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Genetic engineering and traditional plant breeding, which harnesses the natural genetic
variation that arises during meiosis, will have key roles to improve crop varieties and
thus deliver Food Security in the future. Meiosis, a specialized cell division producing
haploid gametes to maintain somatic diploidy following their fusion, assures genetic
variation by regulated genetic exchange through homologous recombination. However,
meiotic recombination events are restricted in their total number and their distribution
along chromosomes limiting allelic variations in breeding programs. Thus, modifying
the number and distribution of meiotic recombination events has great potential to
improve and accelerate plant breeding. In recent years much progress has been
made in understanding meiotic progression and recombination in plants. Many genes
and factors involved in these processes have been identified primarily in Arabidopsis
thaliana but also more recently in crops such as Brassica, rice, barley, maize, or wheat.
These advances put researchers in the position to translate acquired knowledge to
various crops likely improving and accelerating breeding programs. However, although
fundamental aspects of meiotic progression and recombination are conserved between
species, differences in genome size and organization (due to repetitive DNA content
and ploidy level) exist, particularly among plants, that likely account for differences in
meiotic progression and recombination patterns found between species. Thus, tools
and approaches are needed to better understand differences and similarities in meiotic
progression and recombination among plants, to study fundamental aspects of meiosis
in a variety of plants including crops and non-model species, and to transfer knowledge
into crop species. In this article, we provide an overview of tools and approaches
available to study plant meiosis, highlight new techniques, give examples of areas of
future research and review distinct aspects of meiosis in non-model species.

Keywords: meiosis, homologous recombination, crossover, plant breeding, crops, Arabidopsis thaliana

BRIEF OVERVIEW OF MEIOSIS

Meiosis is a specialized cell division taking place in most sexually reproducing eukaryotic
species. It consists of one round of DNA replication followed by two rounds of nuclear division
(Figures 1A–F). During meiosis, a large number of DNA double-strand breaks (DSBs) are
formed and repaired by the homologous recombination (HR) pathway (Osman et al., 2011)
(Figure 1G). These recombination events are important to bring homologous chromosomes in
close juxtaposition and promote crossover (CO) formation (Figures 1H,I). A CO is defined as a
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reciprocal exchange of genetic information between
chromosomes. When two polymorphic chromosomes
recombine, COs create new combinations of alleles. In
addition, COs form physical connections between homologous
chromosomes and this ensures correct alignment and segregation
of homologous chromosomes on the metaphase plate during
meiosis I. At meiosis II sister chromatid cohesion is lost and
chromatids segregate to form four haploid recombined gametes.
Following this, male and female gametes eventually fuse in the
event of fertilization and the diploid state is restored (Mercier
et al., 2015).

The meiotic recombination pathway is broadly conserved
across plant species although differences exist in the progression
of recombination events (Lambing et al., 2017). Meiotic
recombination initiates with the formation of DSBs catalyzed
by SPO11 and accessory proteins (Robert et al., 2016; Vrielynck
et al., 2016). Following DSB formation, SPO11 remains covalently
attached to the DSB ends (Neale et al., 2005). DSB ends are
then nicked and resected to generate 3′-single-stranded DNA
molecules (ssDNAs) (Neale et al., 2005). The recombinases
RAD51 and DMC1 bind to the ssDNAs and form nucleoprotein
filaments that can anneal to the sister chromatid or to a non-
sister homologous chromatid to repair the DSBs (Bishop et al.,
1992; Shinohara et al., 1992). During meiosis, a bias in DSB repair
toward homologous templates exists (Hong et al., 2013). The
majority of these inter-homolog (IH) recombination molecules

FIGURE 1 | Cytology of male meiosis in Arabidopsis thaliana. (A–F)
Chromosome spreads of Arabidopsis pollen mother cells at different stages
during meiosis: (A) leptotene, (B) pachytene, (C) metaphase I, (D) anaphase I,
(E) dyad, (F) tetrad. (G) Immunolocalization of meiotic-chromosome axis
component ASY1 (green) and the recombinase RAD51 (red) at leptotene.
(H) Immunolocalization of class I CO-marker ZMM protein MLH1 (red) at
diakinesis. (I) FISH of 45S (green) and 5S (red) rDNA probes at metaphase I
discriminates all five pairs of chromosomes forming bivalents. DNA
counterstained with DAPI (blue). Scale bar = 10 µM.

are eventually displaced by a set of anti-CO proteins and only a
subset of these recombination molecules matures in COs (Girard
et al., 2014, 2015; Seguela-Arnaud et al., 2015). The fate of
recombination molecules is thought to be designated early in
prophase I and this seems to be correlated with the accumulation
of HEI10 at DSB sites (De Muyt et al., 2014; Lambing et al.,
2015). HEI10 is an E3 ligase required for formation of class I
COs (Chelysheva et al., 2012; Wang K. et al., 2012). Additional
proteins (SHOC1, ZIP4, MSH4/5, MER3, PTD, MLH1/3) are
involved in class I CO formation and are collectively named
ZMM (Mercier et al., 2015). A second class of COs co-exist
independently of ZMM proteins. Class II COs are dependent on
structure-specific endonucleases including MUS81 (Berchowitz
et al., 2007; Higgins et al., 2008). Class I and II COs differ
in their sensitivity to CO interference with the former being
sensitive and the latter being insensitive. CO interference is a
phenomenon whereby the formation of one CO represses the
formation of additional COs in adjacent regions with the strength
of the inhibitory effect reducing as the distance increases (Zhang
et al., 2014b). The presence of two classes of COs has been
observed in Arabidopsis (Higgins et al., 2008) and rice (Zhang
P. et al., 2017) and inferred in barley (Phillips et al., 2013)
and tomato (Anderson et al., 2014). In Arabidopsis and rice,
the proportion of class I COs accounts for ∼85–90% of the
total COs.

CO distribution appears skewed toward the sub-telomeres
in tomato (Demirci et al., 2017), maize (Li et al., 2015), wheat
(Choulet et al., 2014), and barley (Phillips et al., 2013). At
a finer scale, regions of 1–2 kb with higher recombination
rates relative to the genome average have been observed in
Arabidopsis, maize and wheat (Choi and Henderson, 2015).
Several studies suggest that chromatin features could influence
recombination. Repressive epigenetic marks such as DNA
methylation and H3K9me2 are enriched over heterochromatin
which is repressed for COs in Arabidopsis (Yelina et al.,
2012; Yelina et al., 2015). In addition, open chromatin features
(H3K4me3 and H2A.Z) are found in CO hotspots (Choi
et al., 2013) and RNA-directed DNA methylation at two CO
hotspots is sufficient to repress CO formation (Yelina et al.,
2015).

Meiotic chromatin is organized in loop-base arrays along
a proteinaceous chromosome axis (Kleckner, 2006) and yeast
DSBs are formed in the chromatin loops tethered to the axis
(Panizza et al., 2011). Components of plant chromosome axes
comprise HORMA domain containing proteins (Armstrong
et al., 2002; Nonomura et al., 2006), coiled-coil proteins (Wang
et al., 2011; Ferdous et al., 2012; Lee et al., 2015) and cohesins
(Cai et al., 2003; Lam et al., 2005) and axis mutants show
defects in CO formation (Wang et al., 2011; Ferdous et al.,
2012; Lee et al., 2015). The composition of the chromosome
axis is dynamic and axis re-organization correlates with the
progression of DSB repair (Lambing et al., 2015). Genome
size and organization differ between plant species (Lambing
et al., 2017). For instance, the Arabidopsis genome consists
of 20% transposons, which are repetitive DNA elements,
while the maize genome consists of 85% transposons. These
differences in genome size and organization are associated
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with changes in chromatin states and epigenetic features
and may influence the recombination landscape (Lambing
et al., 2017). In addition, findings in Arabidopsis may not
be easily transferred to crops. For example, the anti-CO
Atfigl1 Arabidopsis mutant shows increased recombination
rates and fertility is unaffected (Girard et al., 2015), while
Osfignl1 rice is infertile (Zhang P. et al., 2017). Therefore, new
tools, techniques and approaches are needed to facilitate the
investigation of underlying mechanisms and factors responsible
for differences between model and crop meiosis, in order
to ultimately translate our knowledge into crop breeding
programs.

IMAGING APPROACHES

Super-Resolution Microscopy
The resolution of fluorescence microscopy is limited to∼200 nm
due to the diffraction limit of light, while EM can resolve
cellular structures up to ∼1 nm revealing ultrastructural meiotic
chromosome features in various plants (e.g., Albini and Jones,
1987; Albini, 1994; Anderson et al., 2014). However, fluorescence
microscopy enables identification and co-localization of
labeled cellular structures and molecules. Super-resolution
fluorescence microscopy techniques such as SIM (Structured
Illumination Microscopy), PALM (Photoactivated Localization
Microscopy) or STORM (Stochastic Optical Reconstruction
Microscopy) allow analysis of labeled cellular structures and
molecules beyond the diffraction limit of light (“subdiffraction”
imaging) in plants (Schubert, 2017). Plant cell imaging is
challenging when compared to animal tissues due to high
levels of autofluorescence and varying tissue refractive indexes
leading to light scattering and spherical aberrations (Komis
et al., 2015). Tissue-clearing techniques (Kurihara et al., 2015;
Musielak et al., 2016; Nagaki et al., 2017) and substances
which shift refraction indexes (Littlejohn et al., 2014) may
enable “subdiffraction” imaging in intact plant tissues to
study meiosis. Currently meiotic chromosome spreads enable
high-resolution imaging in various plant species giving new
insights into axis, synaptonemal complex (SC) and CO
formation as well as meiotic chromosome organization and
segregation (Colas et al., 2017; Schubert, 2017). High-resolution
microscopic approaches, including single molecule counting
and localization by PALM or STORM implemented for
non-meiotic plant cells (Schubert and Weisshart, 2015), will
likely ensure further insights into meiotic processes in the
future.

Live Cell Imaging
Most of our knowledge of plant meiotic progression is based
on reconstructions made from fixed materials (Sanchez-Moran
and Armstrong, 2014). Meiotic live cell imaging could be
an instrumental tool to follow meiotic chromosome and
recombination dynamics in planta improving our understanding
of the spatiotemporal progression of meiotic events. It could,
for instance, enable a study of the interplay between axis,
SC and HR dynamics or lead to a better understanding of

FIGURE 2 | Arabidopsis thaliana pollen mother cells expressing FP-TAGged
ASY1. (A) Squashed anther of A. thaliana expressing axis-component
ASY1-eGFP (green). (B–D) Chromosome spreads of Arabidopsis pollen
mother cells expressing ASY1-eYFP (yellow). (A–D) No antibody used for
detection of ASY1-eYFP. DNA counterstained with DAPI (blue). Scale
bar = 10 µM.

spatiotemporal asymmetric meiotic progression in cereals
resulting in CO-heterogeneity (Higgins et al., 2012). However,
reports on meiotic live cell imaging are limited. Live cell imaging
of isolated and cultured maize meiocytes (Yu et al., 1997, 1999;
Nannas et al., 2016) deciphered the dynamics and duration
of meiosis I and II chromosome segregation and revealed
mechanisms correcting off-centered metaphase spindles.
Meiocytes were also analyzed within intact anthers of maize
during prophase I (Sheehan and Pawlowski, 2009) and within
intact anthers and gynoecia of Arabidopsis thaliana (Ingouff
et al., 2017). In maize, actin- and tubulin-dependent prophase
I chromosome movements are rapid and complex including
general chromatin rotations and movements of individual
chromosome segments (Sheehan and Pawlowski, 2009). In
Arabidopsis, live imaging based on fluorescent protein (FP)-
tagged proteins revealed the dynamics of DNA methylation
before, during and after meiosis (Ingouff et al., 2017). Although
an in-depth analysis of male and female meiotic progression
was not performed, highly dynamic chromatin movements
during male meiosis were described, suggesting similar
prophase Ichromosome movements as in maize. Whether
similar prophase I chromatin movements, chromosome
segregation dynamics or spindle correction mechanisms
occur in other plant species; whether chromosome number
or genome size/organization have an impact, and how these
processes are interrelated with meiotic progression needs to be
established.

In addition to visualizing meiotic proteins based on plants
expressing FP-tagged proteins during meiosis (Figure 2), the
development of CRISPR-imaging (Dreissig et al., 2017b) may
enable simultaneous visualization of certain chromosome regions
and their dynamics. Tracing single molecule dynamics by
CRISPR-PALM in non-plant species (Cho et al., 2016; Khan et al.,
2017) as well as live cell SIM imaging and single particle PALM
tracking in living plants (Schubert, 2017; Komis et al., 2018)
were reported in non-meiotic tissues/cells. Such advanced high-
resolution live microscopic imaging applications are challenging
for the study of plant meiosis due to the depth of tissue where
meiotic cells are embedded, high levels of autofluorescence,
light scattering and spherical aberrations. To overcome these
plant-specific imaging challenges, the application of multiphoton
excitation microscopy (Sheehan and Pawlowski, 2009), two
photon excitation microscopy or light sheet fluorescence
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microscopy may enable meiotic live cell imaging, although not
at high-resolution.

PROTEOMIC APPROACHES

Meiotic Proteomes
Most plant meiotic genes were identified through mutant and
genetic suppressor screens or based on sequence conservation
with other species. An alternative approach is direct candidate
identification by “omics” approaches. To identify proteins present
during meiosis, proteomics studies were initially performed
using two-dimensional electrophoresis and subsequent “spot”
identification by mass spectrometry in various plants (e.g.,
(Kerim et al., 2003; Sánchez-Morán et al., 2005; Imin et al., 2006;
Phillips et al., 2008). Proteomes from flower buds, anthers or
isolated meiocytes from Arabidopsis (Lu et al., 2016), tobacco
(Ischebeck et al., 2014), B. oleracea (Osman et al., 2018),
tomato (Chaturvedi et al., 2013), rice (Collado-Romero et al.,
2014; Ye et al., 2015), or maize (Wang D. et al., 2012; Zhang
et al., 2014a) consist of hundreds or thousands of proteins
functionally enriched e.g., for (i) mRNA transcription, stability,
and processing, (ii) protein synthesis, translation and splicing
and (iii) ubiquitin-proteasome system (UPS) function. While
there is evidence implicating transcriptional processes (Nan
et al., 2011; Zhang et al., 2015) and UPS function (see section
“The Ubiquitin-Proteasome System”) in plant meiosis, any
direct role of spliceosome or ribosomal proteins in meiotic
recombination remains elusive. However, (alternative) splicing
is a likely regulatory mechanism during meiosis (Cavallari et al.,
2018; Walker et al., 2018).

Meiotic proteome complexity was reduced based on:
comparative proteomics combined with transcriptomics in
A. thaliana (Lu et al., 2016); ASY1 affinity proteomics in
B. oleracea (Osman et al., 2018); proteomic approaches focusing
on the identification of posttranslational protein modifications
(PTMs) in rice (Ye et al., 2015; Li et al., 2018). Surprisingly,
a comparison of available Arabidopsis flower bud proteomes
suggests that protein detection was not saturated (Lu et al.,
2016). In addition, proteomes from rice anthers and isolated
rice meiocytes identified 6831 and 1316 proteins, respectively
(Collado-Romero et al., 2014; Ye et al., 2015). However, only 10
of at least 28 known rice meiotic genes (Luo et al., 2014) were
identified, suggesting that even these extensive data sets do not
represent the whole meiotic proteome.

Posttranslational Protein Modifications
In non-plant species SC, axis and HR protein dynamics are
regulated via PTMs, such as Ubiquitination and SUMOylation
(small proteins conjugated to other proteins regulating target
stability and localization or their interaction with further
proteins) or phosphorylation, coordinately interlinking meiotic
chromosome remodeling and HR spatiotemporally during
meiosis I (Carballo et al., 2008; Fukuda et al., 2012; Ahuja et al.,
2017; Rao et al., 2017). Despite strong evidence for the essential
role of PTMs for proper axis, SC and CO formation in budding
yeast and mammals, the role of PTMs of corresponding plant

homologs are unknown. However, there is growing evidence that
in plants too, PTMs of meiotic proteins are essential for meiosis.

Phosphorylation
In non-plant species meiotic chromosome axis proteins undergo
phosphorylation critical for their function (Brar et al., 2006;
Carballo et al., 2008; Fukuda et al., 2012), e.g., budding yeast
Hop1 T318-phosphorylation promotes Hop1-dependent IH bias
(Carballo et al., 2008) and S298-phosphorylation promotes stable
interaction of Hop1 and Mek1 on chromosomes (Penedos et al.,
2015). ASY1 (Hop1) affinity proteomics in B. oleracea revealed
multiple phosphorylated residues in BoASY1 and BoASY3
(Osman et al., 2018) and OsPAIR2 (homolog of BoASY1) is
phosphorylated in rice (Ye et al., 2015). Phosphorylation of
BoASY1 at T294 and the flanking residue S300 may functionally
correspond to Hop1 T318 and the flanking residue S298
(Osman et al., 2018). In rice anthers phosphoproteomics more
than 400 of 3203 identified phosphoproteins are meiotically
expressed, including 32 known meiotic genes (Ye et al., 2015).
A screen for somatic ATM/ATR (serine/threonine protein kinases
triggering the DNA damage response) targets in Arabidopsis
identified up- and down-regulated phosphorylation of 108 and
32 candidates, respectively, including various proteins with a
role in meiotic DNA damage response (Roitinger et al., 2015).
In pollen mother cells, immunolocalization of proteins with
phosphorylated [S/T]Q residues, substrate of ATM and ATR
kinases, revealed numerous foci associated with the chromosome
axis (Figures 3A–C). Whether identified phosphorylated residues
in meiotic candidate genes in rice and Arabidopsis play a role in
meiosis is unclear.

SUMOylation
SUMOylation is a reversible PTM involved in meiotic
chromosome axes remodeling, SC formation and HR in
budding yeast and nematodes (Zhang et al., 2014c; Nottke et al.,
2017). Loss of Arabidopsis SUMO E3 ligase MMS21 results
in meiotic chromosome mis-segregation and fragmentation
(Liu et al., 2014). Eight SUMO genes (SUMO1-8) are found in
Arabidopsis, but only SUMO1/2/3/5 are expressed (Hammoudi
et al., 2016). SUMO1/2 are closely related, redundant for plant
viability and highly expressed. Immunolocalization of AtSUMO1
on meiotic chromosomes shows abundant signal on chromatin
and the chromosome axis (Figures 3D–I). In contrast, SUMO3/5
are more divergent and weakly expressed. A SUMO3 mutant
shows no obvious plant development phenotype while data
on SUMO5 is limited. However, functional data on meiosis
are lacking for all expressed SUMOs except SUMO1 which is
present on meiotic chromosomes (Figures 3D–I). Advances in
MS-based detection of SUMO targets (Rytz et al., 2016) and
SUMO pathway mutant studies during meiosis should shed
further light on whether SUMOylation plays a key role in meiosis
in plants.

The Ubiquitin-Proteasome System
In various organisms the UPS is involved in SC and CO
formation (Ahuja et al., 2017; Rao et al., 2017). In rice and
Arabidopsis, a role for the UPS in meiosis was demonstrated
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FIGURE 3 | Immunodetection of PTMs on male meiotic A. thaliana
chromosomes. Immunostaining of ASY1 (green, dilution 1/1000) and
phospho-(Ser/Thr) ATM/ATR substrate (p[S/T]Q) (red, Cell Signaling
Technology, 2851, dilution 1/2500) at leptotene (A–C), of ASY1 (red, dilution
1/1000) and SUMO1 (green, abcam, ab5316, dilution 1/1000) at leptotene
(D–F), and of ZYP1 (red, 1/500) and SUMO1 (green, abcam, ab5316, dilution
1/1000) at pachytene (G–I). Scale bar = 10 µM.

(Yang and McLoud, 2012; He et al., 2016; Zhang F. et al., 2017).
In rice, two F-box proteins, MOF and ZYGO1, interact with the
rice SKP1-like Protein1 (OSK1), probably as components of the
SKP1-CUL1-F-box (SCF) E3 ubiquitin ligase, and are essential
for meiosis. MOF regulates male meiotic progression and DSB
end-processing and repair (He et al., 2016), whereas ZYGO1
mediates bouquet formation promoting SC and CO formation
in both male and female meiosis (Zhang F. et al., 2017). In
Arabidopsis, SKP1-like (ASK1) protein (a subunit of the SCF E3
ubiquitin ligase complex) is critical for homologous chromosome
pairing, synapsis and nuclear organization during meiosis (Yang
and McLoud, 2012) and putative ASK1-substrates include UPS
candidates (Lu et al., 2016). Affinity proteomics of the meiotic
chromosome axis in B. oleracea also identified UPS candidates
(Osman et al., 2018).

Additional PTMs
NEDD8, another small protein, is involved in Neddylation that
is critical for SC and CO formation in A. thaliana (Jahns
et al., 2014). Mutation in AXR1, the E3-conjugating NEDD8
ligase, results in a reduced number of bivalents and synapsis
defects. The reduced number of bivalents is not due to a general
CO decrease, rather due to altered class I CO localization
and crossover interference resulting in loss of the obligatory
CO. In arx1 zmm double mutants barely any CO formation
occurs indicating that in axr1, MUS81-dependent class II CO
are probably abolished. Whether further components of the
Neddylation system are critical for meiosis and which meiotic
proteins undergo Neddylation needs to be established.

Proteomics from rice anthers identified 357 acetylated
proteins including eight rice homologs of known meiotic
genes (Li et al., 2018). A positive correlation of simultaneous
acetylation and phosphorylation of candidates functionally
enriched for ribosome assembly, protein translation, UPS, and
RNA degradation was found, further linking these processes
to plant meiosis (see section “Meiotic Transcriptome”).
Acetylation of histones was abundant, various histone
acetyltransferases and deacetylases were detected in rice
meiotic transcriptomes (Zhang et al., 2015) and GCN5-related
histone N-acetyltransferase alters meiotic recombination
in Arabidopsis (Perrella et al., 2010), suggesting a link
between histone acetylation and meiosis. Interestingly, in
rice H3K9 hyperacetylation correlates with meiotic arrest in
mel1 (Liu and Nonomura, 2016), H3K9 acetylation affects
yeast recombination hotspots (Yamada et al., 2013) and
H4K12/H4K16 acetylation impacts meiotic chromosome
segregation in human and mouse (van den Berg et al., 2011; Ma
and Schultz, 2013). All of these sites were acetylated in rice (Li
et al., 2018).

GENOMIC AND TRANSCRIPTOMIC
APPROACHES

Chromatin Immunoprecipitation of
Recombination Proteins
Chromatin immunoprecipitation sequencing (ChIP-seq) of
recombination proteins consists of precipitating DNA molecules
found in complex with proteins. DNA molecules are then
detected using Next-Generation sequencing. In plants, the first
genome-wide maps of DSBs were generated in maize using
a RAD51 antibody (He et al., 2017) and in Arabidopsis
using an epitope-tagged SPO11-1-MYC (Choi et al., 2018).
DSB hotspots were located in repetitive and gene regions in
both species. Similar to yeast (Pan et al., 2011) and mice
(Lange et al., 2016), maize and Arabidopsis DSBs are mostly
located in nucleosome depleted regions and in regions of low
DNA methylation (He et al., 2017). Genome-wide correlation
between DSBs and COs is low while a positive correlation
between DSBs located in genic regions and COs was found
(He et al., 2017), suggesting that DSB formation is not
repressed over repetitive regions but recombination outcome
differs depending on local features. Interestingly, removal of
the heterochromatin silencing marks H3K9me2 and non-CG
methylation in Arabidopsis resulted in an increase in DSBs
and COs over the pericentromeres (Underwood et al., 2018).
Understanding how DSBs are repaired and acquire a CO fate is
essential as it could facilitate the manipulation of CO rate over
genes of interest.

Mapping Crossovers
Despite the formation of a large number of meiotic
recombination events only a subset of them forms a CO.
The remaining recombination molecules are resolved as NCOs
(Mercier et al., 2015). NCOs can be accompanied by gene
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conversions (GCs) which consist of non-reciprocal exchanges
of genetic information causing a non-Mendelian 3:1 segregation
ratio of alleles (Sun et al., 2012). Several techniques exist to
measure CO rate (Table 1). For example, transgenic Arabidopsis
lines with genetically linked genes expressing FPs either in pollen
(Berchowitz and Copenhaver, 2008) or seeds (Melamed-Bessudo
et al., 2005) can be used to measure recombination, based on
the segregation ratio of the FP-coding genes, in male meiosis
and male/female meiosis, respectively. This technique was also
adapted to measure GCs and revealed that GC rate is low and
estimated at 3.5 × 10−4 per locus per meiosis and that the
majority of these GCs are associated with a CO, while only
a few GCs are associated with a NCO in Arabidopsis (Sun
et al., 2012). Unfortunately, the generation of FTLs in crops
would be laborious, expensive and time-consuming. As an
alternative approach single pollen genotyping was developed
in barley (Dreissig et al., 2015). The method consists of
isolating individual haploid pollen nuclei from F1 hybrids by
utilizing fluorescence activated cell sorting (FACS) followed by

whole-genome amplification and subsequent multi-locus KASP-
genotyping or single-cell genome sequencing (Dreissig et al.,
2015; Dreissig et al., 2017a). This technique has the advantage
of analyzing the DNA content from gametes before fertilization
so that measurement of CO rate is not affected by segregation
distortion.

Another technique called genotyping-by-sequencing consists
of low-coverage sequencing of the genomes of a large F2
population derived from F1 hybrids providing a genome-wide
crossover distribution (Si et al., 2015; Yelina et al., 2015). The
position of the COs is inferred by detecting changes in single
nucleotide polymorphisms (SNP) positions in the F2 population.
However, this technique is expensive, the resolution of CO sites is
low (>1 kb) and the number of individuals analyzed is limited
(Yelina et al., 2015). Nevertheless, this technique revealed that
CO distribution is reduced over the pericentromeric regions in
Arabidopsis (Yelina et al., 2015) and rice (Si et al., 2015) and that
changes in environmental conditions influence recombination
(Si et al., 2015).

TABLE 1 | Comparison between the different methods to detect COs.

Techniques Principle Resolution Species Reference

Chromosome spreading
combined with FISH and
immunolocalization of class
I CO marker

Detection of chiasmata based on bivalent
morphology and detection of class I COs
based on immunolocalization of
MLH1/HEI10 in Arabidopsis and MLH3 in
Barley

Chromosome scale Bivalent morphology and
FISH: variety of plant
species;
Immunolocalization of class
I CO marker: Arabidopsis,
barley, brassica, tomato,
rice, wheat

e.g., Arabidopsis
(Chelysheva et al., 2012),
barley (Higgins et al., 2012)

Fluorescent transgenic lines
(FTLs)

Measurement of CO rate in pollen (male) or
seeds (male/female) based on the
segregation ratio of genetically linked genes
expressing fluorescent proteins.
Measurement of CO interference

Mbs Arabidopsis Pollen (Berchowitz and
Copenhaver, 2008), seeds
(Melamed-Bessudo et al.,
2005)

Genotyping-by-sequencing
and molecular markers in
segregating F2 populations

Measurement of CO rate in F2 population
derived from F1 hybrid based on
polymorphisms (primarily SNPs) of parental
genomes through low-coverage genome
sequencing or selected molecular markers.
Genome-wide CO distribution and CO
interference can be measured. Molecular
markers can also be used to study CO rate
at a specific region of the chromosome.

∼1 kb depending on
SNP density

Arabidopsis, tomato, rice,
wheat, and maize

Arabidopsis (Yelina et al.,
2015), tomato (Demirci
et al., 2017), rice (Si et al.,
2015), wheat (Saintenac
et al., 2009), maize (Yao
and Schnable, 2005)

Microspore (tetrad or pollen
nuclei) genotyping or
sequencing

Measurement of CO rate in individual
microspores (tetrad or pollen nuclei; male
meiosis) from F1 hybrid based on
polymorphisms (primarily SNPs) of parental
genomes through low-coverage genome
sequencing or KASP-genotyping.
Genome-wide CO distribution and CO
interference can also be measured.
Detection of gene conversion events if
individual nuclei of a tetrad are sequenced.
Can differentiate between COs and
segregation distortion

∼1 kb depending on
SNP density
(sequencing). The
resolution of COs
detected using
KASP-genotyping
depends on the
number of markers
used

Barley (pollen: genotyping,
sequencing), maize (tetrad:
sequencing), Arabidopsis
(tetrad: sequencing)

Barley (Dreissig et al., 2015,
2017a), Maize (Li et al.,
2015), Arabidopsis (Lu
et al., 2012)

Pollen typing Measurement of CO rate in pollen nuclei
(male meiosis) from F1 hybrid at specific
loci (hot spots) based on polymorphisms
(primarily SNPs) of parental genomes
through allele-specific PCRs

<1 kb depending on
SNP density

Arabidopsis Yelina et al., 2012, 2015;
Choi et al., 2016
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Sequencing the four meiotic products derived from a meiocyte
provides additional information on meiotic recombination
because the sequence of the four chromatids that were present
in meiosis is obtained. This approach was used in Arabidopsis,
maize and budding yeast and revealed the presence of complex
template switches and GCs (Mancera et al., 2008; Lu et al., 2012;
Li et al., 2015). Finally, recombination rate can be measured at
fine-scale (<1 kb) using allele specific PCR amplification from
F1 hybrid pollen DNA. This approach confirmed the presence of
CO hotspots in Arabidopsis and facilitated the study of specific
loci (Choi et al., 2016).

Meiotic Transcriptome
Microarray and, later, primarily RNA-seq approaches were used
to dissect the male meiotic transcriptome based on flower
buds, anthers or even isolated meiocytes in various plants while
female meiotic transcriptomes were dissected in Arabidopsis and
rice (Dukowic-Schulze and Chen, 2014). All studies revealed
a complex picture of the meiotic transcriptome, i.e., a large
number of genes are expressed and hundreds to thousands of
transcripts are differentially expressed. The picture is even more
complex, as a high number of mitochondria-encoded genes
possibly constituting a source of energy for meiotic progression
(Dukowic-Schulze et al., 2014), transposable elements (Chen
et al., 2010; Yang et al., 2011), and (long) non-coding RNAs
(Dukowic-Schulze et al., 2016; Flórez-Zapata et al., 2016; Wu
et al., 2017) are differentially expressed. Changes in chromatin
and chromosome organization may cause a general chromatin
de-repression accounting for this complexity including an
elevated expression of transposable elements in meiocytes
(Chen et al., 2010; Yang et al., 2011; Dukowic-Schulze et al.,
2014).

RNA interference (RNAi) machinery components and
miRNAs are differentially expressed during meiosis (Dukowic-
Schulze et al., 2014, 2016; Flórez-Zapata et al., 2016; Wu
et al., 2017) and mutations in RNAi machinery components
result in aberrant meiotic progression, chromatin structure
or HR (Nonomura et al., 2007; Singh et al., 2011; Oliver
et al., 2014, 2017), indicating that the RNAi machinery plays
a role in meiosis. In male monocot meiotic transcriptomes
phasiRNAs are detected that originate from a few hundred
dispersed intergenic, non-repetitive regions (phasiRNA loci)
and apparently do not target any genes but instead mediate in
cis DNA methylation at their loci of origin (Dukowic-Schulze
et al., 2016). Various long non-coding RNAs were differentially
expressed in meiocytes of three sunflower genotypes differing
in meiotic recombination rates (Flórez-Zapata et al., 2016),
suggesting a link between long non-coding RNAs and meiosis.
What specific roles non-coding RNAs play needs to be
elucidated. To decipher their localization and dynamics, single
molecule FISH, so far limited to root cells, may be used to
visualize and quantify RNA molecules at the single-cell level
(Duncan et al., 2016). Down-regulation and/or over-expression
of candidate loci may help to dissect their function during
meiosis.

To identify key meiotic genes, meiotic transcriptomes from
different genetic backgrounds (e.g., mutant vs. wildtype, diploid

vs. polyploid, treated vs. untreated) were compared. Comparative
meiotic transcriptomics between synthetic tetraploid B. rapa with
aberrant meiosis and its fertile diploid progenitors identified
more than 4500 differentially expressed genes including eleven
known meiotic genes (Braynen et al., 2017). ZYP1 and
SYN1 expressions were upregulated both of which were also
implicated as potential candidates for preventing polyploidy-
related chromosome segregation challenges in Arabidopsis (Yant
et al., 2013). Maize and rice am1 meiotic transcriptomes were
compared to their respective wild-type (Nan et al., 2011;
Zhang et al., 2015). In rice HEI10, MSH5, ZIP4, and PSS1
while in maize SMC3, ATR, ATM, RMI1, and MPA1 were
identified among thousands of differentially expressed genes
as meiotic candidates, suggesting that AM1 plays a role in
modulating the expression of many critical meiotic genes in a
species-specific dependent manner. Rice ovule transcriptomes
from different wild-type genotypes and various female-sterile
lines revealed a high number of differentially expressed genes
and miRNAs (Yang et al., 2016, 2017; Zhu et al., 2017).
Even by performing comparative meiotic transcriptomics in
various plants, the complexity of meiotic transcriptomes is
astonishing. Thus, whether all identified genes in meiotic
transcriptomes are indeed essential for meiosis or whether
the large number of detected transcripts is the result of
global de-repression of chromatin during meiosis needs to be
elucidated.

Reducing sample complexity could be achieved through
single cell-type isolation. Potentially flow-cytometric isolation
of meiocytes based on plants expressing meiotic proteins
tagged with FPs (Figure 2), meiotic protein immunolabelling of
meiocytes in solution pre-sorting, or the INTACT method (Deal
and Henikoff, 2010) could allow enrichment for distinct meiocyte
fractions. However, even isolated meiocytes represent a pool of
different cells at various meiotic stages or at least sub stages and
so far no studies have reported isolation of meiotic cells or nuclei
so it is unclear whether these techniques could be applied to
meiocytes.

ENGINEERING PLANTS

Generating Mutants
Reverse genetic approaches are key to identifying genes
associated with a phenotype. They are widely used in Arabidopsis
and reverse genetic resources, including several targeted induced
local lesions in the genome (TILLING) populations, were
developed in various crops in recent years (Jacob et al., 2018).
The higher level of ploidy and higher gene copy numbers makes
polyploid plants such as wheat more tolerant to a high density of
mutations than diploid plants such as barley and it reduces the
proportion of infertile or embryonic lethal M2 plants. However,
the complexity of polyploid genomes renders the detection of the
mutation sites challenging. Development of exome capture, that
scans the exons to identify mutations disrupting coding regions,
has facilitated e.g., the identification of EMS-mediated mutation
sites in tetraploid and hexaploid TILLING wheat populations
(Krasileva et al., 2017).
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However, these mutant populations present several
limitations. First, the mutant lines have a high density of
mutations and several rounds of backcrosses with a non-
mutant line are required before full characterisation of a
phenotype. In addition, TILLING approaches have limitations
in targeting several copies of a gene of interest and crosses
of independent mutant lines are then required to combine
mutations. As an alternative, RNAi-based gene silencing and
Clustered Regularly Interspaced Short Palindromic Repeats
(CRISPR)/Cas9 system are efficient to knockdown or knockout
several genes simultaneously. These techniques are promising
mutagenesis tools for polyploid species such as wheat and have
been used to study meiotic genes e.g., in barley (Fu et al., 2007;
Barakate et al., 2014; Wang et al., 2014; Lawrenson et al., 2015).
Unfortunately, these techniques typically rely on stable plant
transformation and only a few institutions have the technology
to transform e.g., cereals with exogenous DNAs.

Several mutations in the meiotic class II CO pathway (Seguela-
Arnaud et al., 2015; Fernandes et al., 2017) and overexpression
of the E3 ligase HEI10 (Ziolkowski et al., 2017), involved in
formation of class I COs, cause an increase in genome-wide
CO rate in Arabidopsis. Both class I and II CO pathways
are attractive targets to manipulate recombination in crops
(Serra et al., 2018). However, several components of the class
II CO pathway are also involved in somatic DNA repair
and maintenance of genome stability. Thus, targeted delivery
systems to modulate activity of specific genes in reproductive
tissues are needed. Virus-induced gene silencing (VIGS) has
emerged as a rapid and inexpensive transient gene knock-
down system in plants by exploiting plant defense mechanism
based on RNAi against virus infection (Lee et al., 2012).
Barley stripe mosaic virus was successfully engineered to
manipulate meiotic genes in the wheat cultivar ‘Chinese Spring’
and other wheat genotypes (Bennypaul et al., 2012; Bhullar
et al., 2014). Additionally, VIGS can transiently knockdown
essential genes during development, especially important if
the genes to be silenced are involved in epigenetic marks
(e.g., DNA methylation) or genome stability, as a stable
knockout could otherwise lead to (embryonic) lethality or loss of
fertility.

Targeted Recombination
Conventional methods to introduce genetic diversity into plant
genomes are laborious and depend on the rate of meiotic
recombination. In wheat meiotic recombination is repressed
over heterochromatin regions preventing the introduction of
genetic diversity into genes present within these regions (Choulet
et al., 2014). Therefore, new techniques to engineer the genome
and manipulate recombination landscapes are needed. Recent
genomic data suggest that DSB rate over genes positively
correlates with CO rate in maize (He et al., 2017). It is possible
that by influencing the rate of DSBs this will in turn cause a
change in COs over targeted regions.

In budding yeast, the formation of artificial DSBs using
site specific endonucleases is sufficient to create meiotic
recombination in cold spot regions (Sarno et al., 2017).
The recombination frequency was variable between employed

endonucleases and targeted chromosomal regions suggesting
that local factors may influence the conversion rate of DSBs to
COs. In plants three classes of site-specific endonucleases, Zinc
finger nucleases, transcription activator-like effector nucleases
(TALENs) and CRISPR/Cas9 are used to edit the genome of
plant species such as Arabidopsis, rice and maize (Sun et al.,
2016). These nucleases generate DSBs in the targeted nucleotide
sequences and the DSBs are either repaired in an error-prone
repair pathway or are repaired and edited by HR using a
transgenic donor as DNA repair template (Fauser et al., 2012;
Sun et al., 2016). In meiosis, DSBs are preferentially repaired
by HR and any additional DSB formed can potentially become
a CO. The proven efficiency of these site-specific nucleases
to generate somatic DSBs suggests that they may also be
used during meiosis to manipulate CO rate. To increase the
conversion of artificial DSBs to COs, additional local factors
may need to be modified. For example, local nucleosome
occupancy can be altered with chromatin remodelers. Pro-
CO factors like HEI10 could be site-specific targeted alongside
SPO11 to promote both DSB formation and maturation of
IH recombination molecules to COs, or artificial DSBs could
be triggered in hyper-recombination plants (e.g., fancm, recq4,
and/or figl1) increasing the likelihood of a DSB maturing into
a CO. Although the potential to target recombination toward
genes in crops is significant as it can reduce the cost and time
to produce novel plant varieties, several challenges exist and the
application of these techniques to plant meiosis remains to be
demonstrated.

Making Use of Natural Variation
Arabidopsis thaliana is found in many different natural habitats
showing extensive intraspecific variation in measurable traits
that differ quantitatively between accessions (Weigel, 2012;
The 1001 Genomes Consortium, 2016). The genomes of a
total of 1,135 natural inbred A. thaliana lines from Eurasia,
North Africa and colonized North America and 3010 accessions
of Asian cultivated rice were sequenced (The 1001 Genomes
Consortium, 2016; Wang et al., 2018). Comparative genomic
analysis revealed a high degree of intraspecific genetic divergence
with the presence of SNPs, small and large insertions/deletions,
copy number variations and structural variations. Interestingly a
large number of genes contain SNPs which introduce premature
stop codons predicted to form non-functional proteins, SNPs
which alter translational start sites or donor/acceptor splicing
sites predicted to form alternative transcripts (Cao et al., 2011).
Phenotypic differences in Arabidopsis have also been associated
with variation in epigenetic marks at specific loci, so-called
epialleles (O’Malley and Ecker, 2012; Weigel and Colot, 2012;
Dubin et al., 2015). A direct relationship between the phenotypic
trait and the extent of DNA methylation was demonstrated for
most but not all epialleles suggesting that other epigenetic factors
are probably also involved (O’Malley and Ecker, 2012; Weigel and
Colot, 2012).

Intraspecific variation in meiotic recombination frequency
was found in various plants (Lawrence et al., 2017). For instance,
F1 Arabidopsis hybrids from 32 diverse accessions revealed
extensive variation in CO rate (Ziolkowski et al., 2015). Several
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confounding factors could account for these CO changes. For
example, each ecotype has distinct genetic information and the
degree of polymorphism represses CO rate (Lawrence et al.,
2017). F1 hybrid plants arising from parents with potentially
distinct epigenomes could also influence recombination locally
(Cortijo et al., 2014; Yelina et al., 2015). In addition, trans-acting
factors exerted by polymorphic loci can modulate recombination.
The first plant quantitative trait loci for recombination was
recently identified as HEI10 and over-expression of HEI10
in Arabidopsis causes a greater than twofold increase in CO
formation genome-wide (Ziolkowski et al., 2017). Additional
trans-acting factors probably exist. For example, MSH2 presents
gene copy number variations among Arabidopsis accessions and
represses recombination between divergent genomes (Emmanuel
et al., 2006; Zmienko et al., 2016).

NOVEL APPROACHES EXPLOITING
NON-MODEL PLANTS

B chromosomes (supernumerary chromosomes) found across
a variety of animals, plants and fungi do not recombine
with the standard “A” chromosomes (Jones et al., 2008).
Numerous reports in plants suggest an impact of B’s on
meiotic recombination behavior (chiasma frequency and/or
distribution) of homologous and homeologous A chromosomes
in diploid, polyploid and inter-species hybrids (Jones and
Rees, 1982; Jones et al., 2008). Genetic and genotypic A–B
interactions seem to impact chiasma number and distribution
(Ortiz et al., 1996; Kousaka and Endo, 2012). B chromosomes
in rye are transcriptionally active containing several B-enriched
transcriptionally active tandem repeats (Martis et al., 2012;
Klemme et al., 2013), transcribed transposable elements (Ma
et al., 2017), and long non-coding RNAs (Carchilan et al., 2007)
all of which are predominantly found in anthers. B-encoded
pseudogene-like fragments and genes are transcribed in a
tissue-type and genotype-specific manner and can cause down-
/upregulation of A-located counterparts (Banaei-Moghaddam
et al., 2013; Ma et al., 2017). More than 300 B-encoded
anther transcripts show similarity to proteins with functional
annotation. Among them are SHOC1, PCH2, or SCC3 known
to be involved in meiosis and further candidates relating to
DNA methylation, chromatin remodeling, the UPS or DNA
repair (Ma et al., 2017). Since the effect of B’s on the host
recombination landscape seems to have a genetic basis and is
often dosage dependent, together with B’s encoding non-coding
RNAs and various genes including known meiotic genes, it seems
likely that B’s may have a direct impact on the recombination
machinery of its host. Further studies could shed light on meiotic
recombination mechanisms in the presence of B’s. Despite the
potential of B’s as tools for manipulating meiotic recombination
in breeding processes, there has been limited utilization of this
knowledge in crop breeding (Jones et al., 2008). By standard
crossing schemes they could be easily introduced and removed
without recombining with As.

Although HR is conserved across species (Mercier et al.,
2015), differences in progression of meiosis and recombination

intermediates are found between plant species (Lambing et al.,
2017). In Arabidopsis figl1 shows an increase in meiotic
recombination without affecting fertility (Girard et al., 2015),
whereas in rice figl1 male meiotic chromosomes undergo
fragmentation causing male infertility (Zhang P. et al., 2017). In
Arabidopsis and barley reduced ZYP1 levels result in reduced CO
numbers (Higgins et al., 2005; Barakate et al., 2014), whereas in
rice ZEP1 depletion leads to an increase in CO numbers (Wang
et al., 2010). Meiotic studies in non-model plant species also
revealed differences e.g., in centromere/kinetochore regulation
during meiotic divisions leading to altered chromosome
segregation patterns (Cabral et al., 2014; Heckmann et al., 2014;
Cuacos et al., 2015; Marques and Pedrosa-Harand, 2016). In
the European larch, as in most gymnosperms, female meiosis
starts and completes during spring whereas male meiosis starts
in autumn and finishes in spring and is characterized by a
“diffuse stage” during diplotene lasting ∼5 months (Zhang et al.,
2008; Kołowerzo-Lubnau et al., 2015). This long male diplotene
stage is characterized by microsporocyte growth, synthesis
and accumulation of mRNAs and proteins, and changes in
chromatin conformation, i.e., condensation cycles of contraction
and relaxation correlating with transcriptional activity. Further
studies in the European larch or other gymnosperms may reveal
additional insights into chromatin dynamics and transcription
during meiosis and differences in induction and progression of
male vs. female meiosis. Due to slow-paced progression during
prophase I, for instance, assembly/disassembly of the bouquet
and the SC or formation and dissolution of interlocks could be
studied in detail. In numerous plant species, primarily during
male prophase I, cytomixis occurs, i.e., migration of whole nuclei,
chromosomes and/or chromatin between plant cells through
intercellular channels (cytomictic channels) resulting in the
formation of unreduced, polyploid, aneuploid or sterile pollen
(Mursalimov et al., 2015; Mursalimov and Deineko, 2017). How
cytomixis is regulated or interconnected to meiotic progression
is unclear. In translocation heterozygote plants CO formation
is restricted to distinct chromosome regions commonly leading
to long chromosome chains (Stack and Soulliere, 1984; Rauwolf
et al., 2011; Golczyk et al., 2014). In Oenothera meiosis, for
instance, a spatiotemporal genome compartmentation occurs,
i.e., chromosomes are organized in two epigenetically distinct
regions, uneven chromosome condensation occurs and COs
occur at end-segments of chromosomes roughly at the junction
between the two chromatin fractions, resulting in chromosome
chains/rings (Rauwolf et al., 2011; Golczyk et al., 2014). How this
tightly restricted CO localization is achieved or how balanced
chromosome segregation occurs is unclear. Moreover, in closely
related species such as Allium differences in recombination
patterns are found, i.e., either proximal or interstitial/distal
CO (Albini and Jones, 1987), possibly offering models to get
a better understand CO patterning control in closely related
species.

Thus, although general mechanisms of meiosis and HR are
conserved, studies in different species, including non-model
species, may widen our knowledge of plant meiosis revealing
differences and similarities and possibly enabling a deeper
understanding of underlying mechanisms.
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CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

In recent years studies, mainly in Arabidopsis but also in selected
crops and non-model species, have increased our understanding
of plant meiotic progression and recombination and many
genes and factors involved in these processes were identified.
However, much remains to be learned, even though our current
knowledge may provide a basic foundation to explore whether
meiotic recombination in crops can be manipulated to improve
and accelerate plant breeding programs. Differences in plant
genome organization (particularly repetitive DNA content and
ploidy level) accompanied by differences in chromatin and
epigenetic features likely account for differences in meiotic
progression and recombination patterns. Thus, available and new
approaches are needed to investigate the underlying mechanisms
and factors responsible for differences and similarities in meiotic
progression and recombination between model, crop and non-
model plants to ultimately translate our knowledge into crop
breeding programs.
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