Data are sampled with windows varying in starting time, frequency, length and distance between

windows. The length of the gaps d between the windows are multiples of window width w plus handling time Th. In this way, all designs allow an interlaced

measurement of multiple samples and an optimized use of measurement equipment.

time of 3 h. In order to simulate a certain model error, this data
was repeatedlymanipulated by adding normally distributed noise
with a standard deviation of 7e–3. This value was chosen because
the resulting standard errors of the estimated parameters are in
the same range as the values for sugar beet in Bühler et al. (2014).
The reference data set with one of the noise patterns used for all
further calculations is shown in Figure 4.

Specification of Experimental Designs
The experimental designs described in section Experimental
Design were applied on the reference data, resulting in reduced
data sets, which are referred to as “designs” in the following.
In order to make the number of possible designs feasible for
calculations, the following side conditions were applied. Window
widths w were considered in a range of values from 1 to 120min
in steps of 1min. The starting time point Tstart was varied in
steps of 1min from 20 to 40min, i.e., starting data acquisition
at the time of tracer arrival at the field of view and later. These

conditions limited the maximal number of windows Nw to 26
which were iterated in steps of 1. The gap length d was then
increased in multiples of the sum of window width w and
handling time Th, until a maximum of around 120min after
starting the experiment was covered. For all calculations the
handling time Th was set to a constant value of 1min. This
procedure resulted in 12,547 different designs. Figure 5 shows
the resulting sample rates SR for a subset of Nw = 1... 10 and
w= 1... 20. For all calculations in the following, only sample rates
≥1.0 h−1 will be discussed. Areas with lower sample rates were
not considered and were therefore labeled in white in Figure 5.

RESULTS AND DISCUSSION

All 12,547 designs were fitted by model M13, taking as starting
points the model parameters which were used for generating
the reference data. The fitting results allowed the calculation
of variances of the model parameter estimates for each design.
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Subsequently, the designs were filtered with regard to specific
quality criteria, resulting in a set of possibly best designs for a
given throughput. The filtered designs were further analyzed for
sensitivity with regard to experimental variations in arrival time
of tracer in the field of view. Finally, a general procedure for the
generation of optimal experimental schedules was deduced.

Error Estimation of Designs
The noise in the data caused the parameter estimates always to
differ from the original underlying parameter set. The fitting
was repeated five times for each design with different random

FIGURE 4 | Example reference data set based on forward simulation of M13

with parameters ν = 2.0mm min−1, e12 = 0.3 min−1, e21 = 0.1 min−1, e23
= 0.05 min−1, σ = 5mm, x0 = 60mm and added normally distributed noise

with a standard deviation of 7e-3.

noise and the fitting results were averaged. The definition of
all designs and the respective fitting results can be found in
Supplementary Table 2. The sum of the relative standard errors,
SEsum, of the four most relevant model parameters (velocity v
and exchange rates e12, e21, and e23) was used as a measure
of the overall uncertainty of each design. This measure has the
advantage to be independent of the different absolute parameter
values. The standard errors are expected to roughly correlate
with the cumulated time of measurement i.e., the longer the time
of data acquisition, the lower the standard errors and, hence,
the lower SEsum. Standard errors for the parameters x0 and σ

of the initial function were not taken into account because the
initial function is of purely auxiliary nature (Bühler et al., 2011).
Figure 6 shows this relationship in detail for all designs up to a
maximal SEsum of 80%. Designs with a low number of windows
Nw ≤ 5 are highlighted respectively by colored rings.

In Figure 6 some groups of continuous relations become
apparent especially for designs with 1 and 2 windows.
Nevertheless, of special interest are only designs that are located
on the Pareto curve of a minimal SEsum for each unique value
of cumulated time of measurement. Additionally, all respective
Pareto elements with a limited number of windows Nw ≤ 5 were
considered, too. These minimal uncertainty designs were filtered
out of the set of 12,547 designs and plotted vs. the respective
sample rate SR in Figure 7. Here, designs with SEsum higher than
70% are not regarded and, again, designs with a low number of
windows Nw ≤ 5 are highlighted by colored rings. The maximal
value of 12 samples per hour relates to a total measurement time
of 5min per sample.

For each number of windows, approximately linear relations
of model uncertainties SEsum to sample throughput are
recognizable in Figure 7 for higher values of SR. Deviations
from a clear linear trend could result from random patterns in

FIGURE 5 | Exemplary view of the sample rate SR which is the number of samples measurable per hour for different experimental designs with varying number of

windows and window widths.
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FIGURE 6 | Uncertainty of model parameters SEsum vs. cumulated time of measurement for all design with SEsum ≤ 80%. Designs with a small number of windows

are highlighted by colored rings, respectively.

FIGURE 7 | Plot of all potentially best designs from Figure 6 after filtering by

the minimal sum of parameter uncertainties SEsum for each unique value of

cumulated measurement time. Additionally designs were included with a low

number of windows between 1 and 5. These are highlighted by colored rings,

respectively.

data. The mean slope of each relation decreases with increasing
number of windows up to Nw = 5. Designs with NW > 5 do not
significantly improve the relation between model uncertainties
SEsum and throughput SR any further. Designs with 2 windows
cannot compete with any other designs. For low throughput with

values < 1.2 samples h−1, designs with 1 window always prove
to be an optimal choice. Above this value the selection of an
optimal design becomes complex and designs with Nw ≥ 3 will
be preferable.

Selected Designs
The following quality criteria for designs can be applied in order
to filter optimal designs from the set of all possible designs. Any
potentially best design

(1) must provide aminimal value of SEsum for its respective values
of throughput SR and number of windows Nw;

(2) is preferred over another design if it has a lower number
of windows Nw while throughput SR and uncertainty SEsum
remain similar;

(3) allows a unique fitting to data for a preferably large range of
starting parameter sets;

(4) enables the identification of the underlying model;
(5) shows a certain stability in SEsum regarding shifts in Tstart

relative to the arrival time of tracer in the field of view.

Per definition, all pre-filtered designs shown in Figure 7 already
fulfill quality criterion (1). By applying also quality criteria (2)
to (4) to the pre-filtered designs, a set of 12 designs was selected
covering sample rates from 1 to 12 samples h−1. The design
definitions and corresponding values of SR and SEsum are listed in
Table 1. SEsum correlates almost linearly with the noise amplitude
(see Supplementary Figure 1) and, thus, the noise amplitude has
no significant influence on the comparison of designs regarding
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TABLE 1 | Resulting selected designs from application of quality criteria (1) to (4).

Design Nw w Tstart d SR SEsum

min min min h−1 %

1 1 60 24 – 1 15.95

2 3 13 25 14 1.54 19.19

3 5 6 25 7 2 20.78

4 5 5 25 6 2.4 23.47

5 5 4 23 10 3 24.70

6 4 4 23 10 3.75 30.23

7 5 3 23 12 4 29.84

8 4 3 23 12 5 34.64

9 5 2 25 12 6 33.53

10 4 2 25 12 7.5 41.34

11 6 1 25 10 10 44.16

12 5 1 25 12 12 50.52

Nw, number of windows; w, window width; Tstart, start time point of measurement; d,

temporal distance between windows; SR, sample rate; SEsum, uncertainty measure.

The sample handling time Th is constant and set to 1min for all designs.

parameter uncertainty. Validity of criterion (3) was confirmed
by repeated successful fitting, starting with different parameter
values far away from the minimum. Criterion (4) was ensured
by comparing the results for fitting the designs with different
selected model instances from the general model class, see
Supplementary Material S5. SR ≥ 1 was assumed in order to
ensure a significant improvement of throughput compared to the
full reference data set. Designs with even higher sample rates than
SR = 12 h−1 were not considered, because their corresponding
high model uncertainties SEsum of more than 50% severely limit
their practical applicability.

For the designs in Table 1, the relative standard errors of the
single model parameters adding up to SEsum increase uniformly
with SEsum (see Supplementary Table 2), but there are deviations
from the proposed linear increase of SEsum with increasing
sample rate SR for designs 7 vs. 6 and 9 vs. 8. This results
from applying criterion (2), by which designs for SR = 3.75 and
SR = 5 with slightly lower SEsum, but much higher Nw were
dismissed in favor of designs with Nw ≤ 5. Design 11 is the
only exception from the approximate rule of Nw ≤ 5 for the
selection in Table 1, included here because there was no other
design matching the criteria in the range of 8 ≤ SR < 12 (see
Figure 7 and Supplementary Table 2). The rule of Nw ≤ 5 was
motivated by the fact that the specific handling time Th = 1min
used in the calculations is a very rough estimate only. Handling
time could be in the range of seconds for a, yet to build, efficient
automated sample handling system and up to several minutes
for manual sample handling. Also it is generally desirable to
minimize disturbances of the samples by movements as well as
to minimize manual handling of radioactively labeled samples
by the experimentalist. Together, these arguments lead to the
restriction of Nw applied in this study.

The application of the selected designs to one of the reference
data sets is visualized in Figure 8, illustrating the temporal

distribution of the respective measurement windows. All these
possibly best designs show certain common characteristics. For
example, all designs start data acquisition between 23 and 25min.
This suggests that the rise of the leading curves in the reference
data, corresponding to the arrival time of data in the field of
view, contains important information which should always be
covered. Also, almost all designs cover at least one of the peaks as
well as the steepest areas of descent of one the dominant curves.
The tail of the tracer profiles does not seem to contain essential
information, since none of the possibly best designs includes
data points after 93min. Given that the time point Tstart, which
marks the beginning of data acquisition, seems to be of crucial
importance for the performance of all designs, criterion (5) will
be investigated more thoroughly in the following.

Optimal Starting Time Points
For experimental setups with series of plants there will always
be variations in the time point of tracer arrival in the field
of view which are caused by structural biological differences
between investigated samples. Therefore, experimental designs
are preferable if they are less sensitive to variations in the starting
time of data acquisition which relates to the time of tracer arrival
in the field of view [criterion (5)]. In order to analyze these
dependencies more closely, the model uncertainties SEsum of all
designs from Table 1 were plotted in Figure 9 with starting time
points Tstart varying from 20 to 40min in steps of 1min.

These plots reveal that designs with increasing throughput not
only show higher minimal values of SEsum, but also consistently
higher averages of SEsum over the considered period of starting
points and increasing sensitivity of SEsum to variations of Tstart.
For designs 9–12, the high sensitivity together with the lack
of a plateau around the minimum is putting the practical
applicability in doubt. In general, the time point of minimal
SEsum is not necessarily the best starting time point with regard
to the sensitivity. For example, for designs 6–11, starting the
data acquisition just 2–3min earlier would cause significantly
larger model uncertainties than starting some minutes after the
minimum. This is caused by the fact that starting time points
smaller than 20min lead to data acquisition before tracer enters
the field of view. Thus, these data windows contain less or no
information at all about the tracer distribution, which causes an
immediate increase of parameter uncertainties. In these cases,
starting data acquisition someminutes later than at theminimum
value of SEsum would be a good strategy to avoid larger model
uncertainties caused by biological variations in arrival time. In
order to identify optimal starting points, pre-experiments with at
least one non-interrupted measurement have to be performed in
a specific experimental situation.

General Procedure for the Identification of
Optimal Designs
Pre-experiments will also be needed to determine the level of
accuracy needed to enable identification of significant differences
in an experimental study. A general procedure to arrive at
optimal schedules will then consist of the following steps: (i)
determination of a maximal uncertainty SEsum of the parameter
estimates depending on the required accuracy level in the
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FIGURE 8 | Visualization of exemplary reference data of selected experimental designs from Table 1. SR, sample rate; CTM, cumulated time of measurement.

experimental study; (ii) analysis of possible designs based on non-
interrupted test-measurements, in the same way as presented in
the preceding sections; (iii) selection of an optimal design with a
maximal number of plants measureable per hour, depending on
the maximal uncertainty SEsum. There will be no need to test all
of the possible designs investigated in the present fundamental
study. An adaption of the presented candidate designs to the
actual shape of the tracer data is expected to be sufficient. As a
general guideline, only such designs qualify as candidates for an
optimal experimental design which cover the time point of tracer
arrival in the field of view as well as the maxima and declining
sections of the dominant first curves of the data set. Also, designs
with 1 and 2 windows do not need to be considered for higher

throughput scenarios. These constraints substantially reduce the
number of candidates and enable a faster determination of
optimal design for any given experimental setup.

For the case study, modeled instead of real data were
used, which were known to represent real PET data of
tracer transport in sugar beets very well (Bühler et al., 2014).
The use of modeled data avoided obscuring the results by
an (albeit tiny) model error, thus facilitating the systematic
analysis. Since the presented case study represents only one
exemplary experimental situation, two additional case studies
with different transport properties were investigated as well.
The results are available in Supplementary Materials S3, S4.
In the case study based on tracer transport in maize root
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FIGURE 9 | Plot of parameter uncertainty SEsum for varying starting time points Tstart starting from the 12 possibly best designs of Table 1. The horizontal dotted line

shows mean value of SEsum, the vertical dotted line indicates time point of minimal SEsum. SR, sample rate; CTM, cumulated time of measurement.

(Figure S3.1, parameter values from Bühler et al., 2014), the
analysis was based on the simpler model M02 of the model
class. This model consists of a transport—and a storage
compartment only, without back-exchange of tracer. In the case
study representing tracer transport in oak stems (Figure S4.1,
parameter values based on De Schepper et al., 2013), model
M13 was used, but with a lower spatial resolution, i.e., only
3 spatial positions instead of 11. As expected for different
experimental setups, the level of SEsum and the specific
best designs for each sample rate differed for the different
case studies. But qualitatively the results were very similar:
calculation of SEsum for all experimental designs (Figures S3.2,
S4.2, in analogy to Figure 6) allowed the identification of

possible best designs (Figures S3.3, S4.3, Tables S3.4, S4.4,
in analogy to Figure 7 and Table 1), which could be further
analyzed regarding variations of the starting time point Tstart

(Figures S3.5, S4.5, in analogy to Figure 9). Thus the general
procedure works in all three cases, indicating that it is largely
independent of the experimental setup as represented by the
tracer transport properties and the spatial resolution of the
measurements.

Outlook
The quantitative results presented here depend on the specific
properties of the chosen case study. Yet the workflow of
design generation and evaluation can be applied analogously
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FIGURE 10 | Examples of non-regular consecutive measuring patterns of

multiple plant samples, denoted by numbers, in analogy to Figure 2.

Scenarios (A,B) are symmetric, (C,D) are non-symmetric. The process of

window splitting used to create (B) out of (A) can also be applied for (C,D).

for other cases, e.g., with data from different plant species,
or other spatial and temporal fields of view (possibly from
other modalities of data acquisition than PET). The results
could also be transferred to experimental setups using other
isotopes than 11C, e.g., 18F with a half-life of 109.8min
(Partelová et al., 2014; Converse et al., 2015). Preliminary
investigations, simulating the transport of 18F, showed a similar
selection of possibly best designs, with a tendency of later
optimal starting time points due to the longer half-life of
this isotope. The construction of designs described in section
Experimental Design could be extended by considering also
non-regular patterns with different temporal distances between
measurement windows. As for regular patterns, there should be
no gaps between interlaced measurements of multiple samples
in order to make full use of the measurement equipment.
Figure 10 shows examples of symmetrical as well as non-
symmetrical non-regular patterns meeting this requirement.
From these basic patterns a set of 336 different designs was
derived (Supplementary Table 2) and analyzed analogously to
the regular pattern above. Though none of these designs
showed any improvement over the corresponding regular designs
with same throughput, this still might be the case for other
non-regular patterns or experimental scenarios not considered
so far.

CONCLUSIONS

In this study the experimental design of interlaced labeling
experiments of multiple samples for phenotyping internal
transport mechanisms was investigated. A representative case
study with a multitude of different designs was set up and
evaluated with regard to accuracy of model-based analysis. For
a range of different sample throughput scenarios from 1 to 12
samples h−1, there was always an optimal design. It is remarkable
that in high throughput scenarios the model parameters could
still be reconstructed with quite a small number of data points.

The presented procedure of design construction and
evaluation serves as a framework for developing optimal
experimental schedules by increasing sample throughput and
at the same time keeping a required statistical reliability or, the
other way around, minimizing the statistical uncertainty for a
required throughput. For practical applications with a specific
experimental setup, the maximal number of plants measureable
per hour will not only depend on the required accuracy, but also
on sample handling time. Before starting a series of interlaced
plant experiments it will be necessary to perform thorough
preliminary investigations on the plant species or genotypes of
interest and test the presented procedure of design evaluation on
complete data sets in order to find respective best case designs.
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