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In the field, plants constantly face a plethora of abiotic and biotic stresses that can
impart detrimental effects on plants. In response to multiple stresses, plants can rapidly
reprogram their transcriptome through a tightly regulated and highly dynamic regulatory
network where WRKY transcription factors can act as activators or repressors. WRKY
transcription factors have diverse biological functions in plants, but most notably are
key players in plant responses to biotic and abiotic stresses. In tomato there are 83
WRKY genes identified. Here we review recent progress on functions of these tomato
WRKY genes and their homologs in other plant species, such as Arabidopsis and rice,
with a special focus on their involvement in responses to abiotic and biotic stresses. In
particular, we highlight WRKY genes that play a role in plant responses to a combination
of abiotic and biotic stresses.

Keywords: abiotic stress, biotic stress, combined stresses, disease resistance, effector-triggered immunity (ETI),
PAMP-triggered immunity (PTI)

INTRODUCTION

WRKY transcription factors (WRKYs) are a large family of transcriptional regulators, which
are defined by the highly conserved WRKY domain (the WRKYGQK motif at the end of the
N-terminal and a zinc-finger-like motif at the C-terminus) (Rushton et al., 2010). WRKYs are
categorized into three groups (Rushton et al., 2010; Rinerson et al., 2015). Group I (with two WRKY
domains) and Group II (with one WRKY domain) contain the zinc-finger-like motif C2–H2 (C–
X4−5–C–X22−23–H–X1–H). Group III contains one WRKY domain and a C2–HC zinc-finger-like
motif (C–X7–C–X23–H–X1–C) (Eulgem et al., 2000). Based on the primary amino acid sequences,
Group II can be further divided into three subgroups (Zhang and Wang, 2005).

Through the binding of the WRKY domain to the W-box cis-acting element (consensus
sequence: (T)(T)TGAC(C/T)) in the promoters of their target genes, WRKYs can act as
transcriptional activators or repressors in regulatory cascades (Rushton et al., 2010; Yokotani et al.,
2013; Bakshi and Oelmuller, 2014). The functional specificity of WRKYs is defined by many factors
including the W-box (Yan et al., 2013), the WRKY domain (Cheng et al., 2015), interactions with
other proteins (Brand et al., 2013; Franco-Zorrilla et al., 2014), and post-translational modifications
(Lai et al., 2011).

Many WRKYs have been identified in the plant kingdom (Supplementary Table S1).
Numerous expression and functional studies have given insight in the involvement of
WRKYs in different aspects of plant biology (Van Esse et al., 2009; Rushton et al.,
2010; Ishihama and Yoshioka, 2012; Hu et al., 2013; Bakshi and Oelmuller, 2014; Yang
et al., 2016). Tomato (Solanum lycopersicum) has 83 SlWRKY genes (Huang et al.,
2012; Karkute et al., 2018). This review focuses on tomato SlWRKY genes with regard
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to their roles in plant responses to biotic and abiotic stresses. The
nomenclature of the SlWRKY genes follows that of Huang et al.
(2012) and Karkute et al. (2018). For SlWRKY genes that have not
been studied in detail yet, we propose potential roles in response
to (a)biotic stresses by looking at their homologs in other plant
species (Supplementary Figure S1). We paid special attention
to the role of WRKY genes in the complex regulatory process of
plant responses to combined stresses.

BIOTIC STRESS-RELATED WRKYs

Plants have developed two layers of induced defense responses
(Jones and Dangl, 2006), in which WRKYs are shown to
function as either positive or negative regulators (e.g., Bakshi and
Oelmuller, 2014; Sarris et al., 2015). The first layer, termed PAMP-
triggered immunity (PTI), is activated by the recognition between
pathogen-associated molecular patterns (PAMPs) and plant’s
pattern recognition receptors. Adapted pathogens can express
effector proteins to suppress PTI. The second layer [named
effector-triggered immunity (ETI)] is triggered by the recognition
of pathogen effectors by plant resistance (R) proteins. Plant R
proteins usually comprise nucleotide binding-leucine rich repeat
(NB-LRR). PTI and ETI induce both local and systemic acquired
resistance responses through the production of reactive oxygen
species (ROS) and activation of an integrated signaling network
including MAP kinases and hormonal signaling pathways
(Dodds and Rathjen, 2010). Salicylic acid (SA), jasmonic acid (JA)
and ethylene (ET) are the classical immunity-related hormones.

WRKYs are involved in PTI and ETI at different regulatory
levels (Bakshi and Oelmuller, 2014). Firstly, WRKYs can interact
(in)directly with PAMPs or effector proteins to activate or repress
both PTI and ETI. In barley (Hordeum vulgare), HvWRKY1
and HvWRKY2 were activated by flg22 (a MAMP) and acted as
repressors of PTI against the powdery mildew fungus Blumeria
graminis f.sp. hordei. In addition, the fungal effector AVRA10
activated a specific association between the R protein MLA10
and HvWRKY1/2 leading to inactivation of the repressor function
of HvWRKY1/2 (Shen et al., 2007). In Arabidopsis, AtWRKY18,
AtWRKY40, and AtWRKY60, homologs of HvWRKY1 and
HvWRKY2 (Shen et al., 2007), showed redundant function in
negatively regulating PTI to Pseudomonas syringae (Xu et al.,
2006) and the powdery mildew fungus Golovinomyces orontii
(Shen et al., 2007). Activation of defense-related genes was
observed in wrky18 wrky40 and wrky18 wrky60 double mutants
and the wrky18 wrky40 wrky60 triple mutants (Xu et al., 2006;
Shen et al., 2007). Similarly, the rice (Oryza sativa) OsWRKY62
gene functions as a negative regulator of both PTI and ETI
(conferred by the Xa21 gene) to Xanthomonas oryzae (Peng et al.,
2008). These WRKYs are members of the WRKY II-a subfamily
and the results above suggest that members of this subfamily may
have a conserved negative regulatory function in plant defense.
However, overexpression of the WRKY II-a subfamily member
OsWRKY71 enhanced resistance to Xoo in rice (Liu et al.,
2007). Secondly, WRKYs can be regulated by mitogen-activated
protein kinases (MAPKs) (Pandey and Somssich, 2009; Ishihama
and Yoshioka, 2012). In Nicotiana benthamiana, NtWRKY7,

NtWRKY8, NtWRKY9, and NtWRKY11, phosphorylated by
pathogen-responsive MAPKs, were able to bind to the W-box
in the promoter of the RBOHB gene leading to ROS burst
(Ishihama and Yoshioka, 2012; Adachi et al., 2015). AtWRKY33
interacted with MPK4 and MAP kinase 4 substrate 1 (MKS1)
(Andreasson et al., 2005). Upon being challenged with P. syringae
or upon elicitation by the MAMP flg22, AtWRKY33 was released
from this trimeric complex and subsequently bound to the
promotor region of Phytoalexin Deficient3 (PAD3) facilitating
the synthesis of antimicrobial camalexin (Qiu et al., 2008;
Mao et al., 2011; Ishihama and Yoshioka, 2012). Thirdly,
WRKYs regulate hormonal signaling pathways. For example,
overexpression of AtWRKY18 and AtWRKY70 led to induced
expression of defense-related genes, including SA-induced PR1
(Li et al., 2004). The increased susceptibility to Botrytis cinerea
of the atwrky33 Arabidopsis mutant was associated with SA-
mediated repression of the JA pathway (Birkenbihl et al., 2012).
In addition, WRKYs can contribute to plant immunity by
modulating small RNAs (smRNAs), by epigenetic mechanisms
through histone methylation, as well as by proteasome-mediated
degradation and inter-organelle retrograde signaling (Bakshi and
Oelmuller, 2014; Phukan et al., 2016).

In tomato, WRKYs are studied for their roles in plant defense
by either overexpression and/or silencing them (Supplementary
Table S2 and Figures 1, 2). Many tomato WRKYs function
as positive regulators of plant responses to biotic stresses.
SlWRKY31 (named SlDRW1 in Liu et al., 2014) and SlWRKY33
(named SlWRKY33B and SlWRKY33A in Zhou et al., 2015),
homologs of AtWRKY33, were able to complement the
compromised tolerance to B. cinerea of the atwrky33 mutant
(Zheng et al., 2006). Additionally, overexpression of the
Solanum pimpinellifolium allele of SlWRKY33 (named SpWRKY1
in Li et al., 2015a,b) resulted in resistance to the hemi-
biotrophic oomycetes Phytophthora nicotianae in tobacco and
Phytophthora infestans in tomato. The SlWRKY39 gene, homolog
of AtWRKY40, was significantly upregulated in tomato upon
being challenged with P. syringae (Huang et al., 2012) and tomato
lines over-expressing SlWRKY39 showed enhanced resistance to
this pathogen (Sun et al., 2015). Overexpression of SlWRKY45,
another homolog of AtWRKY40, enhanced tomato susceptibility
to the root-knot nematode Meloidogyne javanica, which was
associated with decreased expression of JA- and SA marker
genes (Chinnapandi et al., 2017). SlWRKY72, SlWRKY73, or
SlWRKY74 (SlWRKY72a or SlWRKY72b in Bhattarai et al.,
2010) contributed positively to both PTI and Mi-1-mediated
ETI against root-knot nematodes (M. javanica) and potato
aphids (Macrosiphum euphorbiae) (Bhattarai et al., 2010). Also,
SlWRKY80 (SlWRKY70 in Atamian et al., 2012) was required for
Mi-1-mediated resistance against potato aphids and nematodes.

Upon infection of pathogens, altered expression was
reported for several tomato WRKYs, including SlWRKY23
(homolog of AtWRKY23), SlWRKY46 (homolog of AtWRKY40),
SlWRKY53/54 (homolog of AtWRKY23), SlWRKY80 and
SlWRKY81 (homologs of AtWRKY38 and AtWRKY62) (Huang
et al., 2012, 2016; Du et al., 2015; Lucioli et al., 2016; Rezzonico
et al., 2017). Their homologs in Arabidopsis act as negative
regulators of plant defense: AtWRKY38, AtWRKY48, and
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FIGURE 1 | The involvements of Group I and III tomato SlWRKY genes and their homologs (highlighted in different colors) in plant responses to biotic and abiotic
stresses. The phylogenetic relations of tomato SlWRKYs and their homologs in Arabidopsis (AtWRKYs), rice (OsWRKYs), tobacco (NtWRKY), wheat (TaWRKY),
barley (HvWRKY), cotton (GhWRKY), and grape (VqWKRY) are based on the phylogenetic tree presented in Supplementary Figure S1.

FIGURE 2 | The involvements of the Group II tomato SlWRKY genes and their homologs (highlighted in different colors) in plant responses to biotic and abiotic
stresses. The phylogenetic relations of tomato SlWRKYs and their homologs in Arabidopsis (AtWRKYs), rice (OsWRKYs), wheat (TaWRKY), and barley (HvWRKY) are
based on the phylogenetic tree presented in Supplementary Figure S1.
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AtWRKY62 in the response to P. syringae (Xu et al., 2006;
Kim et al., 2008; Xing et al., 2008), AtWRKY23 in response to
the nematode Heterodera schachtii (Grunewald et al., 2008),
and AtWRKY27 and AtWRKY53 in response to Ralstonia
solanacearum (Murray et al., 2007; Mukhtar et al., 2008).
Interestingly, overexpression of the grape (Vitis quinquangularis)
VqWRKY52 gene in Arabidopsis, a homolog of AtWRKY53
and SlWRKY53/54, enhanced resistance to Golovinomyces
cichoracearum and P. syringae, but increased susceptibility to
B. cinerea, which was associated with increased expression of
SA-pathway related genes and enhanced cell death (Wang et al.,
2017). Therefore, further functional analysis of these tomato
WRKY genes is needed to confirm their role in either enhanced
resistance or increased susceptibility to certain pathogens.

ABIOTIC STRESS-RELATED WRKYs

A number of studies demonstrate that WRKYs are involved in
plant responses to abiotic stresses, such as drought and salinity
(Supplementary Table S2 and Figures 1, 2). Expression of
genes responsive to the signaling hormone ABA was altered
in AtWRKY40 and AtWRKY40/AtWRKY18 knockout lines.
Overexpression of wheat (Triticum aestivum) TaWRKY1 and
TaWRKY33 (a homolog of AtWRKY40) in Arabidopsis enhanced
drought tolerance through an ABA-dependent pathway (He
et al., 2016). The SlWRKY39 gene, homolog of AtWRKY40, was
induced by salt, drought, ABA, SA, JA, and P. syringae (Huang
et al., 2012; Sun et al., 2015). The SlWRKY45 gene, another
homolog of AtWRKY40, was upregulated by cold treatment
(Chen et al., 2015). AtWRKY46 was shown to regulate stress
tolerance and hormonal response via ABA signaling and auxin
homeostasis (Ding et al., 2015).

Overexpression studies of TaWRKY10 and TaWRKY44 in
tobacco showed that these genes acted as enhancers of drought
and salt stress tolerance through regulation of osmotic balance
and ROS scavenging (Wang et al., 2013, 2015). Overexpression of
the Chrysanthemum DgWRKY5 gene enhanced tolerance to salt
stress by augmenting ROS scavenging and osmotic adjustment
(Liang et al., 2017). The rice OsWRKY30 was involved in drought
tolerance in rice via MAPK activation (Rushton et al., 2010;
Shen et al., 2012). DgWRKY5, AtWRKY25, TaWRKY44, and
OsWRKY30 are all members of the WRKY family Group I (Liang
et al., 2017).

The AtWRKY46 gene enhances drought and salt stress
tolerance, and regulates stomatal closure (Ding et al., 2015). One
of its tomato homologs, SlWRKY41, was upregulated under salt
stress, in addition to SlWRKY53, SlWKRY80, and SlWRKY81
(Huang et al., 2012). SlWRKY58 was upregulated under drought
stress (Karkute et al., 2018). Overexpression of the cotton
(Gossypium hirsutum) GhWRKY41 gene, the closest homolog of
SlWRKY58, in tobacco resulted tolerance to drought and salt
stress through enhanced stomatal closure as well as by regulating
ROS scavenging (Chu et al., 2015).

In addition, altered expression was observed for many other
SlWRKY genes in tomato, including induction of SlWRKY23,
SlWRKY33, and SlWRKY57 under salt stress (Huang et al., 2012),

upregulation of SlWRKY12, SlWRKY13, SlWRKY23, SlWRKY50,
and SlWRKY51 under cold stress (Chen et al., 2015), up-
regulated SlWRKY31 by drought and salt stress (Huang et al.,
2012). Under drought stress, SlWRKY32 and SlWRKY74 were
significantly upregulated (Huang et al., 2012), while SlWRKY4
was downregulated (Karkute et al., 2015). The possible positive or
negative roles of these SlWKRY genes in plant responses to abiotic
stresses still need to be further verified by functional analyses.

WRKYs IN CROSSTALK BETWEEN
ABIOTIC- AND BIOTIC-STRESS
TOLERANCE

Several of the aforementioned WRKYs are active at crossroads
of plant responses to both biotic and abiotic stresses. In
Group I (Figure 1), AtWRKY33 and its two tomato homologs
SlWRKY31 and SlWRKY33 are activators of plant defense to
several pathogens (Zheng et al., 2006; Lippok et al., 2007; Liu
et al., 2014; Li et al., 2015a). In addition, induction of SlWRKY31
and SlWRKY33 was observed under drought and/or salt stresses
(Huang et al., 2012). In Group II-a (Figure 2), HvWRKY1 (also
designated HvWRKY38 in Mare et al., 2004), AtWRKY40 and its
tomato homologs SlWRKY39 and SlWRKY45 are involved in the
response to the infection of pathogens and several abiotic stresses
(Xu et al., 2006; Shen et al., 2007; Huang et al., 2012; Chen et al.,
2015; Sun et al., 2015; Chinnapandi et al., 2017). Similarly, several
WRKYs in Group II-b (Figure 2, SlWRKY72 and SlWRKY74) and
Group-III (Figure 1, OsWRKY45 and TaWRKY1, SlWRKY80,
and SlWRKY81, as well as SlWRKY53 and AtWRKY53) can
increase plant tolerance to multiple stresses (Murray et al., 2007;
Mukhtar et al., 2008; Qiu and Yu, 2009; Tao et al., 2009, 2011;
Bhattarai et al., 2010; Atamian et al., 2012; Huang et al., 2012;
Wang et al., 2013, 2015; Marques de Carvalho et al., 2015; He
et al., 2016). It is worthwhile to note that WRKYs have been
studied for their responses to a single stress at the time. Therefore,
further functional analyses of these WRKYs are needed to verify
whether the responses to individual stresses remain the same
when the plants are exposed to combination(s) of those stress
factors. A role for WKRY genes in the interaction of response
pathways was obvious in tomato plants in which SlWRKY23
was silenced (Kissoudis, 2016). These plants exhibited increased
resistance to tomato powdery caused by Oidium neolycopersici,
but this resistance was compromised under salt stress. This
example clearly indicates a role for WRKY transcription factors
in the crosstalk between biotic and abiotic stress responses, and
demonstrates that the responses to individual stresses may not be
additive when the plants have to deal with combinatorial stresses.

Tomato is a host for more than 200 species of pathogens,
some of which can be controlled by R genes derived from wild
tomato relatives (Bai et al., 2018). Evidence is accumulating
that plant resistances to pathogens can be attenuated or
enhanced by abiotic stresses (Suzuki et al., 2014; Kissoudis et al.,
2017). For example, the Mi-1-mediated nematode resistance was
compromised under heat stress (Marques de Carvalho et al.,
2015). Four tomato WRKYs were shown to contribute to the
Mi-1-mediated nematode resistance [SlWRKY72 to SlWRKY74
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(Bhattarai et al., 2010) and SlWRKY80 (Atamian et al., 2012)].
The intriguing question is whether these WRKYs are involved in
the instability of the Mi-1-mediated resistance under heat stress,
or, more generally, do WRKYs play a role in the (in)stability
of plant R genes-mediated resistance associated with different
molecular mechanisms (Kissoudis et al., 2016).

A (WKRY) gene that confers resistance or tolerance to
multiple stresses would be highly useful for breeding. However,
WRKY genes can also have opposite effects on abiotic and biotic
stress tolerance since complex interactions among signaling
networks can lead to both synergistic and antagonistic effects on
regulation of plant responses to different stresses (Phukan et al.,
2016; Bai et al., 2018). For example, OsWRKY45 that positively
mediates broad-spectrum disease resistance while inhibiting
adaptation to abiotic stresses (Qiu and Yu, 2009; Tao et al., 2009,
2011), and OsWRKY75 that increases susceptibility to rice blast
fungus while improving tolerance to cold stress (Yokotani et al.,
2013). Similarly, other transcription factors have also been shown
to play an antagonistic role in modulating responses to abiotic
and biotic stresses, such as tomato stress-responsive factor TSRF1
(Zhang et al., 2007), Arabidopsis DEAR1 (DREB (dehydration-
responsive element binding protein 1) and EAR (ethylene
response factor-associated amphiphilic repression) motif protein
1) (Tsutsui et al., 2009). The regulation of plant responses to
multiple stresses relies on tightly regulated and highly dynamic
regulatory networks where WRKYs can function as activators or
repressors (Eulgem and Somssich, 2007; Bakshi and Oelmuller,
2014; Phukan et al., 2016). Therefore, it is necessary that the
roles of WRKYs in a plant’s tolerance to biotic and abiotic
stresses should be studied under individual stresses as well as
combination(s) of the studied stress factors.

It is important to note that some WRKYs were shown to
function in a cluster (Cheng et al., 2015; Phukan et al., 2016),
such as the AtWRKY18-40-60 cluster (Yan et al., 2013). These
three WRKYs form both homomeric and heteromeric complexes
to modulate downstream target genes and cross-regulate each
other, leading to a variety of responses to stresses and during
development. It can be difficult to make use of such WRKY-
clusters for crop improvement since multiple responses can
lead to unwanted traits along with beneficial effects (Phukan
et al., 2016). In tomato, five SlWRKY genes are close homologs
of these three AtWRKY genes in Group II-a and shown to
be responsive to both abiotic and biotic stresses (Figure 1).
Further studies are needed to verify whether they also function
in clusters and to identify other SlWRKY clusters. In this review,

we tried to infer functions of unstudied SlWRKY genes via
their homologs in other plant species. However, it should be
stressed that slight changes in the DNA-binding domain may
have an important effect on the binding specificity, and sequence
homologs may be highly similar yet have different functions
(Tao et al., 2009, 2011; Du et al., 2014). For example, the
close tomato homologs SlWKRY3 and SlWRKY4 are predicted
to interact with the W-box DNA through a different motif,
RKYGQK, and WRKYGQK, respectively (Lai et al., 2008;
Aamir et al., 2017). There is evidence that motifs outside the
WRKY domain may provide binding specificity to WRKYs
(Phukan et al., 2016). Also, WRKYs have been shown to bind
non-W-box elements, including the sugar-responsive element
by HvWRKY46, Calmodulin (CaM)-binding domain and the
VQ proteins (Phukan et al., 2016). Identification of motifs
associated with functions of tomato WRKYs will contribute to
the understanding of their regulatory networks under combined
stresses.
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FIGURE S1 | The phylogenetic tree of tomato WRKYs and their homologs in
Arabidopsis, rice, tobacco, wheat, barley, and grape. WRKYs of tomato
(SlWRKYs), Arabidopsis (AtWRKYs), rice (OsWRKYs), tobacco (NtWRKY), wheat
(TaWRKY), barley (HvWRKY), cotton (GhWRKY), and grape (VqWKRY) are colored
in black, blue, red, green, fuchsia, purple, teal, and olive, respectively. The
evolutionary history was inferred by using the Maximum Likelihood method based
on the JTT matrix-based model (Jones et al., 1992) and 500 bootstrap
(Felsenstein, 1985). The percentages of bootstrap value higher than 50% are
indicated on the nodes.

TABLE S1 | WRKY transcription factors discovered in different plant species.

TABLE S2 | The involvements of tomato SlWRKY genes and their homologs in
plant responses to biotic and abiotic stresses.
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