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Fraction of photosynthetically active radiation (FPAR), as an important index for evaluating

yields and biomass production, is key to providing the guidance for crop management.

However, the shortage of good hyperspectral data can frequently result in the hindrance

of accurate and reliable FPAR assessment, especially for wheat. In the present research,

aiming at developing a strategy for accurate FPAR assessment, the relationships between

wheat canopy FPAR and vegetation indexes derived from concurrent ground-measured

hyperspectral data were explored. FPAR revealed the most strongly correlation with

normalized difference index (NDI), and scaled difference index (N∗). Both NDI and N
∗

revealed the increase as the increase of FPAR; however, NDI value presented the

stagnation as FPAR value beyond 0.70. On the other hand, N
∗
showed a decreasing

tendency when FPAR value was higher than 0.70. This special relationship between FPAR

and vegetation index could be employed to establish a piecewise FPAR assessment

model with NDI as a regression variable during FPAR value lower than 0.70, or N
∗

as the regression variable during FPAR value higher than 0.70. The model revealed

higher assessment accuracy up to 16% when compared with FPAR assessment models

based on a single vegetation index. In summary, it is feasible to apply NDI and N∗ for

accomplishing wheat canopy FPAR assessment, and establish an FPAR assessment

model to overcome the limitations from vegetation index saturation under the condition

with high FPAR value.

Keywords: hyperspectral vegetation index, wheat canopy, FPAR, assessment model, saturation

INTRODUCTION

Fraction of photosynthetically active radiation (FPAR) absorbed by crops, as the fraction of
incoming solar radiation in the spectral range of 400–700 nm absorbed by crop canopies (Moreau
and Li, 1996; Ma et al., 2007), was critical to understanding and quantifying the exchange of
mass, energy and momentum between atmosphere and land surface, which played an important
role in most ecosystem productivity including crop biomass models (Muñoz et al., 2010). As the
measurement parameter of the photosynthetic capacity of plant canopies linked to productivity,
FPARwas beneficial to provide the guidance for crop cultivation activities (Vepsäläinen et al., 2004).
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However, conventional methods of FPAR assessment from field
observation, with the involvement of site-specific complicated
parameterizations and calculations, were difficult to apply in
large agricultural areas. These shortcomings could be overcome
through the complementary application of hyperspectral
measurements with several advantages including non-destructive
and uniform operation, and rapid accomplishment without
complicated parameterizations for crops.

FPAR assessment from vegetation indexes (VIs) obtained
from hyperspectral data, especially remote sensing data, had
been reported by several previous studies (Fensholt et al., 2004;
Fensholt, 2006; Olofsson et al., 2007; Zhao et al., 2009; Chiesi
et al., 2011). Through comparing FPAR assessment of legume
crops, among nine kinds of VIs with the close relationship
with FPAR, modified soil-adjusted vegetation index (MSAVI)
had the best VI performance (Ridao et al., 1998). On the other
hand, ground cover could result in the significant reduction of
background impact so that FPAR could be better assessed using
normalized difference vegetation index (NDVI). Re-normalized
difference vegetation index (RDVI) had demonstrated an
approximate linear correlation with FPAR regardless of ground
cover. Hyperspectral remote sensing was an important technique
to fulfill real-time monitoring for growth status of crops based
on its superior performance in acquiring vegetation canopy
information rapidly and non-destructively. However, it still had
the statistical uncertainty using regression analysis based on only
five points. Other studies using radiation transfer models showed
a linear relationship and conclude that NDVI had the better
performance for FPAR assessment (Goward and Huemmrich,
1992; Hu et al., 2007; Yang et al., 2014).

Recently, modeled FPAR products based on MODIS had been
reported in several studies. The increasing availability of time
series of FPAR derived from MODIS had been investigated to
confirm the significant change of three dynamic habitat index
components in their magnitude, which was due to the larger
MODIS FPAR than Medium Resolution Imaging Spectrometer
(MERIS) FPAR (Coops et al., 2010). Previous reports had also
conducted the comparison between MODIS FPAR and on-
site measurements in USA to reveal the overestimation of
ground-measured FPAR. The FPAR from MODIS with in-
situ measurements in a tropical rainforest in Brazil had been
compared to obtain a conclusion that MODIS FPAR was
reliable for FPAR assessment (Turner et al., 2005). However, the
evaluation of VI performance in different vegetation ecosystems
was highly necessary (Olofsson et al., 2007).

Models based on linear FPAR-NDVI relationships suffered
from a major flaw with the saturation of NDVI at the higher leaf
area index (∼3.5) (Samanta et al., 2012), thereby resulting in the
lower sensitivity to FPAR change using a linear model in such
case (Myneni and Williams, 1994; Zhang et al., 2009). Another
issue was the limited data for boreal ecosystems. Meanwhile,
the empirical evidence with a relationship between FPAR and
hyperspectral VIs based on the major focus on forests, grasses
(prairies), and some types of crops such as rice, wheat and cotton
had also been confirmed by above mentioned studies (Yang
et al., 2014). In contrast, there were few reports on quantitatively
assessing FPAR for wheat canopies using VI from remote sensing

data (Wang et al., 2016). Furthermore, existing remote sensing-
based FPAR products lacked adequate ground validation critical
for confirming the uncertainty and accuracy, therefore, these
products could not be used for guiding crop production practice
(Tan et al., 2013). According to above results, narrow-band
hyperspectral data was massive, and could be obtained rapidly
and non-destructively, and had a positive relationship with crop
FPAR, so it was feasible to assess the FPAR with narrow-band
hyperspectral data.

In the present research, in order to develop a practical
methodology for assessing FPAR of wheat canopies, exhaustive
statistical analysis of FPAR-VI relationships for wheat canopies
was conducted by using ground-measured hyperspectral data
collected from a series of field experiments.

MATERIALS AND METHODS

Experimental Design
Four wheat variants including Yangmai 13, Yangmai 15,
Yangmai 16, and Ningmai 9 were used during March to May
of 2015–2017 in the experimental field of Yangzhou University,
China (119◦18′E, 32◦26′N). Prior to experiments, the layer of
0–30 cm in yellow brown soil (Alfisolsin U.S. taxonomy) with
previous plantation of rice contained 121.4 mg·kg−1 nitrogen,
25.9 mg·kg−1 phosphorus, 83.7 mg·kg−1 potassium and 2.19%
organic matter. Canopy hyperspectral measurements coupled
with quasi-simultaneous measurements of photosynthetically
active radiation (PAR) during the growth of wheat canopies
were conducted. In order to highlight the variations during
wheat growth due to biochemical composition changes,
three different levels of nitrogen fertilization (urea) including
non-nitrogen fertilization, adequate nitrogen fertilization
(450 kg.ha−1) and heavy nitrogen fertilization (900 kg·ha−1)
were implemented. The experiments were conducted in triplicate
for each nitrogen level. The dimension of the plot was 20
× 20m. Local standards for wheat cropping management
practices to control water, pest, disease and weed should be
abided. Training data consisted of 95 samples and 87 samples
from 2015 and 2016, and test data comprised 50 samples from
2017.

Canopy Hyperspectral Reflectance
Measurement
In 2015, six hyperspectral measurements were carried out at
the wheat turning green stage (March 7), jointing stage (March
20), booting stage (April 9), blooming stage (April 25), 15 days
after blooming stage (May 9), and milking stage (May 18),
respectively. All spectrometric determinations of the canopy
were conducted from a vertical height to wheat canopies of
1.6m, under cloudless or nearly cloudless condition between
11:00 and 14:00, employing an ASD FieldspecPro spectrometer
(Analytical Spectral Devices, Boulder, CO, USA) equipped with
25◦ field of view fiber optics through operating in 350–2,500 nm
hyperspectral region with a sampling interval of 1.4 nm between
350 and 1,050 nm, and 2 nm between l,050 and 2,500 nm,
and with a spectral resolution of 3 nm at 700 nm, 10 nm at
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TABLE 1 | Hyperspectral vegetation indexes (VIs) used in the research.

Vegetation index Abbreviation Algorithm Source

Simple ratio 1 SR[787, 765] R787/R765 Stenberg et al., 2004

Simple ratio 2 SR[415, 710] R415/R710 Stenberg et al., 2004

Simple ratio 3 SR[415, 695] R415/R695 Stenberg et al., 2004

Simple ratio 4 SR[750, 705] R750/R705 Stenberg et al., 2004

Simple ratio 5 SR[900, 680] R900/R680 Stenberg et al., 2004

Simple ratio 6 SR[801, 670] R801/R670 Stenberg et al., 2004

Simple ratio 7 SR[672, 550, 708] R672/(R550 * R708) Stenberg et al., 2004

Optimized vegetation index 1 VIopt1 R760/R730 Stenberg et al., 2004

Optimized vegetation index 2 VIopt2 100 * (lnR760- lnR730) Stenberg et al., 2004

Pigment specific simple ratio 1 PSSR[800, 680] R800/R680 Stenberg et al., 2004

Pigment specific simple ratio 2 PSSR[800, 635] R800/R635 Stenberg et al., 2004

Pigment specific simple ratio 3 PSSR[800, 470] R800/R470 Stenberg et al., 2004

Zarco-Tejada and Miller ZTM R750/R710 Stenberg et al., 2004

Red-edge model index R-M (R750/R720)−1 Gobron et al., 2000

Difference index DI R800-R550 Gobron et al., 2000

Difference vegetation index DVI R800-R680 Gobron et al., 2000

Pigment specific normalized difference 1 PSND[800, 635] (R800-R635)/(R800 + R635 ) Bargain et al., 2013

Pigment specific normalized difference 2 PSND[800, 470] (R800-R470)/(R800 + R470 ) Bargain et al., 2013

Modified simple ratio index 1 mSRI1 (R750-R445)/(R705+ R445) Bargain et al., 2013

Modified simple ratio 2 mSRI2 (R800/R670-1)/SQRT(R800/R670 + 1) Gonzalezdugo et al.,

2015

Normalized difference index NDI (R800-R680)/(R800+R680) Gonzalezdugo et al.,

2015

Modified normalized difference index mNDI (R750-R705)/(R750+R705-2*R445) Fassnacht et al., 2015

Plant senescence reflectance index PSRI (R680-R500)/R750 Fassnacht et al., 2015

Re-normalized difference vegetation index RDVI (R800-R670)/SQRT(R800 + R670) Skakun et al., 2003

Simple ratio pigment index SRPI R430/R680 Griend and Owe, 1993

Ratio vegetation index RVI (R790:R810)/(R640:R660) Ridao et al., 1998

Normalized pigments chlorophyll ratio

index

NPCI (R680-R430)/(R680 + R430 ) Ridao et al., 1998

Normalized phaeophytinization index NPQI (R415-R435)/(R415 + R435 ) Ridao et al., 1998

Structure intensive pigment index SIPI (R800-R445)/(R800- R680) Chen, 2014

MERIS terrestrial chlorophyll index MTCI (R750-R710)/(R710 - R680) Chen, 2014

Modified chlorophyll absorption in

reflectance index

MCARI [(R700-R670)−0.2 * (R700-R550)] * (R700/R670) Major et al., 1990

Green normalized difference vegetation

index

GNDVI (R800-R550)/(R800 + R550 ) Wang et al., 2009

Modified transformed vegetation index MTVI 1.2 * [1.2 * (R800- R550)−2.5 * (R670-R550)] Huggins et al., 2017

Photochemical reflectance index PRI (R531-R570)/(R530 + R570 ) Dash and Curran, 2004

Transformed vegetation index TVI 0.5 * [120 * (R750- R550)−200 * (R670-R550)] Kimura et al., 2004

Temperature condition index TCI 1.2 * (R700-R550)−1.5 * (R670-R550) * SQRT(R700/R670) Fu et al., 2015

Double difference index DDI (R750-R720)–(R700-R670) Rondeaux et al., 1996

Scaled difference index N* (NDVI–NDVI0)/(NDVIS-NDVI0) Barton and North,

2001

Modified soil adjusted vegetation index MSAVI 0.5 * [2 * R800 + 1–SQRT((2 * R800 + 1)∧2–8 * (R800-R670))] Skianis et al., 2007

Optimal soil adjusted vegetation index OSAVI (1 + 0.16)*(R800-R670)/(R800 + R670 + 0.16) Skianis et al., 2007

Transformed chlorophyll absorption in

reflectance index

TCARI 3 * [(R700- R670)−0.2 * (R700-R550) * (R700/R670)] Guo et al., 2015

Visible atmospherically resistant index VARI (R555-R680)/(R555 + R680-R480) Qi et al., 1994

Wide dynamic range vegetation index WDRVI (α*Rnir-Rred)/(α
*Rnir + Rred), a = 0.05, 0.1, 0.2 Steven, 1998

Red green ratio RGR (R612 + R660)/(R510 + R560) Steven, 1998

(Continued)
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TABLE 1 | Continued

Vegetation index Abbreviation Algorithm Source

Normalized difference vegetation index 1 NDVI[760, 708] (R760-R708)/(R760 + R708) Xiao et al., 2014

Normalized difference vegetation index 2 NDVI[800, 600] (R800- R600) / (R800 + R600 ) Xiao et al., 2014

Normalized difference vegetation index 3 NDVI[780, 550] (R780-R550)/(R780 + R550) Xiao et al., 2014

Normalized difference vegetation index 4 NDVI[800, 700] (R800-R700)/(R800 + R700) Xiao et al., 2014

Normalized difference vegetation index5 NDIV[900, 680] (R900-R680)/(R900 + R680) Xiao et al., 2014

Ratio between TCI and OSAVI TCI/OSAVI TCI/OSAVI Kaiser, 2005

Ratio between MTVI and MSAVI MTVI/MSAVI MTVI/MSAVI Kaiser, 2005

Ratio between DDI and MSAVI DDI/MSAVI DDI/MSAVI Kaiser, 2005

Ratio between MCARI and OSAVI MCARI/OSAVI MCARI/OSAVI Kaiser, 2005

Ratio between TCARI and OSAVI TCARI/OSAVI TCARI/OSAVI Kaiser, 2005

R indicated hyperspectral reflectance of crops.

FIGURE 1 | Changes of wheat canopy FPAR at different growth stages.

1,400 nm, selecting a representative, uniform growth, pest-
free plants, and the sensor probe during the measurement.
A 40 × 40 cm BaSO4 calibration panel was employed for
the calculation of hyperspectral reflectance. Crop and panel
luminance measurements were conducted with mean scanning
of 20 times at optimal integration time, with a dark current
correction at each spectrometric determination.

In 2016, four hyperspectral measurements of 87 samples were
performed at wheat turning green stage (March 9), jointing stage
(March 22), blooming stage (April 23), and milking stage (May
20), respectively. The others were same as that in 2015.

In 2017, three hyperspectral measurements of 50 samples
were performed at wheat booting stage (April 11), blooming
stage (April 22), and 15 days after blooming stage (May 12),
respectively. The others were same as that in 2015.

Hyperspectral Smoothing
In order to eliminate high frequency noise and the random errors
from hyperspectral measurement instruments, a hyperspectral
smoothing process was conducted to improve signal-noise ratio.
A five-point weighted smoothing method was used to process the
raw hyperspectral data (Smith et al., 2004). Five-point weighted

smoothing method was calculated based on Equation (1):

n =

(

m−2
4 +

m−1
2 +m

1 +
m1
2 +

m2
4

)/

25 (1)

Here, n represented the weighted average of the intermediate data
points in the filter window, namely the smoothed hyperspectral
value, and m represented the value of unsmoothed data points,
namely the raw hyperspectral value.

FPAR Measurement
All PAR measurements were conducted to synchronize
with canopy spectrometric determinations, with the same
target as spectroscopic measurement, using LI-191SA line
quantum sensor produced by American LI-COR Company. The
instrument’s light quantum sensing area was 1m × 12.7mm,
the sensing wavelength was 400–700 nm, the measured result
was the average PAR within the scope of sensing area, and the
output unit was µmol.m−2·s−1. The measured target included
four fractions of PAR: PAR canopy incident (PARci), PAR
canopy reflection (PARcr), PAR ground incident (PARgi), and
PAR ground reflection (PARgr). Top-of-canopy measurements
were conducted by placing the linear quantum sensor above the
canopy of 0.5m. Under-canopy measurements were conducted
above the ground of 0.15m with the aim of both ends of the
probe sensing part at middle position between rows and the
probe midpoint at the top of plant row, thus enabling the
horizontal ball to stay on the midpoint of spirit level, and the
linear quantum sensor at the horizontal level.

The (canopy-) absorbed PAR (APAR) could be estimated by
subtracting PAR reflected to atmosphere and PAR absorbed by
soil from total incident PAR. Therefore, FPAR was calculated
using Equation (2) (Ridao et al., 1998):

FPAR = [PARci−PARcr−(PARgi−PARgr)]
/

PARci (2)

Here, PARci was photosynthetic active radiation canopy
incident, PARcr was photosynthetic active radiation canopy
reflection, PARgi was photosynthetic active radiation ground
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TABLE 2 | Linear relationships between wheat canopy FPAR and VIs.

Vegetation index R Vegetation index R Vegetation index r

SR[787, 765] 0.814++ mSRI2 0.783++ MSAVI 0.841++

SR[415, 710] 0.437+ NDI 0.902++ OSAVI 0.739++

SR[415, 695] −0.514++ Mndi 0.637++ VARI 0.531++

SR[750, 705] 0.631++ PSRI −0.786++ TCARI −0.103

SR[900, 680] 0.617++ RDVI 0.782++ WDRVI(a=0.05) 0.761++

SR[801, 670] 0.734++ SRPI 0.348+ WDRVI(a=0.1) 0.784++

SR[672,550, 708] 0.684++ RVI 0.703++ WDRVI(a=0.2) 0.735++

VIopt1 0.784++ NPCI −0.386+ RGR −0.577++

VIopt2 0.806++ NPQI −0.583++ NDVI[760, 708] 0.853++

PSSR[800, 680] 0.657++ SIPI −0.781++ NDVI[800, 600] 0.836++

PSSR[800, 635] 0.781++ MTCI 0.573++ NDVI[780, 550] 0.846++

PSSR[800, 470] 0.764++ MCARI 0.347+ NDVI[800, 700] 0.832++

ZTM 0.571++ GNDVI 0.832++ NDIV[900, 680] 0.841++

R-M 0.471++ MTVI 0.682++ TCI/OSAVI −0.097

DI 0.731++ PRI 0.519++ MTVI/MSAVI 0.633++

DVI 0.697++ TVI 0.468++ DDI/MSAVI 0.302+

PSND[800, 635] 0.831++ TCI −0.197 MCARI/OSAVI 0.104

PSND[800, 470] 0.847++ DDI 0.418++ TCARI/OSAVI 0.0103

mSRI1 0.771++ N* 0.884++ − −

+and ++represented significant difference at probability levels of 0.05 and 0.01, respectively.

TABLE 3 | Quantitative relationships between wheat canopy FPAR (y) and VI (x).

Hyperspectral vegetation

index

Model R2 RRMSE

SR[787, 765] y = 0.0175e2.4096x 0.764++ 0.163

PSND[800, 635] y = 0.1797e1.8565x 0.757++ 0.167

PSND[800, 470] y = 0.0470e2.6013x 0.764++ 0.159

NDI y = 0.1950e1.5638x 0.865++ 0.114

GNDVI y = 0.1756e1.4955x 0.772++ 0.161

N* y = 0.4396e0.9866x 0.839++ 0.143

MSAVI y = 0.0247e2.5335x 0.762++ 0.177

NDVI[760, 708] y = 0.2746e1.0757x 0.822++ 0.176

NDVI[800, 600] y = 0.1637e1.7319x 0.779++ 0.161

NDVI[780, 550] y = 0.1396e1.7401x 0.735++ 0.152

NDVI[800, 700] y = 0.2003e0.9769x 0.751++ 0.159

NDIV[900, 680] y = 0.1946e0.8476x 0.736++ 0.172

++represented significant difference at 0.01 level (P < 0.01).

incident, and PARgr was photosynthetic active radiation ground
reflection.

Hyperspectral Vegetation Indexes and
Analysis Method
According to previous studies (Tan et al., 2013) and hyperspectral
characteristics of wheat combined with a physical significance of
hyperspectral indexes, many VIs can be used to assess crop FPAR.
however, there is not uniform VI to assess crop FPAR. Here, a
total of 54 VIs (Table 1) related to FPAR, leaf area index and
chlorophyll (known as an important impact on PAR absorbed

by green vegetation) as the independent variables for establishing
remote sensing assessment models of wheat canopy FPAR were
considered. Data derived from the experimental field in 2015
(95 samples) and 2016 (87 samples) were employed to establish
the regression models, and data derived from the experimental
field in 2017 (50 samples) were employed to validate the
models.

VI-FPAR relationships were analyzed using a variety of
regression models such as linear, exponential, logarithmic, and
quadratic models. Models were ranked based on statistically
significant (p < 0.05 or 0.001) correlation coefficients (r in case
of linear models) and coefficients of determination (R2 in case
of non-linear models). Finally, after making a schematic plot
to describe the relationship between estimated and measured
FPAR values under the scale of 1:1, the model performance was
validated by using determination coefficients (R2) and relative
root mean squared error (RRMSE) for the assessment of ground-
measured FPAR. The greater R2 and the less RRMSE could result
in the higher precision of the model to assess FPAR of wheat
canopies. According to Equations (3, 4), respectively, the RRMSE
and assessment accuracy were carried out as follows:

RRMSE =

√

1
n

n
∑

i=1
(yi−ŷi)

2/

1
n

n
∑

i=1
yi

(3)

Assessmentaccuracy = 1 − RRMSE (4)

Here, yi and ŷi represented the measured values and predicted
values of wheat canopy FPAR, respectively. n was the number of
samples.
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FIGURE 2 | NDI-FPAR and N*-FPAR relationships for wheat canopies. ++ represented significant difference at the probability level of 0.01.

FIGURE 3 | Changes of NDI, N* and NDVI[760, 708] with wheat canopy FPAR (n = 87).

RESULTS

Changes in Wheat Canopy FPAR With
Growth Stage
FPAR revealed the progressive increase as the growth of
wheat crops at different growth stages (Figure 1). An initial
large increase in FPAR, by approximately 50.6%, was observed
corresponding to crop development from turning stage to
jointing stage. Further increase in FPAR, from booting stage to
milk stage, was observed at lower rates of 3.1, 10.1, 1.17, and
1.30%, respectively. Once at blooming stage, the increase of FPAR
was initiated until FPAR reached up to the maximum value
of 0.76. From blooming stage to milk stage, FPAR revealed a
tendency of slow increase or reached the saturation status.

VI-FPAR Relationships
Statistically significant correlations between FPAR and VIs with
both positive and negative correlations were observed in 51 cases
out of 54 VIs considered (Table 2). Positive correlations between
VIs and FPAR were generally stronger than negative ones. FPAR

revealed the strongest correlation with NDI, N∗, and NDVI [760,
708] with r of 0.902, 0.884, and 0.853, respectively. Therefore,
NDI, N∗ and NDVI [760, 708] could be confirmed as common
VIs relatively well correlated to wheat canopy FPAR, which were
the probable VI choices for assessing wheat canopy FPAR.

Establishment of FPAR Assessment Model
Based on VI
A total of 12 VIs were considered for modeling FPAR based
on a threshold on VI-FPAR correlation (r > 0.81 in Table 1).
These non-linear FPAR assessment models were best represented
as exponential functions, and evaluated using their predictive
(R2) and error statistics (RRMSE) (Table 3). Among them, FPAR
revealed the strongest exponential relationship with NDI, and
a stronger exponential relationship with N∗ and NDVI [760,
708]. In addition, the models using NDI, N∗ and NDVI [760,
708] as the variables had good performance to accomplish FPAR
assessment with R2 of 0.937, 0.891, and 0.886, with RRMSE
of 0.114, 0.143, and 0.152, and with assessment accuracy of
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FIGURE 4 | Hyperspectral VI-based assessment models such as (A)

NDI-FPAR model (FPAR ≤ 0.70) and (B) N*-FPAR model (FPAR > 0.70) for

wheat canopy FPAR. ++ represented significant difference at the probability

level of 0.01.

FIGURE 5 | Evaluating the assessment capability of the piecewise model for

wheat canopy FPAR. ++ represented significant difference at 0.01 level. The

solid and dashed lines were the actual and 1:1 relationship between estimated

and measured FPAR values, respectively.

88.6, 85.7, and 84.8%, respectively. Furthermore, according to
comparisons among R2, RRMSE and assessment accuracy, it was
more suitable to assess wheat canopy FPAR using NDI and N∗

(Figure 2) than using NDVI [760, 708].

Saturation Analysis of Vis
Three VIs including NDI, N∗ and NDVI [760, 708] shown in
Figure 3 revealed the strongest relationship with FPAR, and
progressive increase as the increase of FPAR up to 0.70. The
continuous increase of NDI and NDVI [760, 708] was terminated

at FPAR values of 0.68 and 0.70, suggesting the saturation status.
On the other hand, N∗ displayed a different trend evidenced the
continuous decrease in spite of FPAR value of 0.70, indicating
that a reliable FPAR model could be established using NDI as the
predictor when the saturation point was reached at FPAR lower
than 0.70, and using N

∗
as the predictor when the saturation

point was reached at FPAR higher than 0.70, which will effectively
address the issue of VI saturation.

According to the range of FPAR values from the
aforementioned results, the segmented hyperspectral FPAR
assessment model was also constructed, as shown in Figure 4.
Namely, if FPAR was < 0.70, NDI should be used to assess FPAR,
and the monitoring model was y = 0.4705e6596x, R2 = 0.901
(p < 0.01); if FPAR was higher than 0.70, N∗ should be used
to assess FPAR, and the assessment model was y = −1.6377x
+1.4569, R2 = 0.796 (p < 0.01).

Evaluation of VI-Based FPAR Model
Totally 50 samples collected from the experiment in 2017
were employed to validate the hyperspectral VI-based FPAR
assessment model. The predicted and measured FPAR cross-
resistance was nearly coincided with 1:1 relationship line, as
shown in Figure 5. Under the condition with low FPAR values,
the estimated value may be underestimated. As the increase of
FPAR, the predicted values will be closer to the measured values
with R2, RRMSE and assessment accuracy of 0.865, 0.071, and
92.9% for the piecewise FPAR model, respectively. Compared
with the assessment models based on NDI, N∗ and NDVI [760,
708] alone in Table 3, the assessment accuracy of the piecewise
FPAR model in different FPAR ranges revealed the increase by
11.3, 13.9, and 16.4%, respectively. In summary, the piecewise
model based on NDI and N∗ for assessing FPAR can not
only enhance the assessment accuracy, but also solve saturation
problems of NDI and NDVI [760, 708].

DISCUSSION

FPAR is mainly controlled by ground cover and leaf area. Before
jointing stage, FPAR presents a significant increase (Figure 1),
which is characterized by strong absorption of incoming PAR
as the vigorous growth of wheat crops with improved leaf
area driven by nitrogen fertilization. Sequentially, a lower rate
of crop growth or leaf area expansion is followed due to the
lower increasing rate of FPAR. According to agronomic principle
of wheat, although FPAR data is limited after milk stage, a
conclusion that wheat leaves start to change yellow and gradually
litter as the extension of growth process, and FPAR exhibits
the decline with the accompany of wheat’s photosynthetic
physiological characteristics still could be drawn. Until fully ripen
stage, FPAR is close to 0, because wheat leaves take off green and
become withered and even death so that they are unable to absorb
light energy.

Currently, many efforts are focusing on the application
of VIs, especially NDVI, for assessing crop canopy FPAR.
Furthermore, many studies have documented that VIs are better
correlated with FPAR than the reflectance in a single waveband
(Musick and Pelletier, 1988; Read et al., 2002), which could
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be, plausibly, explained by the fact that VIs can reduce the
impact from atmospheric scattering and soil background to the
minimal level with the obviously enhanced wavelength sensitivity
(Huete et al., 2002). Similarly, in our study, FPAR is highly
correlated with the majority of VIs (49 out of 54), with the
best performance from NDI, N

∗
and NDVI [760, 708], which is

helpful to provide an important technique for the establishment
of perfect wheat photosynthetic groups, the improvement of
sunlight energy efficiency, and the implementation of cultivation
control.

Hyperspectral technology is widely used in precision
agriculture because it can rapidly, non-destructively and
accurately monitor crop growth information. It is of great
significance for improving the accuracy of FPAR estimation
with hyperspectral parameters. As compared with previous
studies using NDVI, NDI and N∗ for assessing FPAR, our
study has the lower RRMSE and higher assessment accuracy,
and the utilization model is a function of FPAR and VI. This
provides a theoretical basis for the development of ecological
process models in crop. It is considered as a health indicator
for crop growth, and help to work out some feasible plans for
crop planting. Therefore, hyperspectral monitoring of FPAR
plays an important role in crop production management and
precision agriculture. Future study should aim at assessing
the performance of the proposed model during the growth of
wheat under various conditions, even different wheat variants
and other types of crops. Meanwhile, this study will also be
helpful for refining the model as a useful tool for informing crop
management practices. More efforts should also be made to test
this model with data from different sources including field-based
hyperspectral measurements and current and future satellite
data.

VIs including NDVI are often plagued with saturation in high
biomass areas as a major disadvantage for VI-FPAR models. We
have addressed this issue by employing the differences in the

sensitivity of different VIs to FPAR. When FPAR is higher than
0.70, NDI and NDVI [760, 708] tend to termination, but N

∗

shows a declining trend. Accordingly, our proposed piecewise
FPAR model uses NDI (FPAR ≤ 0.70), or N

∗
(FPAR > 0.70)

as the indicator. Given that VIs can be assessed consistently
from both field-based hyperspectral data and satellite data, this
model can also be used for either data source, which will provide
a useful resource for our model using not only the current
satellite data, but also the data from future satellite sensors
(such as Hys PIRI).
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