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Iron deficiency currently affects over two billion people worldwide despite significant

advances in technology and society aimed at mitigating this global health problem.

Biofortification of food staples with iron (Fe) represents a sustainable approach for

alleviating human Fe deficiency in developing countries, however, biofortification efforts

have focused extensively on cereal staples while pulses have been largely overlooked. In

this study we describe a genetic engineering (GE) approach to biofortify the pulse crop,

chickpea (Cicer arietinum L.), with Fe using a combination of the chickpea nicotianamine

synthase 2 (CaNAS2) and soybean (Glycine max) ferritin (GmFER) genes which function

in Fe transport and storage, respectively. This study consists of three main components:

(1) the establishment for baseline Fe concentration of existing germplam, (2) the isolation

and study of expression pattern of the novel CaNAS2 gene, and (3) the generation of

GE chickpea overexpressing the CaNAS2 and GmFER genes. Seed of six commercial

chickpea cultivars was collected from four different field locations in Australia and

assessed for seed Fe concentration. The results revealed little difference between the

cultivars assessed, and that chickpea seed Fe was negatively affected where soil Fe

bioavailability is low. The desi cultivar HatTrick was then selected for further study.

From it, the CaNAS2 gene was cloned and its expression in different tissues examined.

The gene was found to be expressed in multiple vegetative tissues under Fe-sufficient

conditions, suggesting that it may play a housekeeping role in systemic translocation

of Fe. Two GE chickpea events were then generated and the overexpression of the

CaNAS2 andGmFER transgenes confirmed. Analysis of nicotianamine (NA) and Fe levels

in the GE seeds revealed that NA was nearly doubled compared to the null control while

Fe concentration was not changed. Increased NA content in chickpea seed is likely

to translate into increased Fe bioavailability and may thus overcome the effect of the

bioavailability inhibitors found in pulses; however, further study is required to confirm

this. This is the first known example of GE Fe biofortified chickpea; information gleaned

from this study can feed into future pulse biofortification work to help alleviate global Fe

deficiency.

Keywords: pulse biofortification, iron, genetic modification, nicotianamine synthase, soybean ferritin, crop

improvement, chickpea (Cicer arietinum L.)
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INTRODUCTION

Iron (Fe) deficiency has long been recognized as one of the
most common micronutrient deficiencies in the world. Afflicting
both developing and developed nations, it is the cause of more
than 60% of global anemia cases (WHO, 2008; Alvarez-Uria
et al., 2014). To combat this problem several strategies have
been developed such as dietary diversification, supplementation,
food fortification, and crop development. Amongst these, the
development of crops with increased Fe concentrations and/or
bioavailability (also known as “biofortification”) has garnered
great interest due to its sustainability, cost-effectiveness, and
accessibility of products to vulnerable populations (Nestel et al.,
2006).

Biofortification can be achieved through breeding or genetic
engineering (GE), and this has been performed in various crop
species. The focus thus far, however, has mostly been on starchy
staples like as cereals (e.g., rice, wheat, pearl millet) and root
crops (e.g., potato, cassava) (HarvestPlus, 2015). Naturally, it is
in these species that the greatest advances have been made. For
instance, more than three-fold increase in Fe concentration has
been reported in biofortified pearl millet and its effectiveness in
combating Fe deficiency anemia has been verified via feeding
trials (Cercamondi et al., 2013; Finkelstein et al., 2015).

Aside from the aforementioned staples, recent years have
seen growing interest in pulses as targets for Fe biofortification.
Pulses are defined as leguminous crops harvested solely for
dry grain (FAO, 1994), and most serve as important secondary
staples, particularly with their high protein content (Iqbal et al.,
2006); it is this latter feature that also complements the existing
biofortification work in cereals. The pulse biofortification effort
is relatively young compared to cereals but there has been
considerable progress, notably in the common bean. Several
biofortified varieties have been generated from the HarvestPlus
breeding programs, with up to 94% enhancement in seed Fe
concentration achieved (Katsvairo, 2015). The work has also
progressed to feeding trials which have yielded promising results
(Cercamondi et al., 2013; Kodkany et al., 2013; Finkelstein et al.,
2015). This success has paved the way for advances in other
pulses. Studies on Fe accumulation traits have been performed on
cowpea (Fernandes Santos and Boiteux, 2015), chickpea (Diapari
et al., 2014), pea and lentil (Ray et al., 2014), and test trials are
currently underway for some of them (HarvestPlus, 2016).

Thus far, most, if not all, of this work has been focused on
breeding while GE remains unexplored. As such, there are no
established GE strategies for pulses, though some lessons can
be drawn from the work in cereals. One of the most successful
examples to date is the GE Fe biofortified rice (Orzya sativa),
in which seed Fe concentration was increased by 7.5-fold with
no yield penalty (Trijatmiko et al., 2016). The strategy targeted
the three core processes of Femetabolism—uptake, translocation,
and storage—through constitutive overexpression of the rice
Nicotianamine Synthase 2 gene (OsNAS2) gene and seed-specific
expression of the soybean (Glycine max) Ferritin (GmFER) gene.

NAS catalyzes the biosynthesis of nicotianamine (NA), a non-
proteogenic chelator of divalent transition metals that facilitates
translocation of said metals in plants (Scholz et al., 1992). In

graminaceous species, it is also a precursor for the mugeneic
acid (MAs) family of phytosiderophores which contribute to
both Fe uptake from soil and in planta translocation (Higuchi
et al., 1999). When constitutively overexpressed in rice cv.
Nipponbare, the OsNAS2 gene caused a four-fold increase in
grain Fe concentration (Johnson et al., 2011).

Ferritin (FER), on the other hand, is an Fe storage protein
that allows for safe sequestration of Fe in a soluble and
bioavailable form. When overexpressed in the seed, GmFER has
been demonstrated to increase seed Fe concentration by up to
threefold in several plant species (Goto et al., 1999). Excessive
expression, however, may lead to disproportionate sink strength,
resulting in altered sequestration of Fe in source tissues and the
development of Fe deficiency symptoms (VanWuytswinkel et al.,
1999; Qu et al., 2005; Masuda et al., 2013b). This problem can
be rectified by increasing Fe uptake and translocation capacities,
such as through the co-expression with NAS (Masuda et al.,
2013a). In this case, a synergistic effect was also achieved,
producing greater enhancement in seed Fe concentration (Wirth
et al., 2009; Trijatmiko et al., 2016).

Whether this strategy will have a similar effect on Fe
concentration when applied to a pulse crop is uncertain. However
a major advantage is its potential effect on Fe bioavailability. Both
NAS and GmFER have been linked to increased Fe biovailability
(Davila-Hicks et al., 2004; Lönnerdal et al., 2006; Zheng et al.,
2010), a feature not usually accorded to other commonly used
Fe metabolism genes. This is particularly relevant to pulse
biofortification given the inherently high levels of antinutrients
like phytic acid which inhibit Fe absorption in the gut (Sandberg
et al., 1989; Hemalatha et al., 2007; Petry et al., 2014).

For this study, target species is chickpea (Cicer arietinum). The
second most important pulse crop in the world with an annual
production exceeding 14.2 million tons (FAO, 2016). The bulk
of the chickpea crop is currently grown and consumed in India
where human Fe deficiency is prevalent, however, continued
population growth is likely to result in increased demand for
chickpea in Africa and other parts of Asia (Rao et al., 2010;
Akibode and Maredia, 2012). Fe concentrations in chickpea
has been found to range from 3 to 14.3 ppm (Wood and
Grusak, 2007), though due to the presence of naturally occurring
inhibitors, only a small fraction is bioavailable (Hemalatha et al.,
2007). Both iron concentration and bioavailability is subject
to genotype and environmental effects, and to date, detailed
studies of such effects are limited to populations in India
(Upadhyaya et al., 2016) and Canada (Diapari et al., 2014). No
such information is available for Australian populations, and part
of this study would therefore serve to partially fill in this gap.

Overall, the main aim of this study was to biofortify
chickpea by GE to overexpress NAS and GmFER. This body
of work consisted of three parts: (1) assessing the macro-
and micro-elemental composition of six modern Australian
chickpea cultivars and identifying a suitable cultivar for Fe
biofortification research, (2) cloning and expression analysis of
an endogenous chickpea NAS gene termed CaNAS2, and (3)
constitutive overexpression of the CaNAS2 gene and constitutive
expression of soybean GmFER in chickpea as a novel GE
approach to produce Fe biofortified chickpea.
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MATERIALS AND METHODS

Plant Material
For the elemental composition analysis of commercial chickpea,
three kabuli cultivars (Genesis090TM, KalkeeTM, and PBA
Monarch) and three desi cultivars (PBA Boundary, CICA0912,
and PBA HatTrick) were used. Seed samples were obtained
from field trials at four locations within Queensland—Billa
Billa, Warra, Roma, and Kingaroy—and from the seed company
Grainland in Moree, New South Wales. All seeds were produced
during the 2014 winter growing season. Information on the
cultivation sites and conditions during the growing period, where
available, is listed in Supplementary Table 1. The soil types of
the field locations were provided by Dr Yash Chauhan from the
Agricultural Production Systems sIMulator (APSIM) database.

For the gene expression analyses and chickpea transformation,
PBA HatTrick seeds were purchased from the seed company
Grainland in Moree, New South Wales.

Plant Growth Conditions
All in vitro cultivation was performed in growth cabinets set at 24
± 1◦C, under fluorescent lights with a 16 h light/ 8 h dark cycle.

For glasshouse cultivation, temperatures were maintained at
21 ± 1◦C and 61 ± 1.5% relative humidity. Natural lighting was
used except during dusk, when artificial lighting was then turned
on to complete a 16 h light/ 8 h dark cycle. An average natural
light intensity of around 450 ± 1 µmoles s-1 m-2 of cloudy
and sunny day prevailed during the growth period. Seeds were
first germinated in Plugger’s potting mix, before transplanting to
400 × 250mm pots containing a 1:1 mixture of University of
California (UC) mix and Searles R© Premium potting mix. The
recipe for the UC mix consists of 80 kg sand, 120 kg peat, and
100 kg sand, peat, and gravel, supplemented with 400 g blood and
bone, 100 g Micromax micronutrients, 40 g KSO4, 40 g KNO3,
400 g superphosphate, 300 g hydrated lime, and 1,200 g dolomite.

Plant were watered with 100mL every 2 days via an automated
watering system. After∼3 months, when at least 80% of the pods
have filled, watering was ceased in preparation for harvesting.
Harvesting was done approximately 3 weeks thereafter, or when
the plants have completely dried. All seeds were de-husked by
hand and stored in paper envelopes at 4◦C until planting or
analysis.

Elemental Analysis
All samples were cleaned, freeze-dried, and milled prior to
analysis. A minimum of three biological replicates were used per
transgenic event.

For leaf tissue, milled samples were pressed into 5mm
diameter pellets and analyzed via LA-ICP-MS (laser ablation
inductively-coupled mass spectroscopy) using an Agilent 8,800
Inductively Coupled PlasmaMass Spectrometer attached with an
ESI 193 nm Excimer Laser. The laser was set at a pulse width of
4 ns, spot size of 85 microns, and scan speed of 10 microns/s.
At least three lines scans were used for each sample as technical
replicates.

For whole seed analysis, acid digestion was performed on
milled samples. Briefly, 2mL HNO3 and 0.5mL H2O2 were
added to 200–300mg of milled sample, vortexed, and allowed
to stand overnight at room temperature. Following digestion,
the tubes were shaken at 200 rpm for 20min, incubated at
80◦C for 30min, then 125◦C for 2 h. Upon cooling to room
temperature, the volume was made to 25mL using MilliQ water
and the samples agitated at 300 rpm for 5min. Undissolved
material (e.g., silicates) was settled for 60min. The settled
extract was then filtered and analyzed via ICP-OES (inductively
coupled plasma optical emission spectroscopy) using a Perkin
Elmer Optima 8300 DV Inductively Coupled Plasma Optical
Emission Spectrometer. Three technical replicates were prepared
per sample.

For analysis of trace element distribution in the seed, 100
seeds were imbibed in MilliQ water for 20 h. The seeds were
then separated into the seed coat, cotyledons, and radicle.
To measure approximate distribution of mass, the weight of
the individual parts of 10 seeds were taken. Tissues of the
same type were then pooled and processed for analysis like
the whole seed. Three technical replicates were prepared per
sample.

Designation and Bioinformatics Analysis of
Chickpea NAS2 Gene
Four chickpea NAS amino acid sequences (XP_004495658.1,
XP_004487761.1, XP_004488704.1 and XP_004494544.1) were
retrieved from the NCBI database. The ortholog with highest
similarity to the amino acid sequence encoded by the rice
OsNAS2 gene (LOC_Os03g19420) was designated as the CaNAS2
gene coding for protein XP_004495658.1 (Supplementary
Table 2). The three additional NAS genes were named as
the following: CaNAS3 coding for XP_004487761.1 protein,
CaNAS4 coding for XP_004494544.1 protein, and CaNAS1 for
XP_004488704.1 protein respectively. The four NAS amino
acid sequences were aligned based on amino acid conservation
using the Geneious Pro 5.6.6, as per the settings described by
Bonneau et al. (2016) (CLUSTALW—cost matrix BLOSUM62,

FIGURE 1 | Schematic representation of the T-DNA used for overexpression of CaNAS2 and GmFER in chickpea. LB, left border; Nos T, nopaline synthase

terminator; NPTII, neomycin phosphotransferase II gene; S1 P, S1 promoter; GmFER, coding sequence of soybean ferritin H2 gene; 35s P, cauliflower mosaic virus

35s promoter; 3’UTR, cauliflower mosaic virus 3’UTR terminator; CaNAS2, coding sequence of chickpea nicotianamine synthase 2 gene; Nos P, nopaline synthase

promoter; RB, right border.

Frontiers in Plant Science | www.frontiersin.org 3 June 2018 | Volume 9 | Article 788

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Tan et al. Transgenic Biofortification of Chickpea

TABLE 1 | Summary of Fe, Zn, and P concentrations in kabuli and desi cultivars grown at different locations.

Kabuli Desi PBA HatTrick

Location Range Mean Range Mean Range Mean

Fe Billa Billa 41.2–46.7 44.2bc 39.7–45.3 4.20c 39.7–43.3 41.0

Roma 44.3–52.2 48.7a 41.0–49.1 4.45abc 41.0–43.0 42.3

Warra 41.3–55.4 46.3ab 42.3–46.5 4.46bc 42.3–43.6 43.1

Kingaroy n/a n/a 33.1–42.4 3.63d 35.7–42.4 43.1

NSW n/a n/a n/a n/a 40.8–437 42.3

Zn Billa Billa 29.9–33.7 32.3c 2.78–3.19 3.02c 30.1–31.0 30.6

Roma 38.6–44.2 41.9a 3.85–4.33 4.02a 38.5–39.3 30.6

Warra 31.8–41.2 36.1b 3.82–3.96 3.88ab 38.4–38.8 38.6

Kingaroy n/a n/a 2.53–3.74 2.96c 25.3–26.8 26.0

NSW n/a n/a n/a n/a 33.9–36.1 34.9

P Billa Billa 3,700–4,100 3,890ab 3,400–4,100 3,820abc 3,400–3,900 3,630

Roma 2,700–3,500 3,220d 3,000–4,000 3,430cd 3,000–3,100 3,030

Warra 3,100–4,400 3,670bc 4,000–4,300 4,120a 4,100–4,300 4,200

Kingaroy n/a n/a 1,830–2,480 2,040e 1,940–2,020 1,990

NSW n/a n/a n/a n/a 4,000–4,200 4,080

All values are expressed as ppm. Data are expressed as mg/100 g and presented as a mean of all cultivars collected from that site. For each cultivar per site, n = > 3. Values with

different superscript letters indicate a significant difference at p < 0.05.

threshold 1). A blastn using the genomic sequences of the
four CaNAS genes was performed against Cicer arietinum (cv.
kabuli, CDC Frontier)—CDS database (https://legumeinfo.
org) to identify chromosomal location. Several bioinformatics
tools were then used to predict characteristics of the enzyme
encoded by CaNAS2: the theoretical isoelectric point (pI) and
molecular weight were calculated using the Compute pI/Mw tool
on ExPASY (Bjellqvist et al., 1993, 1994; Gasteiger et al., 2005);
the hydrophobicity profile of the protein was assessed using
ProtScale (Gasteiger et al., 2005) and potential transmembrane
sections were identified using TMpred (http://www.ch.embnet.
org/software/TMPRED_form.html). A check for motif sequences
was conducted using ScanProsite (de Castro et al., 2006) and
MOTIF Search GenomeNet1 Phobius (Käll et al., 2004) and
iPSORT (Bannai et al., 2001, 2002) was used to identify potential
signaling peptides.

Phylogenetic Analysis of NAS Proteins
A progressive pairwise alignment was performed using full
length amino acid sequences of 58 NAS proteins (Supplementary
Table 3) using default settings of Geneious alignment (global
alignment with free end gaps, Blosum62, gap open penalty 12,
gap extension penalty 3)—Geneious Pro 8.1.7 software. Once
the protein alignment, a phylogenetic analysis which generated
an unrooted tree was conducted as described in Beasley et al.
(2017).

1Available online at http://www.genome.jp/).

RNA Extractions and Quantitative RT-PCR
Total RNA was isolated from frozen tissues using RNeasy Mini
kits (QIAGEN) following the manufacturer’s instructions. A 500
ng aliquot of total RNA was treated with RQ1-DNAse (Promega)
and the absence of contaminating DNA confirmed via PCR.
cDNA was then synthesized using SuperScriptTM IV Reverse
Transcriptase (ThermoFisher Scientific). The synthesized
cDNA was used for qualitative RT-PCR and quantitative
RT-PCR.

For qualitative RT-PCR, each reaction comprised of 5 µL of
2X GoTaq green (Promega), 0.25 µL each of 10µM forward
and reverse primers, 0.6 µL of DMSO, and 1 µL of undiluted
cDNA as the template. MilliQ water was added to reach a final
reaction volume of 10.6 µL. The PCR program used was as such:
initial denaturation at 95◦C for 3min, followed by 30 cycles of
denaturation at 95◦C for 30 s, annealing at 48–60◦C (depending
on primers) for 30 s, and extension at 72◦C. Extension time was
set at 1min per 1 kbp of the final product size. A final extension
was done at 72◦C for 5min.

For qPCR, a 1:30 dilution of cDNA was used as template.
The latter was performed on a CFX384 TouchTM Real-Time
PCR Detection System (BIO-RAD) using the SYBR Green PCR
Master Mix kit (Applied Biosystems). A primer concentration
of 300 nM was used, and the primer sequences are as listed
in Supplementary Table 4. The housekeeping genesEF1α, and
GAPDH were included in each run to serve as internal controls;
their primer sequences are as published by Garg et al. (2010).
All housekeeping genes were confirmed to be stable under
the experimental conditions used. Three biological replicates
were used, from each of which three technical replicates were
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TABLE 2 | Concentration of micro-elements in dry chickpea seeds.

Fe (ppm) Zn (ppm) Mn (ppm) B (ppm) Cu (ppm)

GENESIS090

Billa Billa abcd46.0 (± 0.70) fgh33.3 (± 0.40) defgh29.8 (± 1.40) bcdef10.1 (± 0.10) fg7.40 (± 0.00)

Roma a52.0 (± 0.20) a43.5 (± 0.70) fgh27.3 (± 0.90) bcd10.7 (± 0.50) abc9.90 (± 0.30)

Warra ab50.0 (± 4.60) bcd39.2 (± 2.10) cdefg32.5 (± 1.80) b11.1 (± 1.10) abcd9.50 (± 0.80)

KALKEE

Billa Billa cdef42.2 (± 1.10) fghi32.5 (± 0.40) cdefg32.3 (± 0.90) bcd10.6 (± 0.40) efg7.90 (± 0.10)

Roma abc48.3 (± 0.40) ab42.2 (± 1.20) efgh28.5 (± 1.00) bcd10.5 (± 0.50) a10.1 (± 0.10)

Warra bcde44.2 (± 4.90) efg35.0 (± 3.50) bcd36.8 (± 3.50) bcd10.6 (± 0.40) abcde8.90 (± 0.80)

MONARCH

Billa Billa bcde44.3 (± 0.90) ghij30.9 (± 0.90) bcdef34.2 (± 0.90) fghi8.60 (± 0.60) g6.90 (± 0.20)

Roma abcd45.8 (± 1.70) abc39.8 (± 2.00) gh26.6 (± 1.80) bcde10.4 (± 0.50) abcd9.50 (± 0.50)

Warra bcd44.7 (± 1.00) fgh34.0 (± 1.90) abc38.6 (± 1.90) bc11.0 (± 1.00) abcde9.00 (± 0.60)

BOUNDARY

Billa Billa def41.5 (± 0.80) ghi31.2 (± 1.10) bcdef34.1 (± 4.10) defghi9.10 (± 0.20) fg7.60 (± 0.20)

Roma abcd46.6 (± 2.50) ab41.4 (± 1.60) defgh30.9 (± 0.90) bcd10.5 (± 0.10) ab10.1 (± 0.50)

Warra bcd45.3 (± 0.60) bcde38.5 (± 0.40) abc38.8 (± 2.30) bcdefg9.50 (± 0.30) def8.50 (± 0.30)

Kingaroy g33.6 (± 0.60) jk27.0 (± 0.50) ab41.1 (± 1.10) hi8.40 (± 0.10) gh6.70 (± 0.10)

CICA0912

Billa Billa cdef43.2 (± 1.80) ijk28.9 (± 1.00) bcd36.1 (± 2.10) efghi8.80 (± 0.10) efg7.90 (± 0.20)

Warra bcd45.5 (± 1.10) bcd39.3 (± 0.30) bcd36.6 (± 4.90) bc11.0 (± 1.30) abcde9.00 (± 0.30)

Kingaroy fg37.0 (± 1.50) cdef35.8 (± 1.50) ab40.4 (± 0.50) gc7.80 (± 0.20) hi5.50 (± 0.30)

HATTRICK

Billa Billa def41.4 (± 1.80) hij30.6 (± 0.40) ab41.2 (± 2.90) bcdefg9.60 (± 0.70) fg7.60 (± 1.10)

Roma cdef42.3 (± 1.10) bcde39.0 (± 0.40) bcd36.0 (± 0.60) bcdefg9.70 (± 0.30) bcdef8.8. (± 0.10)

Warra cdef43.1 (± 0.70) bcde38.6 (± 0.20) bcde35.4 (± 4.80) cdefgh9.40 (± 0.50) cdef8.60 (± 0.10)

Kingaroy efg38.2 (± 3.60) k26.0 (± 0.80) a44.4 (± 2.00) i7.60 (± 0.10) i4.50 (± 0.10)

NSW def42.3 (± 1.20) def34.9 (± 0.90) h25.4 (± 0.70) a14.1 (± 0.20) i4.40 (± 0.30)

Data is presented as a mean ± SD. All cultivars from had n=3 except for HatTrick from NSW, which has n = 5. Values sharing the same superscript letters indicate groups that are not

significantly different at p < 0.05 when tested with one-way ANOVA, using Tukey’s HSD post-hoc test.

prepared. The qPCR program used was as follows: initial
denaturation at 95◦C for 10min, followed by 45 cycles of
denaturation at 95◦C for 10 s, annealing at 60◦C for 30 s, and
slow ramping of 0.5◦C/min from 65 to 90◦C for the melt
curve.

Fe Deficiency Experiment
PBA Hattrick seeds were sterilized and germinated on half
strength Murashige and Skooge (MS) media. Seed coats were
removed post-germination and the seedlings were acclimatized
for 4 days in tap water. Twenty four-week old seedlings of
approximately the same size and developmental stage were
transferred to a hydroponics system in a growth cabinet,
with 10 replicates per set-up. Later, 1 month old plants were
treated with full-strength Hoagland solution with or without
Fe-EDTA. Each setup contained ∼600mL of Hoagland solution
which was topped up every 3 days. The Hoagland solution
was replaced with MilliQ water every third top-up to dilute
any accumulated salts. Visible chlorosis in the Fe-deprived
plants was observed after 4 weeks of treatment and samples
were collected 2 weeks thereafter. Three plants of similar
conditions and growth stage were selected from each treatment

and the following tissue types collected: mature leaf, stem,
cotyledon, and root. Senescent leaf and chlorotic leaf were
also collected from the Fe-sufficient and Fe-deficient plants
respectively. All samples were snap-frozen in liquid nitrogen
immediately after collection and stored in −80◦C until RNA
extraction.

Cloning of CaNAS2 and Construction of
NAS-GmFER Overexpression Vectors
A binary vector using the pOPT-EBX backbone was constructed
to constitutively overexpress the CaNAS2 gene and constitutively
express the GmFER gene (Figure 1). Included in the T-
DNA region was the selectable marker gene neomycin
phosphotranferase II (NPTII) which confers resistance to
the antibiotics geneticin and kanamycin. All cloning primers
used are listed in Supplementary Table 5. The CaNAS2 gene
was cloned from chickpea (cv HatTrick) genomic DNA, with
primers designed from the predicted sequence in the Genbank
database, accession number XM_004495601. Restriction
sites were added to the ends via site-directed mutagenesis
using high fidelity PCR (Phusion R©, NEB). The amplified
fragment was cloned into a pGEM R©-T Easy, then subcloned
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TABLE 3 | Pearson’s correlation coefficient between the different trace elements in PBA HatTrick.

Ca Mg Na K P S Fe Mn Zn B Cu

Ca 1

Mg 0.618* 1

Na −0.352 −0.026 1

K 0.544* 0.844* 0.120 1

P 0.388 0.831* 0.453 0.735* 1

S 0.061 0.644* 0.523* 0.469 0.905* 1

Fe 0.439 0.498* 0.385 0.542* 0.673* 0.554* 1

Mn −0.542* −0.839* 0.171 −0.745* −0.691* −0.498* −0.474 1

Zn 0.638* 0.439 0.192 0.329 0.626* 0.471 0.692* −0.529* 1

B 0.654* 0.945* −0.295 0.816 0.669* 0.467 0.361 −0.886* 0.342 1

Cu 0.095 −0.255 0.602* −0.178 0.155 0.139 0.362 0.312 0.574* −0.443 1

For Billa Billa, Roma, Warra, and Kingaroy, samples were n = 3 while NSW was n = 5. Grain samples from four locations within Queensland (Billa Billa, Warra, Roma, and Kingaroy) and

a seed supplier from New South Wales were analyzed by ICP-OES. Values marked with an *Indicate a significant correlation between two elements (p < 0.05).

in a 5′ to 3′ direction to a pGEM R©-T Easy vector with a
cassette containing a Nos promoter and CaMV 3′ UTR.
Following this the NosP-CaNAS-CaMV 3′ UTR was digested
and ligated to a pOpt-EBX-GmFER backbone to form the
complete vector. To generate the pOpt-EBX-GmFER backbone,
GmFER was cloned from a synthesized fragment (accession
no. NM_001250105.2). The amplified fragment was cloned
into a pGEM R©-T Easy vector, then subcloned into the pOpt-
EBX backbone containing a CaMV 35s promoter and Nos
terminator.

To ensure integrity and correct orientation of each gene
and component, sequence verification was performed after
each cloning step in the above process. The final verification
was performed on the completed construct, which was then
transformed into electrocompetent Agrobacterium tumefaciens
strains Agl1.

Generation and Molecular
Characterisation of Transgenic Chickpea
Agrobacterium-mediated transformation of the desi cultivar, PBA
Hattrick, followed the protocol developed by Sarmah et al. (2004)
with a few modifications. Briefly, half-embryonic axes were
prepared from imbibed seeds. Additional injury was inflicted
to the cut surface of the radicle using a sterile 26 gauge needle
dipped in Agrobacterium strain AGL-1 harboring the expression
vectors. The explants were immersed in Agrobacterium for an
hour, followed by co-cultivation in B5 media for 72 h. Following
co-cultivation, the explants were transferred to regeneration
and selection medium 1 (MS media containing 500 µg/L of
BAP, 500 µg/L of kinetin, 50 µg/L of NAA, 200 mg/L of
kanamycin and 25 mg/L of meropenem). Shoots obtained in
first round of regeneration and selection medium were further
selected by subsequent subculturing in the regeneration and
selection medium 2 (MS media containing 500 µg/L of BAP,
500 µg/L of kinetin, 200 mg/L of kanamycin and 25 mg/L of
meropenem) every 14–21 days. Up to eight rounds of selection
were done to obtain putative GE events. Any explants that
exhibited proliferative shoot growth during that duration were

isolated and considered an individual GE event. Upon reaching
an appropriate size, shoots from such multiplying clumps were
grafted onto non-GE rootstocks grown on half-strength MS
media. Grafts were allowed to set for up to 3 weeks before
acclimatization.

Acclimatized plants were screened via PCR of gDNA for the
genes of interest. To avoid false negatives caused by potential
chimerism, a pooled sample consisting of leaves from every
branch was used. Primers used for PCR screening are as listed
in Supplementary Table 6. Two PCR-positive T0 events were
propagated tomaturity for two generations to obtain sufficient T3

seed for the experiments described in this paper. Null segregants
from every generation were also maintained to serve as negative
controls.

NA Quantification
Freeze-dried seeds from three different plants of the same
transgenic event were pooled and milled to form a bulked flour
sample, from which four technical replicates were drawn for NA
quantification. Liquid chromatography-mass spectrometry (LC-
MS) was used to quantify 9-fluorenylmethoxycarboxyl chloride
(FMOC-Cl) derivatized NA on an LC 1290 series coupled to
a 6490 series triple quadrupole MS (Agilent Technologies Inc.)
using established protocols (Selby-Pham et al., 2017). In short,
a combined methanol (100%) and 18 M� H2O extraction (5
µL) of pulverized chickpea flour (25mg) was combined with
sodium borate buffer (pH = 8, 1M, 10 µL), EDTA buffer (pH
= 8, 50mM, 10 µL), and fresh FMOC-Cl solution (50mM, 40
µL). After incubation (60◦C, 700 rpm, 15 mins), the solution
mixture was quenched via the addition of formic acid (pH = 4,
5%, 8.9 µL). Chromatography was performed using a reverse-
phase column (Zorbax Eclipse XDB-C18, HS 2.1 × 100mm 1.8
Micron, Agilent Technologies Inc.) with aqueous (0.1% v/v FA in
dH2O) and organic (0.1% v/v FA in acetonitrile) mobile phases.

Statistical Analysis
All statistical analysis was performed on Minitab statistical
software (Arend, 2010) using one-way ANOVA. The Tukey HSD
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TABLE 4 | Concentration of macro-elements in dry chickpea seed.

Ca (ppm) Mg (ppm) Na (ppm) K (ppm) P (ppm) S (ppm)

GENESIS090

Billa Billa efg1420 (± 83.3) cdefg1340 (± 17.3) cde167.2 (± 31.0) bcde10070 (± 115.5) abc4000 (± 100.0) abcd1930 (± 17.3)

Roma cdef1600 (± 205.0) fg1240 (± 10.0) cde170.8 (± 27.3) bcde10100 (± 458.3) efg3330 (± 115.5) abcd1870 (± 15.3)

Warra cdef1640 (± 235.2) defg1320 (± 52.9) cde159.1 (± 38.8) fgh9130 (± 305.5) ab4100 (± 264.6) a2040 (± 140.0)

KALKEE

Billa Billa g1050 (± 49.3) efg1310 (± 10.0) cde155.3 (± 18.4) ab10800 (± 100.0) abc3930 (± 57.7) abcd1910 (± 36.1)

Roma fg1240 (± 111.5) efg1280 (± 0.00) cde121.4 (± 18.9) a11170 (± 57.7) def3430 (± 115.5) bcd1860 (± 45.1)

Warra fg1210 (± 102.1) fg1220 (± 124.9) cde148.9 (± 105.6) defg9400 (± 608.3) cde3600 (± 264.6) abcd1900 (± 87.2)

MONARCH

Billa Billa fg1270 (± 115.9) bcdef1380 (± 20.8) a633.3 (± 145.7) ab10770 (± 251.7) bcde3730 (± 57.7) cdef1800 (± 15.3)

Roma cdef1600 (± 200.3) fg1220 (± 70.0) b330.0 (± 65.6) bcde10200 (± 100.0) g2900 (± 200.0) defg1760 (± 66.6)

Warra def1570 (± 117.2) fg1240 (± 34.6) bc246.7 (± 30.6) gh8630 (± 378.6) efg3300 (± 264.6) ab1980 (± 105.8)

BOUNDARY

Billa Billa defg1480 (± 262.1) bcde1440 (± 105.0) cde124.1 (± 36.3) abc10470 (± 251.7) abcd3870 (± 115.5) abcd1890 (± 43.6)

Roma ab2170 (± 57.7) bcde1430 (± 55.1) cde143.4 (± 15.5) ab10970 (± 251.7) abcd3830 (± 152.8) abcd1910 (± 75.7)

Warra bcde1920 (± 91.7) b1520 (± 65.6) bcd204.8 (± 42.0) fgh9030 (± 230.9) abc4030 (± 57.7) abc1960 (± 40.4)

Kingaroy cdef1650 (± 10.8) fg1240 (± 21.0) de83.1 (± 3.20) gh8570 (± 60.8) k1860 (± 35.4) fg1610 (± 17.9)

CICA0912

Billa Billa def1590 (± 62.4) b1520 (± 50.0) de73.2 (± 12.4) abc10570 (± 450.9) abc3970 (± 115.5) cdef1810 (± 25.2)

Warra abc2100 (± 355.0) bcd1490 (± 101.5) cde108.2 (± 17.3) fgh8900 (± 400.0) ab4130 (± 152.8) abc1960 (± 51.3)

Kingaroy bcde1850 (± 68.0) g1180 (± 41.8) e40.0 (± 1.10) gh8710 (± 196.8) k2290 (± 176.5) def1780 (± 69.4)

HATTRICK

Billa Billa bcd1960 (± 163.7) bc1510 (± 20.0) cde160.2 (± 62.2) cdef9770 (± 550.8) cde3630 (± 251.7) cdef1800 (± 20.8)

Roma a2570 (± 152.8) bcde1440 (± 5.80) de71.0 (± 14.5) efg9300 (± 100.0) fg3030 (± 57.7) efg1680 (± 30.6)

Warra bcd1960 (± 315.3) b1530 (± 85.0) cde165.6 (± 14.9) fgh9030 (± 57.7) a4200 (± 100.0) abcd1900 (± 10.0)

Kingaroy bcdef1670 (± 129.6) fg1240 (± 47.8) e51.5 (± 0.40) h8360 (± 60.0) k1990 (± 44.0) fg1650 (± 30.5)

NSW a2420 (± 109.5) a1800 (± 46.2) e63.4 (± 6.30) bcd10160 (± 230.2) ab4080 (± 83.7) cde1820 (± 27.9)

Data are presented as a mean ± SD. All cultivars from had n = 3 except for HatTrick from NSW, which has n = 5. Values sharing the same superscript letters indicate groups that are

not significantly different at p < 0.05 when tested with one-way ANOVA, using Tukey’s HSD post-hoc test.

FIGURE 2 | Distribution of macro and micro elements in chickpea (cv HatTrick) seed expressed as a percentage of the total element content in the three main tissue

types present in the grain. Values for the elemental profile was derived from a bulked flour sample produced from pooling tissue from 100 seeds. Three technical

replicates were used. Mass distribution in the seed was calculated from 10 biological replicates.

Frontiers in Plant Science | www.frontiersin.org 7 June 2018 | Volume 9 | Article 788

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Tan et al. Transgenic Biofortification of Chickpea

FIGURE 3 | Amino acid sequence alignment of the four chickpea CaNAS amino acid sequences. Orange sections indicate conserved regions. Blue sections

represent the YXXΦ and the LL, IL, or ML motifs.

FIGURE 4 | Phylogenetic relationship between NAS proteins from plants. The scale bar and branch labels represent the number of substitutions per site. The

legume-specific group are as indicated by the green circles and the red arrow shows the position of CaNAS2 in the unrooted phylogenetic tree. Species included in

this tree are Arabidopsis thaliana (AtNAS), Hordeum vulgare (HvNAS), Lotus japonicus (LjNAS), Medicago truncatula (MtNAS), Oryza sativa (OsNAS), Thlaspi

caerulescens (TcNAS), Solanum lycopersicum (SlNAS), Zea mays (ZmNAS), and Triticum aestivum (TaNAS). Black nodes (•) represent weak bootstrap values (<75%).

The scale bar corresponds to branch length and longer branches correspond to greater numbers of nucleic acid polymorphisms along the sequence.

test was used in the analysis the different chickpea cultivars, while
Dunnett’s test was used in the analysis of the GE chickpea.

RESULTS

Mineral Composition of Chickpea Cultivars
and Identification of Factors Influencing
Seed Fe Concentration
Fe concentrations in chickpea were found to range from 3.36 to
52.0 ppm, with no significant differences between the cultivars,
though average values were slightly higher in the kabuli types

compared to the desi (Tables 1, 2). The highest values were noted
in the kabuli cultivar Genesis090TM, while the lowest values were
mostly found in PBA HatTrick, though the difference to other
desi cultivars was negligible (Table 2). This, in combination with
the availability of established transformation protocols for the
cultivar, made HatTrick the choice candidate for further work.

Between locations, similar mineral profiles were observed
amongst samples grown in Billa Billa, Roma, and Warra, which
had vertosol-type soils. In contrast, samples obtained from
Kingaroy contained less Fe. Also, unique to this locality was
a high Mn concentrationto Fe ratio, which appears to have
produced the negative correlation between the two elements
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FIGURE 5 | Expression of CaNAS2 in different tissues under Fe-sufficient

(+Fe) and Fe-deficient conditions (–Fe) measured via quantitative real-time

PCR. Each data point is an average of three biological replicates; each of

which was derived from three technical replicates. Error bars represent

standard error. Expression was normalisedto the housekeeping genes

CaGAPDH and CaEF1α. No viable RNA could be extracted from the

Fe-deficient root samples; they were therefore excluded from this analysis.

Leaf (GR), Green leaf, Leaf (SC/CHL), Senescing leaf (for Fe sufficient plants),

and chlorotic leaf (for Fe deficient plants).

(Table 3). No other negative correlations were observed between
Fe and other elements. On the other hand, the strongest
positive correlations were found between Fe, Zn, and P. Zn
and P concentrations in particular. Unlike Fe however, greater
differences in Zn and P were observed between the locations than
between the genotypes (Table 4).

Cotyledons Serve as the Primary Store for
Fe in PBA Hattrick Seeds
Amongst the different part of the seed, the radicle was found
to have the highest Fe concentration at 95.0 ppm, followed by
the cotyledons at 50.0 ppm. Due to its small mass however, its
contribution only 3% to the total seed Fe content. The cotyledons
on the other hand, constituted the bulk of the seed mass and
contained 90% of the seed’s total Fe. It was also the main store for
all the other elements tested. The exception to this was calcium
and manganese—the bulk of the former was found in the seed
coat, while the latter was almost equally divided between the seed
coat and cotyledons (Figure 2).

Legume NAS Homologs Form Distinct
Branches Among the Non-graminaceous
Orthologues
Concerning their chromosomal locations, the CaNAS2 and
CaNAS4 genes were located on chromosomes 4 (Ca4) and 3

FIGURE 6 | Expression of (A) GmFER and (B) CaNAS2 in the null and GE

chickpea events normalized to the housekeeping genes CaGAPDH and

CaEF1α through quantitative real-time PCR. Each data point is an average of

three biological replicates; each of which was derived from three technical

replicates. Error bars indicate standard error.

(Ca3) respectively, while both CaNAS1 and 3 were located on
chromosome 1 (Ca1). All four CaNAS genes were found to be to
consist of a single exon. CaNAS1, 2, 3, and 4 coded for 285, 306,
311, and 318 amino acids respectively. In the CaNAS1 protein, a
longer N-terminal and a shorter C-terminal was seen compared
to the other three CaNAS homologs.

In the four CaNAS amino acid sequences, several highly
conserved regions were noted (Figure 3). Of these, the YXX8

(Y refers to tyrosine, X to any amino acid residue, and 8 to
bulky hydrophobic residues) and di-leucine (LL; leucine may be
substituted with isoleucine) motifs were known to be conserved
amongst the NAS homologs. Amongst some of the legume NAS
sequences however, a variation of the LL motif was observed
where the first leucine was substituted by methionine. This was
seen in the CaNAS3 protein sequence, as well as in MtNAS2
from Medicago truncatula and LjNAS2 from Lotus japonicus
(Supplementary Table 3).

Phylogenetic analysis of the 58 NAS proteins revealed a
clear distinction between graminaceous and non-graminaceous
sequences (Figure 4). Two clades were present in the former
and were consistent with a prior report (Bonneau et al., 2016).
With the latter, three subgroups for legumes were observed—
these were defined as subgroups 1, 2, and 3. Subgroup 1 consisted
of includes CaNAS1 from chickpea and MtNAS1 fromMedicago
truncatula. Subgroup 2 consisted of CaNAS3, MtNAS2, and
LjNAS2 (from Lotus japonicus). Lastly, Subgroup 3 consisted of
CaNAS2 and 4, MtNAS3 and 4, and LjNAS1. The presence of
CaNAS2/MtNAS3 and CaNAS4/MtNAS4 in the same branch is
most likely due to genome duplication.

Further bioinformatic analysis of the CaNAS2 protein
indicated an approximate molecular weight and pI of 34.36kDA
5.52 respectively. The enzyme was mostly hydrophilic with a
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FIGURE 7 | Agronomic characteristics of the null and GE chickpea under glasshouse conditions. (A) biomass; (B) number of seeds; (C) seed weight; (D) harvest

index; (E) 100 seed weight. Null (n = 4), Event 6.6 (n = 9) and Event 6.14 (n = 14).. Each data point represent a mean of all biological replicates, and error bars indicate

standard error. No significant differences (p ≤ 0.05) were observed between the null and GE lines when tested with one-way ANOVA, using Dunnett’s post-hoc test.

potential transmembrane domain at position 126–151. A non-
cytoplasmic localisation was predicted, though no apparent
signaling peptides were detected.

CaNAS2 Is Expressed in Various Vegetative
Tissues Under Fe Sufficient Conditions
The expression pattern of CaNAS2 was examined under Fe-
sufficient and Fe-deficient conditions. The Fe-deficient plants
used in this study were observed to be paler green than
the Fe sufficient controls, with severe chlorosis in the young
leaves. No nodules were observed in either Fe-deficient or Fe-
sufficient plants. CaNAS2 transcripts were detected in all the
tissue types tested, though the levels were largely influenced by
Fe status, with an overall downregulation under Fe deficiency.
Gene expression in the Fe deficient plants, where detected,
was generally low, and comparable across all tissues (Figure 5).
Similar levels were also detected in the senescing leaf of Fe-
sufficient plants. By contrast, other Fe sufficient tissues exhibited
markedly higher expression, particularly in the stem, cotyledons,
and roots. A 16-fold difference was seen between stems of
the Fe-sufficient and Fe deficient plants, while expression
was only detected in Fe-sufficient cotyledons. For root tissue
however, no data could be obtained for the Fe deficient
plants due to the consistently poor quality of the extracted
RNA.

Transgenic Chickpea Highly Express Both
Transgenes and Have Increased Fe in Leaf
Tissue and Increased Nicotianamine in
Seed Tissue
Both of the regenerated GE events (6.1 and 6.14) that were
propagated to the T3 generation were confirmed via Southern
blot to have single transgene integration sites. Expression
analyses showed a 49- and 93-fold increase inCaNAS2 expression
in events 6.6 and 6.14, respectively, compared to null segregant
controls (Figure 6B). Expression analysis showed an 18- and 30-
fold increase in expression of GmFER in events 6.6 and 6.1,
respectively, compared to null segregant controls (Figure 6A).
Agronomic performance of the T3 GE events in the glasshouse
was generally comparable to the null controls and no significant
differences were seen in terms of morphology and the other
parameters measured (Figures 7, 8).

Two differences were observed with respect to micronutrient
composition of the leaf tissue of events 6.6 and 6.14 compared
to null segregant controls (Figure 9). Event 6.6 had significantly
higher leaf Fe concentration which was 1.39-fold higher than
the null segregant control. Event 6.14 had significantly lower
leaf Zn concentration which was 1.4-fold lower than the null
segregant control. No significant differences for Fe, Zn, or Mn
concentrations were observed in the seed of events 6.6 and 6.14.
Seed from events 6.6 and 6.14 contained significantly higher
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FIGURE 8 | Morphologically similar 9 week old null and GE chickpea at the

flowering/pod-filling stage.

NA concentration which was nearly 2-fold higher than the null
segregant control (Figure 10).

DISCUSSION

Conditions Affecting Seed Fe
Concentrations in Chickpea and the
Selection of cv PBA Hattrick for Fe
Biofortification Research
Australian-grown chickpeas were previously reported to contain
up to 140 ppm of Fe in their seed, though average values were
∼50 ppm (Petterson and Mackintosh, 1994). Such average values
appear to be the norm globally, with similar results reported in
chickpea from other countries (Meiners et al., 1976; Jambunathan
and Singh, 1981; Thavarajah and Thavarajah, 2012; Diapari et al.,
2014; Ray et al., 2014). That similar average values for seed Fe
concentrations were obtained for the six cultivars used in our

FIGURE 9 | Mean concentration of iron, zinc, and manganese in the (A)

leaves and (B) seeds of the null and GE chickpea lines. For the leaves, the null

had n = 5, *Event 6.6 had n = 14, and Event 6.14 had n = 3. For the seeds,

the null and Event 6.6 had n = 4, while Event 6.14 had n = 4. *Indicates

significant difference compared to the null when tested with one-way ANOVA,

using Dunnett’s post-hoc test (p � 0.05).

study, indicating that the cultivars used fell within that global
norm.

A past study by Ray et al. (2014) has reported seed
Fe concentration to be influenced firstly by environmental
conditions, then by genotype. Our observations were only
partially consistent with that report, perhaps due to the smaller
number of locations and cultivars we examined. Between the
cultivars and most locations, no major differences were noted.
The major environmental effect on seed Fe was only observed
where soil Fe bioavailability was potentially compromised,
such as with the Kingaroy samples which had lower seed Fe
concentrations. Past records have shown Kingaroy ferrosols to be
acidic with a high manganese to Fe ratio, and such conditions
have been documented to inhibit Fe uptake, sometimes to the
point of chlorosis (Twyman, 1951; Tanaka and Navasero, 1966;
Alvarez-Tinaut et al., 1980). In our study, this inhibition was
asymptomatic; no Fe deficiency symptoms were reported by the
growers, and the effect was only apparent upon assessment of
the seed mineral profile. This is potentially problematic where
biofortification efforts are concerned as attempts to increase Fe
concentrations may be unknowingly hijacked by adverse soil
conditions.
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FIGURE 10 | NA concentration in the null and GE chickpea events. For each

transgenic event, four technical replicates were drawn from a bulked flour

sample produced from the pooled seeds of three plants. *Indicates significant

difference compared to the null when tested with one-way ANOVA, using

Dunnett’s post-hoc test (p ≤ 0.001).

An environmental effect was also apparent in the Zn and
P concentrations, both of which were positively correlated
with Fe and affect seed nutritional value. With Zn, significant
variations were noted between all sites regardless of cultivar,
corresponding with observations by other authors who also
reported significant year to year variations, even with seed
from the same sites (Diapari et al., 2014; Ray et al., 2014).
Management practices may explain at least part of the higher
degree of Zn variation compared to Fe. Application of Zn
fertilizers is a recommended practice in chickpea cultivation due
to the risk of Zn deficiency in most Australian soils (Norton,
2013; Pulse Australia, 2016). The effects of Zn fertilization
on grain Zn concentration however, are unpredictable and
may differ between seasons (Akay, 2011). This variability is
compounded by the effect of other management regimes like
the application of P fertilizer. Aside from directly affecting
grain P concentration (Saastamoinen, 1987), studies in pearl
millet and wheat have highlighted a negative impact of P
fertilizer on seed Zn concentration (Buerkert et al., 1998;
Ryan et al., 2008). The precise reason behind it is uncertain,
though it has been attributed to altered zinc uptake and
the dilution effect caused by increased yields. The former
was deemed the more likely, given the absence of adverse
effects on seed Fe concentration (Ryan et al., 2008), though
regardless, the implications on the nutritional quality of the
seeds are still considerable. Seed P is primarily stored as phytate
(Lolas et al., 1976; Griffiths and Thomas, 1981; Ravindran
et al., 1994), a potent inhibitor of Fe and zinc bioavailability
(Turnlund et al., 1984; Sandberg et al., 1989, 1999), and its

levels can be considered a crude indicator of micronutrient
bioavailability.

In terms of the genetic effect, only a slight influence was seen.
Few significant differences were found amongst the cultivars
assessed, though kabuli cultivars had marginally higher Fe
concentrations than the desi. This lack of difference is likely a
product of the breeding process. Currently, no information exists
for micronutrient accumulating traits in existing germplasm.
As micronutrient accumulation is often accompanied by yield
penalties (Garvin et al., 2006; Ficco et al., 2009; Diapari et al.,
2014), it is likely that such traits may have been bred out of the
current cultivars as breeding efforts in Australia have primarily
focused on yield, abiotic stress, and biotic stress resistance with
no consideration for nutritional value (Pulse Breeding Australia,
2017). Consequently, reintroduction of Fe-accumulation traits
may prove challenging, though the difficulty can be alleviated
with modern biotechnology.

For this purpose the cultivar with the lowest Fe
concentrations, PBA HatTrick, was identified as a suitable
candidate for Fe biofortification. The benefits of this choice are
manifold. PBA HatTrick is a popular choice amongst growers
due to its high yield and resistance to phytophthora root rot.
As a desi cultivar, it also has great potential for widespread
dissemination, as desi constitutes 90% of the Australian chickpea
export and therefore the bulk of the international market (Pulse
Australia, 2016). With Fe localized primarily to the cotyledon,
which is the main product, enhancements in Fe concentration
will reach the consumer regardless of the form in which the
seed is consumed. Bioavailability, however, may be a concern as
phosphorus (and by extension, phytate) co-localizes with Fe to
the cotyledons. This may perhaps be addressed with appropriate
biofortification strategies and choice of target genes, one of
which, for the purposes of this study, has identified as the novel
CaNAS2 gene.

CaNAS2 Has a Potential Housekeeping
Role Under Fe Sufficient Conditions
In our study, CaNAS2 grouped with the other dicot sequences
in a separate clade to monocot sequences. This dichotomy
between the dicot and monocot sequences is consistent with
the findings of other authors (Hakoyama et al., 2009; Filipe de
Carvalho et al., 2012), and is likely reflective of the differing
physiological roles of NAS between the two. However whether
this is conclusive remains to be seen due to the limited number
of experimentally verified homologs; monocot sequences used
in this study were of graminaceous origins, and the inclusion
of the non-graminaceous homologs may potentially alter the
existing arrangment. Nonetheless recent evidence have revealed
functional grouping amongst NAS homologs (Bonneau et al.,
2016) in terms of roles in development and Fe deficiency.
Assuming this is universal amongst higher plants, such grouping
will allow for accurate prediction of the function of closely
related homologs. This accuracy however, remains subject to the
availability of sequences that can be extrapolated from–such is
evident in this study. For example, nodule-specific expression
of LjNAS2 (Hakoyama et al., 2009) was neither mirrored in the
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closely related MtNAS2 (Medicago truncatula Gene Expression
Atlas, 2014), nor in the any of the other legume NAS used in this
study. Whether the third member of Subgroup 2, CaNAS3, will
be nodule-specific is uncertain—this could not be investigated
in our study due to the absence of nodules as the plants were
not inoculated with Rhizobium. Still, given that the substitution
of the di-leucine motif by a methionine is a trait unique to
Subgroup 2, it is plausible that some functional specialization
is present. Further investigation and discovery of more nodule-
specific homologs may shed more light on this.

Functional specialization may also be present in Subgroup
1, to which CaNAS1 and MtNAS1 belong. The nature of this
specialization is still inconclusive. Subgroup 1 was the most
divergent from other NAS proteins used in the phylogenetic
analysis and no discernible trend could be seen between
members. No orthologue of CaNAS1 was found in Lotus
japonicus, perhaps due to the genome evolution in legumes
(Wang et al., 2017). As with Subgroup 2, further study is required
before conclusive statements may be made.

In the interim, only Subgroup 3 bears enough information
for reasonable inference of function. Subgroup 3 homologs are
notable for their widespread expression in various vegetative
tissues (Hakoyama et al., 2009; Medicago truncatula Gene
Expression Atlas, 2014), and such is also seen in CaNAS2 and
4 (Figure 5, Supplementary Figure 1). While the expression
sites vary between homologs, ranging from roots, to leaves, and
cotyledons, a common feature is the expression in the stem. Using
LjNAS1 as a reference, this pattern may indicate a housekeeping
role in the systemic redistribution of Fe (Hakoyama et al.,
2009) which, in the case of CaNAS2, occurs under Fe-sufficient
conditions. It is also likely that the expression of NAS in
the diverse sites may operate at different scales, given the
involvement of NA in long and short-distance translocation.
Expression in the stem may serve to feed NA into the vascular
tissue and symplast for systemic transport, while expression
in the other locations may provide NA for more localized
translocation.

Concerning the movement and localization of CaNAS2
within an intracellular context, the results predicted a non-
cytoplasmic, and potentially vesicular, localization. The accuracy
of this however, is contentious. The YXXΦ and LL motifs
conserved in the NAS family have been linked to maintenance
of enzyme structure, and vesicular localization and movement
(Nozoye et al., 2014a). Studies of various NAS homologs have
yielded conflicting results. For example, vesicular localization
have only been confirmed in OsNAS2, ZmNAS1 and ZmNAS2,
while ZmNAS3 and the AtNAS family, localized to the
cytoplasm (Mizuno et al., 2003; Nozoye et al., 2014a,b). It was
proposed by Nozoye et al. (2014b) that vesicular localization
is required for DMA synthesis, hence its specificity to the
graminaceous homologs. With chickpea lacking in that regard,
its localization pattern is likely to be more similar to that
of AtNAS, though more studies are required to confirm
this.

Constitutive Expression of CaNAS2 and
GmFER Does not Increase Seed Fe
Concentration but Is Likely to Increase
Seed Fe Bioavailability
As demonstrated in this study, constitutive overexpression
of the endogenous CaNAS2 gene combined with constitutive
expression of the GmFER gene in chickpea resulted in higher
leaf Fe in one event, and lower leaf Zn in the other event,
with no apparent effects on yield or morphology in either
event. Seed Fe, Zn and Mn concentrations were not changed
in either event. These results suggest that high expression of
the CaNAS2 and GmFer transgenes is not an effective strategy
for improving the micronutrient composition of chickpea grain.
Potentially a better strategy in the future would be to use a
seed-specific promoter to driveGmFer expression in conjunction
with CaNAS2 overexpression. Indeed, this method has been
demonstrated to be extremely effective in rice, producing a 7.5-
fold increase in the Fe concentration of polished seeds with no
yield penalty (Trijatmiko et al., 2016).

Due to high levels of inhibitory compounds (i.e., phytic
acid), the Fe bioavailability in pulses is low relative to
other crops (Hemalatha et al., 2007). As NA is a known
promoter of Fe bioavailability, doubling the concentration
of NA in chickpea flour may increase Fe bioavailability
without alterations to seed mineral concentration (Zheng et al.,
2010; Eagling et al., 2014). Future in vitro Fe bioavailability
studies utilizing the Caco-2 cell line assay are needed to
confirm increased Fe bioavailability in high-NA chickpea
events.
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