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Overall growth and development of a plant is regulated by complex interactions

among various hormones, which is critical at different developmental stages. Some

of the key aspects of plant growth include seed development, germination and plant

survival under unfavorable conditions. Two of the key phytohormones regulating the

associated physiological processes are gibberellins (GA) and abscisic acid (ABA). GAs

participate in numerous developmental processes, including, seed development and

seed germination, seedling growth, root proliferation, determination of leaf size and

shape, flower induction and development, pollination and fruit expansion. Despite

the association with abiotic stresses, ABA is essential for normal plant growth and

development. It plays a critical role in different abiotic stresses by regulating various

downstream ABA-dependent stress responses. Plants maintain a balance between GA

and ABA levels constantly throughout the developmental processes at different tissues

and organs, including under unfavorable environmental or physiological conditions. Here,

we will review the literature on how GA and ABA control different stages of plant

development, with focus on seed germination and selected abiotic stresses. The possible

crosstalk of ABA and GA in specific events of the above processes will also be discussed,

with emphasis on downstream stress signaling components, kinases and transcription

factors (TFs). The importance of several key ABA and GA signaling intermediates will be

illustrated. The knowledge gained from such studies will also help to establish a solid

foundation to develop future crop improvement strategies.

Keywords: gibberellins, abscisic acid, hormone signaling, seed germination, abiotic stresses, crosstalk of

hormone signaling

INTRODUCTION

Overall growth and different developmental stages of plants are under strict regulation by several
classes of plant hormones. Hormone molecules are present at low concentrations in plants, and
they function either at the sites of synthesis or after they are transported to different tissues
(Santner et al., 2009; Li et al., 2016). In the last two decades, there has been rapid progress in the
understanding of the biosynthetic pathways, transport, signaling and mode of action of various
plant hormones. Studies related to hormone signaling have established the fact that besides acting
on their own, various plant hormones interact in a highly intricate manner (Stamm et al., 2012;
Kohli et al., 2013; Kumar, 2013a,b; Stamm and Kumar, 2013; Verma et al., 2015, 2016; Ravindran
et al., 2017). These findings clearly indicate that plants maintain the availability and level of
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hormones in different parts of the plant body at different
developmental stages in an intricate and balanced manner.

A convenient step for us to study plant growth may
begin with seed germination. Successful germination depends
on the ability of the plant embryo to gain its metabolic
activity (Rajjou et al., 2012). Several molecular cues have been
revealed by different genetic and proteomic investigations of
various Arabidopsis mutants, showing distinct germination-
related phenotypes (Achard et al., 2006, 2009; Magome et al.,
2008). Germination has been found to be under strict regulation
of plant hormones, including gibberellic acid (GA), abscisic acid
(ABA), auxin and ethylene (Han and Yang, 2015). Germination is
also significantly affected by several environmental factors, such
as various abiotic stresses (Rajjou et al., 2012; Han and Yang,
2015). These factors mainly affect the metabolism and different
signaling pathways of GA and ABA (Holdsworth et al., 2008).

The constantly changing external factors that most affect plant
growth and development are abiotic stresses. Highly variable
abiotic stresses affecting plant growth are salinity, drought, and
cold. The above-mentioned stresses significantly affect yield
(average yield reduction >50%) of crop plants (Mahajan and
Tuteja, 2005). Plants exhibit a range of tolerance levels toward
these stresses that are ultimately regulated by complex signaling
pathways. Abiotic stresses trigger ABA biosynthesis, which
mediates stress adaptive responses by activating several specific
signaling cascades and regulating different physiological and
growth-related processes.

In the past decade, several genetic, molecular and proteomic
studies related to germination and abiotic stresses have been
carried out. In this review, we discuss the roles of GA and
ABA independently and with the possible crosstalk of these two
phytohormones with respect to seed germination and abiotic
stresses in various plant species, including crop plants.

ABA AND ABIOTIC STRESS

Plants are capable of maintaining their internal environment
fairly stable within the desired range. Two important factors that
are crucial for the maintenance of such homeostasis are internal
water level and osmotic state, which are mainly regulated by ABA
(Zhang et al., 1987; Zhu, 2002). ABA acts as a molecular signal in
response to various abiotic stresses, which alter the two important
physiological functions mentioned above. These abiotic stress
responsive signals are the basis of the various physiological as well
as growth-related processes of plants, culminating in their unique
ranges of tolerance toward these stresses (Finkelstein et al., 2002;
Lee and Luan, 2012; Vu et al., 2015).

ABA METABOLISM AND ABIOTIC STRESS

ABA which is reported in both primitive and higher organisms
seems to have different biosynthesis pathways. In primitive
organisms ABA biosynthesis is not well characterized, however,
in plant-associated fungi, ABA is reported to be synthesized by
the direct cytosolic pathway. In contrast, great progress has been
made in identifying and characterizing the genes involved in ABA

metabolism in land plants (Hauser et al., 2011). ABA biosynthesis
in plants follows the organelle-specific indirect pathway. The
pathway involves the key precursor compound zeaxanthin, which
is synthesized by the β-carotene pathway involving pyruvate.
Further, zeaxanthin is converted to xanthoxin by the enzymatic
reaction catalyzed by ZEP enzyme (zeaxanthin epoxide) and
9-cis-epoxy carotenoid dioxygenase (NCED) enzyme (Hauser
et al., 2011; Chan, 2012; Ruiz-Sola and Rodriguez-Concepcion,
2012). Subsequently, xanthoxin is transferred from the plastid
to cytosol and converted to its aldehyde intermediate and then
to ABA by short-chain-dehydrogenase reductase (SDR/ABA2 in
Arabidopsis) and abscisic aldehyde oxidase (AAO), respectively
(Cheng et al., 2002; González-Guzmán et al., 2014). Abiotic
stresses and ABA treatment are reported to alter the transcript
levels of key ABA biosynthesis genes, which in turn modulate
the level of ABA in plants. Upon ABA treatment, expression
levels of the genes encoding ZEP (ZEP/ABA1/LOS6) and
AAO3 (AAO3/ABA3/LOS5) were upregulated in Arabidopsis.
Furthermore, transcript levels of NCED3, ABA3/LOS5, and
AAO3 were induced by abiotic stresses (Xiong et al., 2002;
Chan, 2012). Additionally, in crop plants improved tolerance
toward various abiotic stresses has been reported by introducing
or inducing expression of genes encoding key enzymes of
ABA biosynthesis (Table 1). Among the NCED genes, NCED3
expression level increased upon water stress, which is also
reflected in the water-stress response of nced3mutants (Table 1).

The expression of ABA biosynthesis genes is reported to
show a direct impact on seed germination along with abiotic
stresses. The identification and characterization of NCED genes
revealed that the tissue-specific expression of these genes and
the resultant modulation of endogenous ABA level at different
developmental stages are responsible for the regulation of specific
processes, such as seed maturation and seed germination, besides
response to abiotic stresses (Lefebvre et al., 2006; Martínez-
Andújar et al., 2011). Within the seeds, NCED6 was shown to
express in the endosperm whereas NCED9 is expressed in both
embryo and endosperm during Arabidopsis seed development.
The induction ofNCED6 inhibits seed germination by increasing
the endogenous level of ABA. These and similar findings have
clearly established a causal role for ABA in regulating the
physiological and developmental processes studied.

It is known that ABA accumulates under specific conditions,
such as abiotic stresses. Therefore, the endogenous concentration
of biologically active ABA at the site of perception has to
be regulated. Apart from biosynthesis, ABA catabolism and
transport are the two key essential processes that control ABA-
mediated stress regulation. Cytochrome P450 type enzymes
(CYP707As) catalyze the deactivation reaction resulting in
phaseic acid (PA) and dihydro phaseic acid (DPA) as the main
ABA catabolites (Ng et al., 2014; Sah et al., 2016), which do
not appear to have any significant biological activity (Sharkey
and Raschke, 1980; Kepka et al., 2011). ABA and its catabolites
(hydroxylated) can be conjugated to glucose, catalyzed by ABA
glucosyl ester (ABA-GE) and become inactivated (Zeevaart and
Creelman, 1988; Lim et al., 2005). However, ABA-GE could be
converted to ABA upon induction of different abiotic stresses
(Ye et al., 2012; Sah et al., 2016). Two β-glucosidases, AtBG1
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and AtBG2 localized in the vacuole and endoplasmic reticulum,
respectively, hydrolyze ABA-GE (Burla et al., 2013). ABA is a
weak acid (pKa ∼ 4.7), which can be protonated to become
membrane permeable so that it can diffuse passively across the
cell membrane (Wilkinson and Davies, 2010; Ng et al., 2014;
Sah et al., 2016). Several transporters have been identified in
different species of plants, which regulate the accumulation and
translocation of active ABA along the plant body involving
different organelles (Kang et al., 2010; Kanno et al., 2012; Ye
et al., 2012). Also, several genes related to ABA metabolism and
transport in different plant species are reported to alter abiotic
stress tolerance summarized in Table 1.

ABA SIGNALING GENES, ABIOTIC
STRESS, AND GERMINATION

The identification of ABA receptors in Arabidopsis and other
plant species is one of the key findings in ABA signaling.
The PYR/PYL/RCAR family of proteins are established as the
most plausible ABA receptors. Expression profile study of these
receptors revealed their role in ABA signaling as well as in
the regulation of abiotic stresses (Park et al., 2009). Triple and
quadruple mutants of pyl showed altered ABA sensitivity with
respect to seed germination and growth, while overexpression
lines conferred tolerance toward abiotic stress (Santiago et al.,
2009; Saavedra et al., 2010). Overexpression of RCAR gene
resulted in altered ABA-dependent germination and seedling
growth (Ma et al., 2009). PYR/PYL/RCAR receptors in the
presence of ABA form a complex and deactivate PP2C, which
otherwise inactivates the SnRK2s, a central regulator of ABA
signaling. Subclass III of SnRK2 in Arabidopsis and rice are
shown to be involved in ABA signaling (Kobayashi et al.,
2005). Their expressions were induced in the presence of ABA.
Furthermore, they are responsible for the activation several
ABRE binding factors (ABFs). ABFs belong to basic leucine
zipper (bZIP) transcription factor family, which is one of the key
regulators of ABA responses in plants. In general, they interact
with the cis-acting conserved regulatory element, ABREs (ABA-
responsive elements) and in turn regulate transcription of several
downstream ABA-responsive genes (Choi et al., 2000; Kim et al.,
2002; Lopez-Molina et al., 2002).Table 1 summarizes the effect of
the genes related to ABA signaling with respect to various abiotic
stresses in different plant species.

GA BIOSYNTHESIS GENES, ABIOTIC
STRESS, AND SEED GERMINATION

The discovery of bioactive gibberellic acid (GA) was the result
of an investigation of fungal (Gibberella fujikuroi) infection in
rice by Teijiro Yabuta and co-workers (Yabuta and Sumiki, 1938).
Since then, more than a hundred GAs have been identified
from different sources, (from bacteria to plants). However, only
a few of them have been shown to have biological activity
(Yamaguchi, 2008; Hedden and Thomas, 2012). Gibberellins
control different stages of plant development, including seed
germination, seedling growth, stem elongation, root extension,

leaf size and shape, flower and fruit development, pollination
(García-Martínez et al., 1997; Yamaguchi, 2008; Hedden and
Thomas, 2012).

In plants three classes of enzymes are required for the
biosynthesis of bioactive GAs (GA1, GA3, and GA4) from
the precursor compound geranylgeranyl diphosphate (GGDP),
which is aided by terpene synthases (TPSs), cytochrome
P450 monooxygenases (P450s), and 2-oxoglutarate–dependent
dioxygenases (2ODDs) (Yamaguchi, 2008; Hedden and Thomas,
2012). Two TPSs, ent-copalyl diphosphate synthase (CPS) and
ent-kaurene synthase (KS), which are located in the plastids are
responsible for the first few steps of GA biosynthesis (conversion
of GGDP to ent-kaurene). Then two P450 enzymes, namely, ent-
kaurene oxidase (KO) and ent-kaurenoic acid oxidase (KAO)
convert ent-kaurene to GA12. Finally, three active GAs are
formed by reactions catalyzed by GA 20-oxidase (GA20ox) and
GA 3-oxidase (GA3ox), that belong to 2ODDs (Yamaguchi and
Kamiya, 2000; Hedden, 2001; Yamaguchi, 2008; Hedden and
Thomas, 2012). In plants, deactivation of the GAs is critical
for maintaining the levels of bioactive GAs, which is regulated
by GA 2-oxidases (GA2oxs), belonging to 2ODDs (Yamaguchi
and Kamiya, 2000; Yamaguchi, 2008). Additionally, 16α,17-
epoxidation (Luo et al., 2006; Zhu et al., 2006) and methylation
of the C-6 carboxyl group of GAs (Varbanova et al., 2007) are
involved in the deactivation of GAs in different plant species.

Several GA biosynthesis genes are expressed in growing
tissues during Arabidopsis development (Silverstone et al., 1997)
and also in crop plants such as wheat (Aach et al., 1997),
rice (Kaneko et al., 2003), and tobacco (Itoh et al., 1999).
This suggests that biologically active GAs are synthesized at
the site of their action in several cases. However, in rice, it
has been shown that GA biosynthesis genes are not expressed
in the aleurone layer, but GA signaling event occurs there,
which suggests paracrine signaling by GAs (Kaneko et al.,
2002, 2003). In addition, in Arabidopsis, GA-dependent gene
expressions have been shown in the sites where bioactive GAs
are not produced (Yamaguchi et al., 2001). It has also been
shown that early and late steps of GA biosynthesis take place
in provascular tissue and, cortex and endodermis, respectively
(Yamaguchi and Kamiya, 2000; Yamaguchi et al., 2001). This
suggests the existence of intercellular movement/transport of
GA biosynthesis intermediates. Lack or absence of GA leads
to altered GA signaling and germination related phenotype,
which has been revealed by different studies done in mutants of
GA metabolism (Table 2). The relationship between expressions
of GA metabolism-related genes and tolerance toward abiotic
stresses have been shown. Mutants in GA biosynthesis genes
(GA20ox and GA3ox) showed drought tolerance phenotype
and overexpression of GA20ox confers drought sensitivity in
Arabidopsis (Colebrook et al., 2014).

Characterization of mutants and genetic studies revealed
several GA signaling components (Hedden and Phillips, 2000;
Stamm et al., 2012; Davière and Achard, 2013). DELLA proteins,
belonging to the GRAS family of transcription factors, are
identified as a major repressor of GA signaling. DELLA proteins
restrict cell proliferation and expansion by negatively regulating
gibberellin signaling and hence inhibit the plant growth (Peng
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et al., 1997, 1999; Fleet and Sun, 2005). DELLA proteins such as
RGL2 complexed with DOF6 transcription factor has also been
shown to have positive effect on target genes such as GATA12
in regulating seed germination (Ravindran et al., 2017). DELLAs
are degraded by a signal cascade involving GA and its positive
regulators (Hedden and Phillips, 2000; Achard and Genschik,
2009;Wang et al., 2009; Figure 1). The GA signaling components
are reported to affect various aspects of germination and abiotic
stresses as well (Table 2). DELLAs are also reported to confer
salt tolerance in Arabidopsis by altering the duration of vegetative
growth. Also, two of the DELLA proteins, RGA and GAI have a
major role in salt-induced plant growth regulation (Achard et al.,
2006).

GA AND ABA CROSSTALK

Hormones regulate plant growth and development either
synergistically or antagonistically, involving a series of
complex pathways and networks (Liu et al., 2010; Dong
et al., 2016; Rowe et al., 2016). In the preceding sections,
we described the individual roles of GA and ABA in two
important aspects affecting plant development; germination
and abiotic stresses. The information summarized in
Tables 1, 2 along with the preceding description show that
ABA and GA antagonistically mediate plant developmental
processes including seed dormancy and germination.
Hence, it is essential to maintain an optimal balance
between the endogenous levels of ABA and GA for plant
development.

In response to different developmental stages and
environmental conditions, various changes occur in the
metabolism and signal transductions of these two plant
hormones which keep a correct balance between GA and ABA
and hence plant homeostasis. In the following sections we will
summarize how genes, components and network involving
crosstalk of GA and ABA participate in the regulatory processes.

In many instances, possible crosstalk events have been shown
between ABA and GA with respect to various abiotic stresses
and plant growth. Unfavorable conditions lead to high ABA and
low GA levels in seeds whereas favorable conditions cause the
reverse situation. Seed dormancy is maintained by ABA whose
level is found to progressively increase from embryogenesis to
embryo maturation (Karssen et al., 1983). ABA restricts embryo
growth potential by inhibiting water uptake (imbibition) and
hence cell-wall loosening, which is a key step to start germination
(Schopfer and Plachy, 1984; Gimeno-Gilles et al., 2009). ABA
also leads to induction of Late Embryogenesis Abundant (LEA)
genes and growth arrest by activating a basic leucine zipper
transcription factor, ABSCISIC ACID INSENSITIVE 5 (ABI5)
(Finkelstein and Lynch, 2000). Many LEA genes are reported to
confer abiotic stress tolerance in plants (Lopez-Molina and Chua,
2000; Lee et al., 2005). Synergistic repression of germination has
been reported through ABRE and RY elements by ABI5 and ABI3
(activated by ABA) (Lopez-Molina et al., 2002; Park et al., 2011).
Under favorable conditions (light, temperature and moisture)

GA biosynthesis and associated pathways are activated, which
results in the release from the inhibitory effect of ABA. Cold
stratification and light lead to an increase in bioactive GAs via
transcription factors PIF3-like 5 (PIL5), Blue Micropylar End3
(BME3) and SPATULA (SPT) (Liu et al., 2005; Penfield et al.,
2005; Oh et al., 2006; Figure 1). Thus, it is clear that various
interactions between ABA and GA in seeds help to regulate
dormancy and germination.

Several recent studies showed the regulation of GA and
ABA in light- and temperature-mediated seed germination and
dormancy. PIL5, a light-labile transcription factor, regulates both
GA and ABA signaling and thereby inhibits seed germination. It
indirectly regulates GA biosynthesis genes and directly regulates
GA signaling genes. Thus, PIL5 represses GA biosynthesis
genes (GA3ox1 and GA3ox2) and activates a GA catabolic gene
(GA2ox2) indirectly (Gabriele et al., 2010). However, it binds to
the promoter region of the GA signaling repressor genes, GAI
and RGA and regulates their transcription (Oh et al., 2007).
On the other hand, PIL5 has the opposite effect on the ABA
biosynthesis genes. It activates ABA biosynthesis genes (ABA1,
NCED6, and NCED9) and represses an ABA catabolic gene
(CYP707A2) (Finkelstein et al., 2008). Furthermore, increased
expression of DELAY OF GERMINATION 1 (DOG1) which acts
downstream to PIL5, leads to repression of GA biosynthesis
and activation of ABI3 and ABI5 (Bentsink et al., 2006; Skubacz
and Daszkowska-Golec, 2017). Similarly, a CCCH-Type zinc
finger protein, SOMNUS (SOM) is reported to act downstream
of PIL5 in order to negatively regulate light-dependent seed
germination in Arabidopsis (Kim et al., 2008). Several other
CCCH zinc finger proteins (AtTZF4, 5, and 6) negatively regulate
GA- and light-mediated seed germination and positively regulate
ABA-mediated seed germination. Expression patterns of genes
regulating GA and ABA metabolism have been reported to be
well coordinated with seasonal seed dormancy in Arabidopsis.
Thus, upregulation of GA catabolism and ABA biosynthesis
genes was observed during low temperature (winter) which leads
to increased dormancy (Footitt et al., 2011). Consistent with
that, upregulation of GA biosynthesis ABA catabolism genes have
been reported during high temperature (spring and summer)
and decreased dormancy (Footitt et al., 2011). The transcription
factor SPT controls the germination response to cold and light.
It can repress the GA biosynthesis genes (GA3ox1 and GA3ox2)
(Penfield et al., 2005) as well as the expression of ABI4 and a
DELLA gene RGA, but it promotes expression ofABI5 and RGL3,
another DELLA gene (Vaistij et al., 2013).

Various abiotic stresses (external environment) lead to
changes in the plant response and therefore alter the balance of
endogenous levels of GA and ABA. High temperature induces
ABA biosynthesis genes (ZEP, NCED2, NCED5, and NCED9)
and hence increases the ABA level whereas it decreases the
GA level by repressing GA biosynthesis genes in Arabidopsis
seeds (Toh et al., 2008). The transcription factor FUS3 leads
to delayed germination at high temperature by activating seed-
specific, ABA biosynthetic and ABA signaling genes (Chiu et al.,
2012). ABI3, ABI5, and DELLAs form a complex to directly
activate SOM expression at high temperature, which results in
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FIGURE 1 | ABA and GA metabolism and signaling/ABA is synthesized from carotenoids in a series of reactions in the plastids and cytoplasm (top left). ABA is

catabolized to form phaseic acid. ABA transport occurs through different transporters, and ABA elicits distinct signaling cascades (in the nucleus and cytoplasm)

(bottom left). GA biosynthesis starts from GGDP in the plastid and a portion of it is catabolized to inactive forms (top right). In the GA signaling pathway, GA causes

destruction of DELLAs (negative regulator of GA) via the 26S proteasome machinery. The two signaling pathways crosstalk to regulate seed germination and abiotic

stresses (bottom right).

altered expression of ABA and GA metabolism genes (Lim et al.,
2013).

DELLA-dependent salt-induced growth inhibition in the
DELLA quadruple-mutant was also shown to be associated
with DELLA accumulation and ABA signaling. Also, upon
ABA treatment accumulation of GFP-RGA was not observed
in the abi1-1 roots, but only seen in the untreated WT
control (Peng et al., 1997; Fleet and Sun, 2005; Achard et al.,
2006), showing the crosstalk between ABA and GA signaling.
Furthermore, quadruple-DELLA mutant was also shown to have
ABA insensitive phenotype. In addition, ABA-induced delay in
flowering was shown to be DELLA dependent (Achard et al.,
2006). PROCERA (a DELLA protein in tomato) promotes
stomatal closure in an ABA-dependent manner by increasing
ABA sensitivity (Nir et al., 2017). Another study showed that
NUCLEAR FACTOR-Y C (NF-YC) homologs (NF-YC3, NF-
YC4, and NF-YC9) interact with the DELLA protein RGL2 and
target ABI5 (Liu et al., 2016), thus regulating germination by
modulating GA- and ABA-responsive genes in Arabidopsis. In
addition, NF-YC9 was also reported to regulate ABA signaling
via direct interaction with ABI5 (Bi et al., 2017). Therefore, NF-
YC family members could integrate GA and ABA antagonistic

crosstalk involving DELLA protein and ABA signaling TFs.
Global analysis of DELLA targets revealed several downstream
targets and responsive genes (Zentella et al., 2007). XERICO
which has a key role in mediating various abiotic stresses by
modulation of ABA level and expression of ABA-responsive
genes is a target of DELLA (Ko et al., 2006; Zentella et al., 2007;
Zeng et al., 2015). Other reports have also shown that DELLA
contributes toward upregulation of ABA level by increasing
the XERICO transcript levels (Zentella et al., 2007; Figure 2).
This represents another example of how DELLA proteins can
control plant growth and abiotic stress tolerance through specific
crosstalk with ABA signaling pathway.

DELLA repressors are mainly degraded through the
ubiquitin-proteasome system involving recruitment of Skip,
Cullin, and F-box E3 ubiquitin ligase to the GA-GID1-DELLA
complex by SLEEPY1 (SLY1) (Steber et al., 1998; Hedden, 2001;
Murase et al., 2008; Achard and Genschik, 2009; Wang et al.,
2009; Figure 1). In addition to ubiquitination, the DELLA
signaling components are regulated by SUMOylation (small
ubiquitin-related modifier). E3 SUMO ligase AtSIZ1 negatively
regulates ABA signaling by SUMOylation of ABI5 in Arabidopsis
during germination (Miura et al., 2009; Liu and Hou, 2018).
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FIGURE 2 | Interplay of ABA and GA signaling in the regulation of seed germination and abiotic stresses. Switch from seed dormancy to germination is controlled by

the intricate balance between ABA and GA levels. ABA- and GA-signaling and metabolism genes regulate the expression of various genes (as mentioned in the text)

and hence control two of the major aspects of plant development, germination and response to abiotic stresses.

In addition, AtSIZ1 was reported to positively regulate GA
signaling by SUMOylating SLY1 (Kim et al., 2015; Liu and Hou,
2018). Therefore, SIZ1 could be another direct link between GA
and ABA signaling by regulating ABI5 and SLY1.

Another E3 ligase, ANAPHASE-PROMOTING
COMPLEX/CYCLOSOME (APC/C) has a link between GA and
ABA signaling in rice via SnRK2-APC/CTE(Tiller Enhancer/activator)

module (Lin et al., 2015; Liu and Hou, 2018). Loss-of-function of
TE, leads to hyposensitivity to GA and hypersensitivity to ABA.
Furthermore, ABA inhibits APC/CTE activity by phosphorylation
of TE through the activation of rice SnRK2s. This event interrupts
the association between TE and OsPYL/RCARs (ABA receptor),
which results in stabilization of the receptor. Conversely,
opposite effect has been shown by GA by inhibiting rice SnRK2
(Lin et al., 2015).

Several TFs other than DELLAs have been reported to
act as potential mediators between ABA and GA metabolism
and signaling. Two APETALA 2 (AP2)-domain containing
transcription factors (ATFs), Arabidopsis ABA-INSENSITIVE 4
(ABI4) and rice OsAP2-39, have key roles in the antagonistic
crosstalk between ABA and GA. ABI4 positively regulates
primary seed dormancy by downregulating GA biosynthesis and
by inhibiting ABA catabolic genes (CYP707A1 and CYP707A2)
(Shu et al., 2013). Further, GA represses the expression level of
ABA biosynthesis gene, NCED6 and increases expression of the
GA-deactivating gene GA2ox7 in an ABI4-dependent manner
(Shu et al., 2016). In rice, OsAP2-39 induces ABA level by directly
activating ABA biosynthesis gene OsNCED1, whereas it reduces
GA level by directly activating GA-inactivating gene OsEUI
(Elongated Uppermost Internode) (Shu et al., 2018). Further,
enhanced ABA level due to activation of OsNCED1 induces the
OsEU1 expression, which ultimately decreases GA accumulation

(Yaish et al., 2010; Shu et al., 2018). Another study showed that
CHOTTO1, a double-AP2 domain-containing TF regulates seed
germination in Arabidopsis through ABA-mediated repression of
GA biosynthesis (Yano et al., 2009).

MYB96 TF controls primary seed dormancy by directly
activating ABA biosynthesis genes (NCED2, NCED5, NCED6,
and NCED9) and indirectly repressing GA biosynthesis genes
(GA3ox1 and GA20ox1) (Lee et al., 2015). Another key regulator
of seed dormancy Mother of FT and TFL 1 (MFT), controls
ABA and GA signaling pathways (Xi et al., 2010). MFT promotes
germination by downregulating ABA signal via repression of
ABI5 expression. MFT expression is induced by RGL2 and
ABI5, but downregulated by ABI3 and MFT (Xi et al., 2010;
Skubacz and Daszkowska-Golec, 2017; Figure 2). Another three
transcriptional regulators involved in regulating embryonic
development are the LEC genes; LEAFY COTYLEDON1 (LEC1),
B3 domain factors LEC2, and FUSCA3 (FUS3) (Keith et al., 1994;
Gazzarrini et al., 2004). Loss-of-function of these genes leads to
the alteration of embryonic leaves (cotyledons) to take on the
appearance of vegetative leaves (Gazzarrini et al., 2004). One of
them, FUS3 is known to positively regulate ABA biosynthesis,
and negatively regulate GA biosynthesis (Gazzarrini et al., 2004).
Another B3 TF GERMINATIONDEFECTIVE 1 (GD1) regulates
seed germination by suppressing a LEC2/FUS3-like gene of rice
(OsLFL1) and modulating expression of GA metabolic genes
(OsGA3ox, OsGA20ox, and OsGA2ox) (Guo et al., 2013).

These examples clearly show the crosstalk between ABA and
GA in controlling seed development as well as germination. Such
crosstalk has been predicted based on earlier studies. With the
limited number of definitive studies on such signal crosstalk,
we are just beginning to gain valuable insights regarding the
regulation of specific growth and developmental processes.
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CONCLUSIONS AND FUTURE
PERSPECTIVES

It is evident from the foregoing review that the signaling
interactions among several phytohormones are common in
regulating various stages and processes of plant development.
Such regulatory crosstalk can occur at multiple stages of
biosynthesis or signaling for different hormones. Biosynthesis of
bioactive hormones and their transport (passive and/or active)
as well as signaling cascades that regulate downstream target
genes (of different classes) further add to the complexity of the
already elaborate cellular communication network. This has been
highlighted here with the examples of ABA and GA metabolism
and their regulation. Selected genes that play significant roles in
the regulation of seed dormancy and germination and various
abiotic stresses were also discussed. It is evident that several
positive and negative regulators of ABA and GA have direct
or indirect impacts on germination and abiotic stresses. Many
transcription factors and signaling components of these two
phytohormones help to maintain an intricate balance between
endogenous levels of bioactive ABA and GA. Furthermore,
studies have identified several ABA and GA crosstalk points
showing positive and negative regulation of different molecular
modules associated with their metabolism and signaling. There
are a few open questions that can help in formulating the
future research directions. Despite the fact that there are some
studies on ABA transport in different cell types and tissues,
there might be many unknown pathways/transporters that are
yet to be explored. Moreover, very few reports on the transport
mechanism of GA are available. The antagonistic roles of GA
and ABA in controlling developmental processes have been
established by several pieces of evidence; however, there could
be synergistic crosstalk between GA and ABA in some instances
whose underlying molecular mechanisms remain undiscovered.
Although several target genes of a few TFs have been established
(eg. MYB96, ABI4, OsAP2-39) (Yaish et al., 2010; Shu et al.,

2013; Lee et al., 2015) identification of direct targets/genes
of several TFs and components of GA and ABA signaling
modules are worth investigating. The detailed analyses of direct
targets involved in GA and ABA metabolism and signaling
at different developmental stages will provide us with more
insights into GA and ABA crosstalk. Recent studies revealed
several new cues associated with GA and ABA signaling. A few
epigenetic modifiers have been documented to be involved in
GA and ABA signaling cascade (Ryu et al., 2014; Liu et al.,
2016; Peirats-Llobet et al., 2016). However, the mechanisms by
which these epigenetic regulators mediate crosstalk between GA
and ABA need to be investigated. It is known that complexes
of TFs regulate downstream target genes (Kepka et al., 2011;
Lim et al., 2013; Heyman et al., 2016; Iwata et al., 2017),
and therefore, future investigations into new protein complexes
associated with GA and ABA signaling will reveal interesting
molecular mechanisms of developmental regulation. Although
several signaling components controlling various aspects of
germination and abiotic stresses have been identified, the
nature of the underlying mechanisms of many of the events

remain to be clarified. Nevertheless, such specific interaction
points that have been identified for these two phytohormones
will offer potential genetic intervention strategies to control
growth and abiotic stress remediation in future crop breeding
programs.
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