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Chinese chestnut is a wildly distributed nut species with importantly economic value.
The nut size and ripening period are mainly desired breeding objectives in Chinese
chestnut. However, high-density linkage maps and quantitative trait loci (QTL) analyses
related to nut traits are less than satisfactory, which hinders progress in the breeding of
Chinese chestnut. Here, a single nucleotide polymorphism (SNP)-based high-density
linkage map was constructed through genotyping-by-sequencing (GBS) of an F1

cross between the two widely grown Chinese chestnut cultivars ‘Yanshanzaofeng’ and
‘Guanting No. 10’. The genetic linkage map consists of 2,620 SNP markers with a
total length of 1078.06 cM in 12 linkage groups (LGs) and an average marker distance
of 0.41 cM. 17 QTLs were identified for five nut traits, specifically single-nut weight
(SNW), nut width (NW), nut thickness (NT), nut height (NH), and ripening period (RP),
based on phenotypic data from two successive years. Of the 17 QTLs, two major
QTLs, i.e., qNT-I-1 and qRP-B-1 related to the NT and RP traits, respectively, were
exploited. Moreover, the data revealed one pleiotropic QTL at 23.97 cM on LG I, which
might simultaneously control SNW, NT, and NW. This study provides useful benchmark
information concerning high-density genetic mapping and QTLs identification related to
nut size and ripening period, and will accelerate genetic improvements for nuts in the
marker-assisted selection (MAS) breeding of Chinese chestnut.

Keywords: Castanea mollissima, genetic map, genotyping by sequencing, single nucleotide polymorphism, QTL,
nut traits
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INTRODUCTION

Castanea is one of the most economically and ecologically
important genera in the Fagaceae family. Three Castanea species,
i.e., the Chinese chestnut (C. mollissima), Japanese chestnut
(C. crenata) and European chestnut (C. sativa), are widely
cultivated for commercial nut production (Huang, 1998). Due
to the high nutritional value of edible nuts, the chestnut,
which is generally considered a woody grain, plays a significant
role in human famine history. The chestnut also plays an
important ecological role in afforestation and ecosystem services
(Martin et al., 2012; Zou et al., 2014). There are diverse
germplasm resources for Chinese chestnut, and this plant
has a long history of cultivation. The nut yield of Chinese
chestnut ranks first worldwide, with an annual production
of 1,650,000 tons1, accounting for 82% of the total chestnut
production (Barreira et al., 2008; Liang et al., 2009; Zhang et al.,
2014).

Due to its excellent nut quality, good adaptability to adverse
environments, high resistance to main diseases and easily peeled
pellicle (Bounous and Marinoni, 2005; Nishio et al., 2013),
Chinese chestnut has been broadly used as a breeding parent
to improve nut quality and disease resistance (Kubisiak et al.,
1997, 2013; Sisco et al., 2005). However, conventional breeding
and the juvenile period (3–5 years) impede progress in chestnut
breeding compared with annual plants. Marker-assisted selection
(MAS) approaches can efficiently solve these problems. Genetic
maps and quantitative trait loci (QTLs) have been developed
as essential tools to assist MAS programs in many plant
species (Wheeler and Sederoff, 2009; Wu J. et al., 2014; Chen
et al., 2015; Ren et al., 2016; Jiang et al., 2017; Zhao et al.,
2017).

Several different types of molecular markers have been
used to construct genetic maps, such as isozymes, restriction
fragment length polymorphisms (RFLPs), randomly amplified
polymorphic DNA (RAPD), amplified fragment length
polymorphisms (AFLPs), simple sequence repeats (SSRs)
and single nucleotide polymorphisms (SNPs) (Kubisiak et al.,
1997, 2013; Casasoli et al., 2001; Sisco et al., 2005). Among
them, SNPs have been increasingly used for the construction
of high-density genetic maps for many crops (Chagné et al.,
2007; Barba et al., 2014; Talukder et al., 2014; Wu G.A. et al.,
2014; Bielenberg et al., 2015; Ipek et al., 2016; Su et al., 2017)
due to their high abundance and relatively even distribution
across a genome. Moreover, genotyping-by-sequencing (GBS)
approaches, which utilize NGS technologies, can generate a high
number of SNP markers, and the use of these SNP markers could
allow the construction of high-density genetic maps (Ward et al.,
2013; Chen et al., 2014; Gardner et al., 2014; Guajardo et al.,
2015; Soto et al., 2015).

Over the last 20 years, several genetic maps of the Castanea
genus had been constructed, and several QTLs were identified
using these genetic maps. The first Castanea genetic map
was constructed using an F2 population of the interspecific
cross between the American and Chinese chestnut species and

1http://faostat3.fao.org

consisted of 196 RAPD and RFLP markers covering 530.10 cM
(Kubisiak et al., 1997). Using this map, Kubisiak et al. (1997)
proposed a three-QTL model that explained approximately 70%
of the phenotypic variance in resistance against blight. Casasoli
et al. (2004) constructed a genetic map containing 217 markers
(142 RAPDs, three isozymes, 30 ISSRs, and 42 SSRs) with an
average distance of 8.7 cM using an F1 population of 152
individuals and identified QTLs related to bud flush, growth,
and carbon isotope discrimination. Several genetic maps were
subsequently developed, but these maps did not further extend
the densities (Casasoli et al., 2001; Sisco et al., 2005; Guo et al.,
2008; Hu, 2008). The most recently constructed genetic map for
the Castanea genus contains 329 SSR and 1,064 SNP markers
derived from expressed sequence tags (ESTs) integrated with a
physical map (Fang et al., 2013; Kubisiak et al., 2013) and allowed
identification of three QTL regions involved in the resistance to
chestnut blight. The density of this genetic map was increased,
but the number of markers was still lower than that of other
crops (Li et al., 2014; Zhao et al., 2014; Ipek et al., 2016; Zhang
et al., 2016). Because the fruit/nut has important economic value
and the fruit/nut quality is considered the primary selection
criteria by breeders of fruit crops, several QTLs correlated with
important fruit quality traits, such as the fruit shape, sugar
content, acid content, maturity, and fruit skin composition, have
been studied for various fruit crops, including peach (Martínez-
García et al., 2013), apple (Kenis et al., 2008; Dunemann et al.,
2009; Chagne et al., 2012), strawberry (Zorrilla-Fontanesi et al.,
2011), sweet cherry (Zhang et al., 2010), apricot (Campoy et al.,
2011; Socquet-Juglard et al., 2013), and papaya (Blas et al.,
2012), hawthorn (Zhao et al., 2017). However, the mapping
of QTLs related chestnut nut traits has not been reported.
High-density genetic maps and QTLs identification are urgently
required to achieve excellent nut traits of chestnut through MAS
breeding.

At present, one of the major problems in chestnut production
in China is the high proportion of late-ripening cultivars, which
has resulted in a concentrated market supply of fresh nuts and
a decline in prices. Early ripening cultivars not only satisfy
consumer demands but also show a great price superiority; as a
result, these cultivars meet the requirements of chestnut growers
and compensate for the insufficiency of the early chestnut supply.
One of the main purpose of the breeding of Chinese chestnut is to
supply the early chestnut market with cultivars that mature early
and present good nut quality. Therefore, in this study, we selected
a well-established F1 population derived from two widely grown
Chinese chestnut cultivars, i.e., ‘Yanshanzaofeng’ (ripens early at
the beginning of September) and ‘Guanting No. 10’ (ripens late
at the end of September), to construct a high-density genetic
linkage map based on SNP markers using GBS. Moreover, by
combining this high-density genetic map with phenotypic data of
the cross parents and F1 progenies collected over two successive
years, the QTLs for nut traits, including the single-nut weight
(SNW), nut width (NW), nut thickness (NT), nut height (NH)
and ripening period (RP), were characterized. The high-density
genetic map and identified QTLs add invaluable knowledge for
genetic and MAS research, which would facilitate the breeding of
new varieties and germplasms with good agronomic nut traits.
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TABLE 1 | Statistics of the identified SNP marker types.

Type of variation Number Proportion of type %

A/G 17,591 35.86

C/T 17,351 35.37

A/T 4,356 8.88

C/G 2,421 4.94

A/C 3,630 7.40

G/T 3,700 7.54

Total 49,049 100.00

MATERIALS AND METHODS

Mapping Population and DNA Extraction
The F1 mapping population consisted of 259 progenies generated
by crossing ‘Yanshanzaofeng’ and ‘Guanting No. 10’. The F1
progeny seeds were germinated and grown in the spring of
2012, and the seedlings were then transplanted to the Chestnut
Germplasm Resources Station at the Changli Institute of
Pomology, Hebei Academy of Agriculture and Forestry Sciences.

Young leaves of the 259 F1 individuals and the parents
were harvested, immediately frozen in liquid nitrogen and
maintained at −80◦C. The genomic DNA was extracted using
a modified cetyltrimethylammonium bromide (CTAB) method
(Cheng et al., 2005).

Library Preparation and Illumina
Sequencing
First, we performed a GBS pre-design experiment and evaluated
the enzymes and sizes of the restriction fragments using the
following three criteria: (i) the number of tags must be suitable

for the specific needs of the research project; (ii) the enzymatic
tags must be evenly distributed throughout the genome; and (iii)
repeated tags should be avoided. These considerations improved
the efficiency of the GBS. To maintain uniformity of the sequence
depth in the different fragments, a strict length range was selected
(∼50 bp).

Second, a GBS library was constructed using a pre-designed
scheme. For the F1 population, the genomic DNA was incubated
at 37◦C with MseI (New England Biolabs, NEB, United States), T4
DNA ligase (NEB, United States), ATP (NEB, United States), and
an MseI Y-adapter N-containing barcode. The restriction-ligation
reactions were heat-inactivated at 65◦C and then digested with
the HaeIII (GGCC) restriction enzyme at 37◦C. The restriction-
ligation samples were purified using Agencourt AMPure XP
(Beckman, United States). Polymerase chain reaction (PCR)
was conducted using the purified samples, the Phusion Master
Mix (NEB, United States) universal and index primers, and
i5 and i7 sequences. The PCR products were purified using
Agencourt AMPure XP, pooled, and electrophoresed on a 2%
agarose gel. A Gel Extraction Kit (Qiagen, Germany) was
used to isolate 375-to-400-bp fragments (with indexes and
adaptors). These fragments were purified using Agencourt
AMPure XP, and the resulting products were diluted for
sequencing.

Then, pair-end sequencing of the selected tags was performed
using an Illumina high-throughput sequencing platform at the
Novogene Bioinformatics Technology Company, China, and
SNP genotyping and evaluation were then performed.

Quality Assessment
The sequences of each sample were sorted according to their
barcodes. To ensure that the reads used in the subsequent

FIGURE 1 | Integrated LGs in the Chinese chestnut using the ‘Yanshanzaofeng’ × ‘Guanting No. 10’ cross.
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TABLE 2 | Summary of the mapping results in the Chinese chestnut genetic maps.

Number of markers Genetic size (cM)

Female Male Integrated map Female Male Integrated map

LG A 223 234 434 80.36 112.14 133.17

LG B 124 53 149 47.99 37.14 65.13

LG C 229 142 290 73.98 44.06 81.22

LG D 144 141 282 52.40 63.01 128.46

LG E 166 89 199 75.31 40.63 74.75

LG F 159 73 167 69.14 33.22 69.94

LG G 127 61 139 44.72 52.83 53.90

LG H 122 46 131 55.63 62.53 86.72

LG I 123 120 199 48.53 79.56 88.16

LG J 128 74 149 44.80 41.81 59.04

LG K 190 137 305 73.88 111.08 115.78

LG L 34 148 176 83.78 90.85 121.79

Total 1769 1318 2620 750.52 768.86 1078.06

FIGURE 2 | The marker interval positioning in each LG. The x-axis indicates the position in each LG in 1 cM intervals, and the y-axis indicates the number of markers
within 1 cM.

analyses were reliable without an artificial bias (low-quality
paired reads, which mainly resulted from base-calling
duplicates and adapter contamination), the raw data (raw
reads in fastq format) were processed using a series of
in-house C scripts for quality control (QC). During the
QC procedures, the following reads were removed: (i)
reads with ≥10% unidentified nucleotides (N); (ii) reads
with >50% bases with a phred quality < 5; (iii) reads
with >10-nt alignment to the adapter, allowing ≤10%

mismatches; and (iv) reads that contain the HaeIII enzyme
sequence.

SNP Discovery and Genotyping
Burrows-Wheeler Aligner (BWA) (Li and Durbin, 2009) software
was used to align the clean reads of each sample against the
Chinese chestnut genome2. The alignment files were converted

2http://www.hardwoodgenomics.org/chinese-chestnut-genome
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to bam files using SAMtools software (Li et al., 2009). If multiple
read pairs had identical external coordinates, only the pair with
the highest mapping quality was retained. Variant calling was
performed for all samples using GATK software (McKenna et al.,
2010). The SNPs were then filtered using a Perl script, and
ANNOVAR (Wang et al., 2010) was used to annotate the SNPs
based on the GFF3 files of the reference genome.

All SNP markers between the parents were classified into
eight segregation patterns (ab × cd, ef × eg, hk × hk, lm × ll,
nn × np, aa × bb, ab × cc, and cc × ab). For the F1
population, the segregation patterns <hk × hk>, <lm × ll>
and <nn × np> were selected for construction of the genetic
map. The polymorphic heterozygous SNP markers in only one
of the parents were scored as <lm × ll> or <nn × np>, and the
heterozygous markers in both parents were scored as <hk × hk>.
The ratios of the marker segregation were calculated using a
chi-square test, and only the markers that satisfied the expected
Mendelian segregation ratio (p > 0.001) were included in the
mapping.

Genetic Map Construction
Markers containing segregation distortions (p < 0.001), missing
more than 15% of the data or containing abnormal bases were

TABLE 3 | Distribution of the SNP markers in the integrated genetic linkage
groups.

Linkage
Group

Average distance
between two
makers (cM)

Number of
intervals—Da (cM)

D < 1 1<5 D<5 5<D<10 D>10

LG A 0.31 407 24 431 2 0

LG B 0.44 138 9 147 1 0

LG C 0.28 276 12 288 1 0

LG D 0.46 254 27 281 0 0

LG E 0.38 186 11 197 1 0

LG F 0.42 149 17 166 0 0

LG G 0.39 121 17 138 0 0

LG H 0.66 109 18 127 3 0

LG I 0.44 182 14 196 1 1

LG J 0.40 133 14 147 1 0

LG K 0.38 275 29 304 0 0

LG L 0.69 147 23 170 5 0

Total 0.41 2377 215 2592 15 1

aD, distance between adjacent markers.

excluded from the map construction. The ‘two-way pseudo-
test cross’ approach (Grattapaglia and Sederoff, 1994) was used
to construct the genetic linkage map. For the linkage analysis,
JoinMap R© 4.0 software was used to sort the markers in each
linkage group (LG) (van Ooijen, 2006). A logarithm of odds
(LOD) threshold of 2.0–25 was used to determine the LGs.
Maternal, paternal and integrated maps were constructed using
regression-based parameters and the Kosambi mapping function
was used to calculate the genetic distance between the markers
(Kosambi, 1944).

Phenotypic Data Collection
Nuts from the F1 population and the two parents were collected
at maturity, and five phenotypic traits, namely, the RP, NW, NT,
NH, and SNW, were measured (Supplementary Figure S1). The
RP was calculated from the time at which catkin became fully
open to the 30% bur cracking per tree. The width, thickness and
height of the nuts were measured using a digital caliper, and the
SNW was recorded in grams. In total, 30 nuts collected from
each tree in 2015 and 2016 were used for the determination of
phenotypic data. The average values of each trait per individual
were used in the QTL analysis.

Statistical Analysis
The phenotypic data were analyzed using SPSS 22.0 software
(SPSS, United States) to generate descriptive statistics, including
the mean, minimum, maximum, standard deviation (SD),
coefficient of variation (CV), skewness and kurtosis. The
frequency distribution of phenotypic data were checked using
SPSS 22.0 software as well. The kurtosis and skewness were used
to estimate the frequency distribution normality (Tisne et al.,
2008), and the correlations among the SNW, NW, NT, NH, and
RP traits were analyzed using two-tailed bivariate correlation
tests.

Analysis of QTLs
Quantitative trait loci analysis of the five nut traits for the
Chinese chestnut was performed using the interval mapping (IM)
model in MapQTL 6.0 (Van Ooijen, 2009). The threshold LOD
at a significance level of P = 0.05 for each trait was calculated
based on 1,000 permutations. The QTLs with an LOD above
the threshold were deemed significant. The phenotypic variance
explained (PVE) of a single QTL was estimated based on a
maximum likelihood estimation, and those with a PVE ≥ 15%
were considered major QTLs. All of the identified QTLs were
drawn on LGs using a Perl SVG module.

TABLE 4 | Pearson correlation coefficients for different nut traits in the ‘Yanshanzaofeng’ × ‘Guanting No. 10’ F1 population.

Trait Single-nut weight (g) Nut thickness (mm) Nut width (mm) Nut height (mm) Ripening period (days)

Single-nut weight – 0.801∗∗ 0.825∗∗ 0.659∗∗ 0.018

Nut thickness – – 0.637∗∗ 0.454∗∗
−0.069

Nut width – – – 0.609∗∗ 0.023

Nut height – – – – 0.136∗

Ripening period – – – – –

∗P < 0.05, ∗∗P < 0.01.
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FIGURE 3 | Quantitative trait loci position on the LGs. SNW QTLs are shown
in blue, NW QTLs are shown in green, NT QTLs are shown in red, NH QTLs
are shown in purple, and RP QTLs are shown in pink.

RESULTS

Genotyping by Sequencing
We obtained ∼111.10 G of high-quality raw sequencing data.
After data trimming and filtering, ∼1.66 G of high-quality
data were generated for the parents, with an average of
∼830.39 M, and ∼109.37 G of high-quality data were generated
for the progenies, with an average of ∼422.27 M. The Q30

ratio was 91.76%, and the guanine-cytosine (GC) content was
36.11%. In total, 379,747,764 clean reads were obtained from
259 individuals, 2,799,642 clean reads were obtained from the
maternal parent, ‘Yanshanzaofeng,’ and 2,966,960 clean reads
were obtained from the paternal parent, ‘Guanting No. 10’.
The number of clean reads obtained from the 261 samples
ranged from 1.30 to 5.90 M, with an average of 2.95 M reads
(Supplementary Figure S2), and 95.71% of the clean reads
were matched with the Chinese chestnut genome. As shown in
Supplementary Figure S3, the 1× coverage in the F1 individuals
and the parents ranged from 4.74 to 11.6%, with an average of
7.62%, and the 4× coverage ranged from 1.56 to 5.37 %, with an
average of 3.38%.

SNP Marker Detection and Genotyping
After data filtering, 62,348 SNP loci were retained between
the parents, and of these, 49,049 were transition-type and
transversion-type SNPs. The transition-type SNPs accounted for
35.37% (17, 351) and 35.86% (17, 591) of the C/T and A/G types,
respectively, and the other four SNP types were transversions
and included A/C, G/T, A/T and C/G, ranging from 4.94% (2,
421) to 8.88% (4, 356) as shown in Table 1. Because the genetic
background of the two parents was heterozygous, three marker
segregation type codes, i.e., <lm × ll>, <nn × np> (providing
1:1 segregation ratios) and <hk × hk> (providing a segregation
ratio of 1:2:1), were used to score the heterozygous loci in the
female and male parents and both parents, respectively. After
integrity filtering and a chi-square test, 3,719 SNP markers were
retained for further analyses. Of these, 1,407 heterozygous SNPs
were found in ‘Yanshanzaofeng’ (lm × ll), 1,503 heterozygous
SNPs were found in ‘Guanting No. 10’ (nn × np), and the
remaining 809 heterozygous SNPs were found in both parents
(hk × hk). After the filtration of completeness degree and partial
separation, 3719 markers were obtained for linkage grouping.
However, in the process of linkage grouping using JoinMap R© 4.0
software, some of the markers that are not linked can not enter
into the last 12 LG, therefore, 2620 SNP markers were retained for
the construction of the genetic map after linkage determination.

Linkage Map Construction
The 2,620 SNP markers were assigned to 12 LGs (LG A–LG
L) spanning a length of 1078.06 cM, with an average distance
of 0.41 cM between adjacent markers in the integrated map
(Figure 1 and Table 2). The average distance between adjacent
markers in each LG ranged from 0.28 cM (LG C) to 0.69 cM
(LG L) (Table 3). We constructed two high-density genetic
maps from the cross of ‘Yanshanzaofeng’ and ‘Guanting No.
10’ using JoinMap R© 4.0. The male parent ‘Guanting No. 10’
consisted of 1,318 SNP markers in 12 LGs, and the length of
the ‘Guanting No. 10’ map was 768.86 cM, with an average
distance of 0.58 cM between adjacent markers. However, the
average distance between adjacent markers ranged from 0.31 cM
(LG C) to 1.36 cM (LG H). The female parent, ‘Yanshanzaofeng,’
consisted of 1,769 markers in 12 LGs with a map length of
750.52 cM, and the average interval between adjacent mapped
markers of 0.42 cM ranged from 0.32 cM (LG C) to 2.46 cM

Frontiers in Plant Science | www.frontiersin.org 6 June 2018 | Volume 9 | Article 816

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-00816 June 12, 2018 Time: 16:8 # 7

Ji et al. Chestnut Genetic Map and QTL

TABLE 5 | Quantitative trait loci analysis of Chinese chestnut nut traits in the F1 population.

Trait Year QTL LG Marker interval Position (cM) LOD PVE (%)

SNW 2015 qSNW-A-2 A nn0606-nn0098 79.12 4.57 11.1

qSNW-I-1 I hk0398-hk0073 23.97 4.07 9.9

2016 qSNW-A-1 A lm1207-nn0199 53.17 3.97 13.7

qSNW-I-1 I hk0397-hk0399 23.97 3.65 12.7

NT 2015 qNT-A-1 A nn1451-nn0016 84.35 4.06 10

qNT-I-1 I hk0398-hk0073 23.97 4.93 12

2016 qNT-I-1 I hk0397-hk0399 23.97 4.71 16

NW 2015 qNW-I-1 I hk0398-hk0073 23.97 4.45 11

qNW-I-4 I lm0912-nn0582 46.1 5 12.3

2016 qNW-A-1 A lm0137-nn1065 41.84 3.92 13.7

qNW-I-2 I lm1326-lm1382 29.05 3.77 13.2

qNW-I-3 I lm0431-lm0912 45.02 4.01 13.9

NH 2015 qNH-A-1 A lm1153-nn0099 78.96 4.68 11.4

RP 2015 qRP-I-1 I lm0505-nn1331 40.94 3.66 9.1

qRP-L-1 L nn1275-nn0162 61.53 4.73 11.6

2016 qRP-H-1 H lm0096-hk0149 53.53 4.19 14.1

qRP-K-1 K hk0376-lm0319 39.33 3.67 12.5

qRP-K-2 K lm1372-lm0211 86.64 3.67 12.5

qRP-B-1 B hk0699-lm0254 29.34 4.47 15

LG, linkage group; Position, position on LG; LOD, logarithm of odds; PVE, phenotypic variance explained by QTL.

(LG L). In all three maps, the longest LG was LG A (133.17 cM),
and the shortest was LG F (33.22 cM).

The maximum number of markers in the ‘Yanshanzaofeng’
map was 229 in LG C, the maximum number of markers in the
‘Guanting No. 10’ map was 234 in LG A, and of the maximum
number of markers in the integrated map was 305 in LG K.
The minimum number of markers found in the ‘Yanshanzaofeng’
map was 34 in LG L, the minimum number of markers in the
‘Guanting No. 10’ map was 46 in LG H, and the minimum
number of markers in the integrated map was 131 in LG H.
Most of the SNP markers were evenly distributed in the 12 LGs
(Table 3). Of the 2,608 intervals between adjacent markers in the
12 different LGs, 2,377 intervals were less than 1 cM, and 215
intervals were within 1 cM < D < 5 cM. Fifteen intervals with
a distance of 5 cM < D < 10 cM between adjacent markers were
observed in eight LGs, including LG A (2), LG B (1), LG C (1),
LG E (1), LG H (3), LG I (1), LG J (1), and LG L (5) (Figure 2 and
Table 3).

Phenotypic Analysis
The nut traits of F1 population exhibited wide segregation or
variation (Supplementary Figure S4). Values for the mean,
minimum, maximum, SD, CV, skewness and kurtosis were
calculated for the five nut phenotypic traits (Supplementary
Table S1), and all of the traits showed a normal distribution
in both years studied. Moreover, the kurtosis and skewness
of the phenotypic data for all five traits were less than 2.
These results indicated that all traits underwent quantitative
inheritance and were controlled by multiple genes (Zhang et al.,
2013). The SNW, NT, NW, and NH showed highly significant
correlations with each other (Table 4). The SNW showed a
positive significant correlation with the NH, NT and NW,
with correlation coefficients of 0.801∗∗, 0.825∗∗, and 0.659∗∗,

respectively. The RP was not correlated with the SNW, NT or
NW, but was significantly correlated (R = 0.136∗) with the NH
(Table 4).

QTLs for Nut Traits
In total, 17 QTLs for SNW, NT, NW, NH and RP were identified
based on the integrated genetic map of Chinese chestnut and were
located on LG A, LG B, LG H, LG I, LG K, and LG L (Figure 3
and Table 5). The phenotypic variance ranged from 9.1 to 16%,
and the LOD values ranged from 3.65 to 4.93%. Moreover, two
QTLs, i.e., qNT-I-1 and qRP-B-1 (PVE ≥ 15%), were considered
major QTLs. In addition, we found two clusters of QTLs located
on LG A and LG I.

Three QTLs were identified for SNW, and of these, qSNW-I-1
appeared to be located on LG I in a region centered at 23.97 cM
in the two successive years studied, with a phenotypic variance
of 9.9% in 2015 and 12.7% in 2016. The other two QTLs, i.e.,
qSNW-A-1 and qSNW-A-2, were located on LG A, were centered
at 53.17 and 79.12 cM, and explained 13.7% (2016) and 11.1%
(2015) of the phenotypic variance, respectively. We detected two
QTLs for NT on LG A and LG I. qNT-A-1, which was centered
at 84.35 cM, was only identified in 2015 and accounted for 10%
of the variation, and qNT-I-1, which was centered at 23.97 cM,
accounted for 12 and 16% of the variation in 2015 and 2016,
respectively.

Five QTLs associated with the NW were identified. Of these
QTLs, qNW-I-1 and qNW-I-4 were found on LG I and accounted
for 11 and 12.3%, respectively, of the phenotypic variance in 2015.
qNW-A-1, qNW-I-2 and qNW-I-3 were located on LG A and LG I
in the integrated map and accounted for 13.7, 13.2, and 13.9% of
the variance, respectively, in 2016. The QTL qNH-A-1 for the NH
was detected on LG A and accounted for 11.4% of the observed
phenotypic variance in 2015. No QTLs were identified for 2016.
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Six QTLs related to the RP were identified for the 2 years
and were localized in different LGs. For 2015, qRP-I-1 and qRP-
L-1 were identified on LG I and LG L at 40.94 and 61.53 cM,
respectively, and explained 9.1 and 11.6% of the phenotypic
variance, respectively. However, for 2016, qRP-H-1, qRP-K-1,
qRP-K-2, and qRP-B-1 were found on LG H, LG K and LG B,
centered at 53.53, 39.33, 86.84, and 29.34 cM and accounted for
14.1, 12.5, 12.5 and 15% of the phenotypic variance, respectively.

In addition, a single QTL associated with each of the traits
of SNW, NT and NW was identified in the same position,
specifically at 23.97 cM in LG I, which might be related to a single
locus with pleiotropic effects.

DISCUSSION

Construction of High-Density Genetic
Map
Eight genetic linkage maps have been developed to date for
Castanea (Table 6). However, these genetic maps were mainly
constructed using RAPD, RFLP and inter-SSR (ISSR) markers
and did not achieve a significant improvement in map density,
with the exception of the genetic map described by Kubisiak
et al. (2013). Kubisiak et al. (2013) first constructed a high-
density map of Chinese chestnut using 1,064 SNP markers
and 329 SSR markers derived from a database of ESTs in
Fagaceae. This map was the first genetic map for Castanea
with more than 1000 markers and a mean interval between
adjacent markers of <1.0 cM (0.70 cM). In the present study,
mapping using markedly larger numbers of markers (2,620
SNP markers mapped) was achieved with GBS sequencing.
Furthermore, the genetic linkage map constructed in this study
has the shortest average genetic interval (0.41 cM/marker) and
thus constitutes the highest-density genetic map for Castanea
plants constructed to date. In our study the length of integrated
genetic map, which spans 1,078.06 cM, was longer than that
obtained in previous studies. The number of genetic markers
(2620 markers) used in this study was far more than that used
in the construction of previous maps. The primary reasons
for the larger number of genetic markers in this study might
be the highly heterozygous genetic background of the hybrid
population and the larger population size (261), which resulted
in an increased allele complexity (Fang et al., 2013). So far,
there are several genetic maps used LG 1–12 or A-L LG
identifiers. It is necessary to make consistent each other. 129
common SNPs were found in both genetic LGs between this
study and Kubisiak et al. (2013), and each LG in both genetic
LGs has common SNP markers to consist with Kubisiak et al.
(2013) (Supplementary Table S2). Chinese chestnut was used
as the mapping parents for six of the nine Castanea genetic
maps (Table 6), which is consistent with its favorable traits,
including disease resistance, good nut quality and respectable
adaptability.

Analysis of QTLs for Fruit/Nut Traits
Quantitative trait loci for fruit traits play an important role
in breeding programs and have been reported for many crops,

such as plum (Salazar et al., 2017), pea (Ma et al., 2017), and
coffee (Moncada et al., 2016). However, a limited number of
QTLs have been identified for Castanea plants. Kubisiak et al.
(2013) identified three QTLs for resistance against blight, and
Casasoli et al. (2004) detected QTLs for agronomic traits of the
Castanea genus. In our study, 17 QTLs were identified for five
nut traits based on 2-year phenotypic data. Of these, five QTLs
aggregated on LG A, and seven QTLs clustered on LG I. The
clustering of genes with similar functions was universal (Sun
et al., 2009), as was observed for peach (Eduardo et al., 2011) and
papaya (Blas et al., 2012). Additionally, previous studies noted
that QTLs for highly correlated traits mapped to the same or
adjacent LG regions (Zhang et al., 2013; Chang et al., 2014). In
this study, the SNW was highly correlated with the NT and NW,
and qSNW-I-1 for SNW also shared genetic loci at 23.97 cM
with qNT-I-1 for NT and qNW-I-1 for NW. We speculated that
the traits related to qSNW-I-1, qNT-I-1 and qNW-I-1 might be
controlled by one QTL. This phenomenon can be explained by
the existence of a single locus with pleiotropic effects (Eduardo
et al., 2011).

Stable QTLs for different years are very valuable and practical
for MAS breeding programs and have been identified in many
species (Chang et al., 2014; Wu et al., 2015). Two stable QTLs
for fruit quality traits were identified in apple (Potts et al.,
2014). Zhang et al. (2013) identified a stable QTL for timing
of fruit maturity in pear based on a 2-year study. These stable
QTLs could be used in early selection for molecular breeding.
In our study, several QTLs for SNW, NT and NW were found
to be stable in two successive years, and of these QTLs, qNT-I-
1 was considered a major QTL. These stable and major QTLs
could be useful in MAS approaches to facilitate the genetic
improvement of Chinese chestnut. However, the authenticity of
a QTL must be tested in different environments and different
mapping populations (Paterson et al., 1991). For the RP trait,
no stable QTLs were detected in our 2-year study. Moreover,
QTLs for NH were detected in 2015 but not in 2016, primarily
due to the influence of the environment on the NH and RP
traits.

CONCLUSION

A high-density linkage map of Chinese chestnut was constructed
using SNP markers obtained through GBS sequencing. The
genetic linkage map comprised 2620 SNP markers covering
1078.06 cM, and the average distance between adjacent markers
was 0.41 cM. Based on this genetic map, 17 QTLs were identified
for five nut traits, including three QTLs for the SNW, two QTLs
for the NT, five QTLs for the NW, one QTL for the NH and six
QTLs for the RP. Moreover, two major QTLs related to the NT
and RP were identified in successive 2 years.
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FIGURE S1 | Nut parameters including width, thickness, and height.

FIGURE S2 | Distribution of read numbers in F1 individuals. The x-axis indicates
the interval of the read number, and the y-axis indicates the number of individuals.

FIGURE S3 | (A,B) Coverage of each plant in the F1 population and their parents.
The x-axis shown in (A,B) indicates the plant accession, including the two parents
and their average, the y-axis indicates the 1× coverage of the reads in (A) and 4×

coverage of the reads in (B).

FIGURE S4 | Nut phenotype of parents (‘Yanshanzaofeng’ and ‘Guanting No. 10’)
and six individuals of F1 population. Female parent, ‘Yanshanzaofeng’; male
parent, ‘Guanting No. 10’. Six individuals are YG12-82, YG9-12, YG13-24,
YG12-160, YG9-1, and YG10-80, respectively.

TABLE S1 | Data on nut traits collected from the F1 population of
‘Yanshanzaofeng’ × ‘Guanting No. 10’ in two successive years (2015 and 2016).

TABLE S2 | Related linkage groups of ‘Yanshanzaofeng’ × ‘GuantingNo. 10’, and
‘Vanuxem’ × ‘Nanking’.
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