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MISSING PROTEINS IN PLANT PROTEOMIC ANALYSIS

Recently, technical advances, especially in liquid chromatography (LC) and mass spectrometry
(MS), have improved the sensitivity, coverage, reliability, and throughput of proteome analysis
(Boersema et al., 2015). Novel proteomics methods, such as targeted proteomics (Marx, 2013),
degradomics (Stoehr et al, 2013), structural proteomics (Walzthoeni et al., 2013), chemical
proteomics (Rudolf et al., 2013), and microproteomics (Kasuga et al, 2017), are becoming
essential tools for in-depth analyses of biological systems and phenomena, such as plant growth,
development, and responses to stress factors.

The numbers of plant proteins detected using MS-based proteomics remains much lower than
expected. For example, the improved maize reference genome contains 39,324 protein-coding
genes, with an average of 3.3 transcripts per gene (Jiao et al., 2017), each of which may produce
at least several different proteins. Moreover, additional proteins may be synthesized by proteolysis
of other existing proteins. To date only 947 reviewed and 169,813 unreviewed maize protein
entries have been collected in the UniProtKB (http://www.uniprot.org/uniprot/?query=organism:
“maize”) (retrieved on Feb 6, 2018). Similarly, analysis of the UniProtKB entries for maize
organelle proteins reveals few reviewed proteins compared with a large number of unreviewed
entries (Supplementary Table 1). An important reason for this phenomenon is that maize
proteomic data has not be curated and collected as the annotation of unreviewed protein entries.
Definitely, numerous “missing (hidden) proteins” that are predicted at the transcript level remain
unidentified at the protein level in plants.

While many factors contribute to missing proteins, one major cause is using inefficient protein
extraction methods, especially for hydrophobic membrane proteins and low-abundant proteins
(LAPs) (Thelen and Peck, 2007; Libault et al., 2017). Sample quality is critical for the coverage,
reliability, and throughput of plant proteomic analysis, although advanced detection approaches
(especially LC-MS/MS) can greatly enhance the sensitivity and reliability of protein identification.
Here, in view of the current approaches and trends in plant proteomics, we highlight the
importance of using multiple protein extraction methods to obtain a more complete picture of
plant proteome. Moreover, to promote the identification of more “missing proteins,” we discuss the
key aspects of protein extraction methods at the tissue, single-cell, and organelle levels.

EXTRACTION OF TOTAL PROTEINS FOR COMPARATIVE
PROTEOMIC ANALYSIS

Comparative proteomic analysis is mostly conducted using total proteins extracted from tissues,
organs, or whole plants. Such approaches are effective to understand plant activities at the
corresponding level, but suffer from a “dilution” effect that masks the unique biological properties
of individual cells and cell-types (Libault et al., 2017).
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A major challenge in plant proteomics is the effective
and comprehensive extraction of proteins from plant tissues,
due to the high dynamic range of plant proteins and the
high levels of interfering substances (e.g., phenolics, lipids,
organic acids, carbohydrates, terpenes, and pigments) (Wang
et al, 2008). Therefore, for total proteins extraction from
plant tissues, it is important to consider each of the following
steps.

First, the extraction scale should be decided at an early stage.
Plant tissues can be easily homogenized with quartz sand in the
extraction buffer or pulverized with liquid N; in a mortar. A small
amount of plant materials (0.1-1.0 g fresh weight, depending on
tissue type) is usually sufficient for proteomic analysis (Wu et al.,
2014a).

Second, removal of interfering substances is necessary
for preparing high-quality protein samples. To this purpose,
two approaches are currently used: based on acetone/TCA
precipitation and based on phenol extraction (Wang et al., 2008).
Many pioneering works have contributed to the development,
evaluation, and optimization of these approaches (Santoni
et al., 2000; Giavalisco et al, 2003; Wang et al., 2003;
Friso et al., 2004; Rose et al., 2004; Carpentier et al., 2005;
Isaacson et al., 2006). Acetone/TCA precipitation method works
well for almost plant tissues (Wang et al., 2008). Following
acetone/TCA precipitation, organic-soluble substances are rinsed
away, leaving proteins and other insoluble substances in the
precipitate. Proteins are extracted using a buffer suitable
for 2DE, iTRAQ, or LC-based separation. Phenol extraction
method works by selectively extracting proteins from aqueous
extracts during phase separation (Wu et al, 2014a). The
profiles of the extracted proteome are highly dependent on
the extraction buffers used (Chatterjee et al., 2012; Petriccione
et al, 2013; Wu et al,, 2014b). In addition, when using this
approach one must also consider temperature (Wu et al,
2014b), pH (Sari et al, 2015), and extraction times (Feiz
et al, 2006). Changing any of these parameters will affect
the profile of the extracted proteome (e.g., Sari et al., 2014,
2015; Zhang et al, 2014). The success of the acetone/TCA
precipitation and the phenol extraction approaches relies on
the plant tissue being completely pulverized (Wu et al,
2014a).

Third, complex protein samples can be pre-fractionated
to deplete high-abundance proteins, to enhance the detection
of “missing” low-abundant proteins (LAPs). For example, the
depletion of RuBisCO in leaves (Kim et al., 2013; Gupta and Kim,
2015) and of storage proteins in seeds (Xiong et al., 2014) and
tubers (Wu et al., 2012; Kim et al.,, 2015; Lee et al., 2015; Gupta
et al,, 2016) significantly improved the separation and detection
of LAPs.

Finally, each extraction method produces distinct protein
complements. Therefore, integrating the application of different
extraction methods will improve proteome coverage. Indeed,
the importance of using multiple protein extraction methods to
obtain comprehensive proteome coverage has been highlighted
by several researchers (e.g., Karthikaichamy et al., 2017; Takéc
etal., 2017).

PROTEIN EXTRACTION FOR ORGANELLE
PROTEOMICS

The low abundance of proteins in specific subcellular locations
can result in their missing from tissue, organ, or whole plant
protein samples (Libault et al., 2017). Therefore, the isolation of
pure organelles allows for the analysis of LAPs that are specifically
accumulated within them.

Using isolated organelles for protein extraction significantly
reduces the complexity of the extracted proteome. This approach
also enriches the LAP fraction in protein extracts, allowing for
their improved separation and detection. Extensive proteomic
studies of purified organelles, such as chloroplasts (Hall et al.,
2011; Piro et al, 2015), nuclei (Sikorskaite et al., 2013),
mitochondria (Lang et al., 2011; Salvato et al., 2014), and starch
granules (Xing et al., 2016), have characterized a number of
organelle proteins, and defined their localization information.

Previous cell biology and biochemistry studies have
developed protocols for the isolation and purification of
organelles including via homogenate filtration, differential
centrifugation, and density gradients centrifugation (Table 1).
The purity and integrity of extracted organelles can be tested
by enzyme activity assay, light and electron microscopy,
immunoblotting, and MS/MS identification. In contrast to the
pulverization of plant tissue for total protein extraction, the
extraction of organelle proteins requires gentle grinding
to obtain pure and/or intact organelles before protein
extraction.

Some organelles are relatively easy to isolate from others,
especially those with storage functions (e.g., lipid-bodies
and starch granules) and large organelles with membranous
structures (e.g., chloroplasts and mitochondria). Novel methods
are constantly being developed to isolate difficult organelles
for subproteomic analysis, e.g., a combination of density
centrifugation and surface charge separation techniques to isolate
pure Golgi membranes (Parsons et al., 2012), Percoll gradient
centrifugation followed by sucrose gradient centrifugation to
isolate peroxisomes (Reumann and Singhal, 2014), and a simple
density gradient (ultra-)centrifugation protocol to isolate intact
vacuoles (Ohnishi et al., 2018) from Arabidopsis suspension
cultured cells.

Once organelles are isolated, standard protein extraction
approaches can be used. The composition of protein extraction
buffers can be altered to suit the properties of target proteins
(e.g., solubility, hydrophobicity or hydrophilicity, pI, and the
degree associated with membranes). Importantly, for organelles
with membrane structures, the membranes need to be broken
by grinding, sonication, enzyme digestion, or detergent lysis to
release soluble proteins (Lang et al., 2011; Piro et al,, 2015).

For the organelles with complex structures, the separate
extraction of proteins from each suborganelle fraction enables
producing more detailed subproteome profiles. For example,
subproteomic analysis involving the isolation of Arabidopsis
chloroplasts as stroma, thylakoid membrane, and lumen fractions
(Hall et al., 2011) and the separate isolation of inner and
outer mitochondrial membrane fractions (Duncan et al., 2011;
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These studies were selected because the isolation protocols allowed for high-purity of specific organelles and the large number of organelle proteins identified by subproteomics analysis.

Schikowsky et al., 2018) have also provided information about
the specific localization of proteins within the organelles.

Finally, —compared with proteins in intracellular
compartments, a major technical challenge in extracting
cell wall proteins (CWPs) is the preparation of a pure cell
wall sample. This is particularly challenging because substantial
amounts of intracellular proteins inevitably associate with the cell
wall during the process of tissue or cell homogenization (Rose
and Lee, 2010). Cell wall isolation methods have been optimized
(Feiz et al., 2006; Zhang et al., 2011; Printz et al., 2015) and, in
general, the cell wall proteome consists of sensu stricto CWPs,
apoplast proteins, secreted proteins, and xylem sap proteins
(Wu et al., 2018). Most loosely bound cell wall proteins can be
dissolved using a low ionic strength solution, while strongly
bound cell wall proteins are resistant to salt-extraction (Jamet
et al., 2008). Besides, the extraction and proteomic analysis of
apoplast proteins, secreted proteins and xylem sap proteins
(Soares et al,, 2007; Kim et al, 2014) have made important
achievements.

PROTEIN EXTRACTION FOR SINGLE
CELL-LEVEL PROTEOMICS

Another reason that proteins can be missing from plant
proteomic analysis is that some LAPs (e.g., transcription and
regulatory factors) accumulate in specialized cell or tissue types
and at specific development stages (Dubos et al., 2010). In entire
organ, or whole plant analyses, the presence of these proteins
is often masked by that of high-abundance proteins. Therefore,
single cell level proteomics or microproteomics will minimize the
cellular complexity of the analyzed sample (Libault et al., 2017).
However, sample preparation and protein extraction techniques
for microproteomic analysis of plant tissues remain challenging.

Microproteomic techniques rely on accurate and precise
sample collection, preparation, excision, and protein extraction
(Feist and Hummon, 2015). Laser capture microdissection
(LCM) is a promising method for cell level sampling. LCM
allows cell types of interest to be isolated of from a fixed sample
under direct microscopic visualization with the assistance of a
laser beam. LCM has been successfully used in the proteomic
analysis of Arabidopsis (Schad et al., 2005), maize (Dembinsky
et al., 2007), barley (Kaspar et al, 2010), and tomato (Zhu
et al,, 2016). The best example of the application of LCM,
combined with pressure catapulting, was to isolate the nucellar
projection and endosperm transfer cells of an developing barley
grain at 8 days post-flowering. The protein extracts were
analyzed by nanoUPLC separation combined with ESI-Q-TOF
MS, which successfully identified 137 and 44 proteins in nucellar
projection and endosperm transfer cells, respectively (Kaspar
et al.,, 2010). In addition, a method of mechanical separation
of leaf epidermal, vascular, and mesophyll tissues has been
developed in Arabidopsis (Falter et al., 2015), tomato, and cassava
(Svozil et al.,, 2016), and the separated tissue samples can be used
for quantitative LCM-assisted microproteomic analysis.

It takes a lot of time and effort to obtain sufficient numbers of
cells from limited samples using LCM. Therefore, it is necessary
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to develop micro-scale protein extraction methods, compatible
with decreased sample size (100 pg and less), to use in parallel
with this approach to generate high-quality MS data for “missing”
LAPs.

CONCLUDING REMARKS

Many “missing” proteins have not been proven at the protein
level. Therefore, we have emphasized the importance of
optimization of protein extraction methods to enhance the
detection of the missing proteins in plant proteomics. Surely,
MS-based proteomics alone is not sufficient to explore and
identify all missing proteins. Integrated multi-omics approaches
will facilitate the identification of many of the missing proteins
(Chang et al., 2014).

It is necessary to note that the aim of the Opinion
article is not to review previous studies, but to highlight
the importance of developing novel approaches to establish
plant proteomes. Special attention should always be paid
to developing quantitative, reproducible, and comparable
methodologies for plant proteomics. Particularly, suitable protein
extraction methods integrating with isolation techniques for
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