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The occurrence of algal blooms in drinking water sources and recreational water
bodies have been increasing and causing severe environmental problems worldwide,
particularly when blooms dominated by Microcystis spp. Bloom prediction and early
warning mechanisms are becoming increasingly important for preventing harmful
algal blooms in freshwater ecosystems. Chlorophyll fluorescence parameters (CFpars)
have been widely used to evaluate growth scope and photosynthetic efficiency of
phytoplankton. According to our 2-year monthly monitor datasets in Lake Erhai, a
simple but convenient method was established to predict Microcystis blooms and algal
cell densities based on a CFpar representing maximal photochemical quantum yield
of Photosystems II (PSII) of algae. Generalized linear mixed models, used to identify
the key factors related to the phytoplankton biomass in Lake Erhai, showed significant
correlations between Chl a concentration and both the light attenuation coefficient and
water temperature. We fitted seasonal trends of CFpars (Fv/Fm and 1F/Fm

′) and algal
cell densities into the trigonometric regression to predict their seasonal variations and the
autocorrelation function was applied to calculate the time lag between them. We found
that the time lag only existed between Fv/Fm from blue channel and algal cell densities
even both Fv/Fm and 1F/Fm

′ show the significant non-linear dynamics relationships
with algal cell densities. The peak values of total algal cell density, cyanobacteria
density and Microcystis density followed the foregoing peak value of Fv/Fm from
blue channel with a time lagged around 40 days. Therefore, we could predict the
possibilities of Microcystis bloom and estimate the algal cell densities in Lake Erhai
ahead of 40 days based on the trends of Fv/Fm values from blue channel. The results
from our study implies that the corresponding critical thresholds between Fv/Fm value
and bloom occurrence, which might give new insight into prediction of cyanobacteria
blooms and provide a convenient and efficient way for establishment of early warning of
cyanobacteria bloom in eutrophic aquatic ecosystems.

Keywords: chlorophyll fluorescence, Microcystis bloom, generalized linear mixed models, trigonometric
regression, Phyto-PAM, algal density, the time lag
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INTRODUCTION

Harmful algal blooms (HABs) in freshwater ecosystems are
subject of serious concern for ecosystems and human health
because they reduce the quality and quantity of habitat for
plants and animals, disrupt food web dynamics, create hypoxic
zones, and produce toxins (Paerl et al., 2001; Miller et al., 2017).
Changing environmental conditions like drought, increased
water temperature and low water levels (Paerl et al., 2001; de
Figueiredo et al., 2004; Qin et al., 2010; Watson et al., 2017),
can increase the intensity and frequency of algal blooms. Further,
through its effects on regional and local climatic patterns, climate
change is also modifying patterns of HAB (Michalak et al.,
2013). Therefore, predicting the HABs has become increasingly
important for environmental and public health management.

Many efforts and resources have been devoted to forecasting
algal blooms using mathematical modeling through quantitive
indicators and environmental drivers. One of the most
extensively applied models of predicting blooms are the
parametric models (Wong et al., 2007; Gill et al., 2017). For
example, the Baltic Operational Oceanographic System (BOOS)
is a real-time oceanic observation system combining ecological
forecast models for algal bloom in Baltic sea with annual
water forecasts for the Baltic sea1. Artificial neural networks
(ANNs) provide an alternative to parametric forecast models,
where several environmental factors act as input variables to
estimate the evolution of algal bloom and predict cell densities
of freshwater phytoplankton species (Recknagel et al., 1997;
Lee et al., 2003; Muttil and Chau, 2006). Statistical methods
such as cross-correlation (Trimbee and Prepas, 1987), and
generalized additive model (Lamon et al., 1996; Tao et al.,
2012), as well as the development of satellite remote sensing
forecasting techniques (Stumpf, 2001; Kutser, 2004), are also
other possible options for predicting the occurrence of HAB.
Despite having good predictive accuracy, all these methods
have the major drawback of being time and labor consuming
as well as complex in their calculation. Accuracy of these
methods also rely on selecting a suitable set of parameters and
models according to different lake conditions, nutrient status,
and different local meteorological and hydrological conditions.
Hence, previous studies have highlighted the need for simple,
rapid, and geographically non-restricted approaches to predict
algae blooms.

All the methods mentioned above are based on the
relationships between algal growth and environmental factors,
but rarely use physiological parameters of algae for bloom
prediction. Chlorophyll fluorescence parameters (CFpars), Fv/Fm
and 1F/Fm

′, can be considered as the main indicators for
assessment of the photosystem II efficiency and for the
photosynthetic capacity of algae (Misra et al., 2012). The
fluorescence ratio Fv/Fm refers to the photosynthetic activity
and is taken as an algae viability assessment. Similarly,1F/Fm

′

reflects the actual physiological activity of PS II (Genty et al.,
1990). Previous studies have shown that both Fv/Fm and
1F/Fm

′ respond to changes of environmental factors such

1www.boos.org

as nutrients and light intensity and are directly related to
the growth of algae (Boyd et al., 1999; Misra et al., 2012;
Shi et al., 2016). Therefore, the use of these CFpars may be
suitable candidates for simple predictions of algal blooms. To
this end, pulse amplitude modulated (PAM) fluorometry is a
promising analytical technique that measures the photochemical
efficiency of photosystem II in phytoplankton; one of the most
common, non-invasive and rapid existing indicators of the
viability condition of phytoplankton in a sample irrespective of
their size (Schreiber et al., 1995b; White et al., 2011; Kalaji et al.,
2014, 2017). Furthermore, Phyto-PAM fluorometry procedure
can distinguish the ratios of fluorescence yields of cyanobacteria,
green algae and diatoms/dinoflagellates and output as different
channels (blue channel, green channel and brown channel,
respectively) (Dorigo and Leboulanger, 2001; Schmitt-Jansen
and Altenburger, 2008). In the case of cyanobacteria (blue
channel), almost no Chl fluorescence is excited by blue light
(470 nm), while excitation at 645 nm is particularly strong due
to phycocyanin and allophycocyanin absorption.

Highland lakes are distinctive unique ecosystems because
they are subjected to extreme environmental conditions, such as
strong radiation, low water temperature, relatively low nutrient
conditions, and relatively simple food webs with low species
abundance (Tolotti et al., 2006). As a result, these lakes have
low buffering capacity and are very sensitive to climate change
and other anthropogenic influences (Psenner and Schmidt, 1992;
Psenner, 2002). Therefore, this sensitivity and responsiveness
of the phytoplankton community in plateau lakes to external
environmental stress makes them an ideal system for the purpose
of this study. Highland lakes are also increasingly exposed to
human activity globally. Common impacts include wastewater
discharge from farmlands and households, fish introduction,
transport and tourism pollution. These impacts are generating
increased eutrophication, disappearance of aquatic vegetation,
and algae blooms highland aquatic ecosystems (Tolotti et al.,
2006; Huang et al., 2014). Notwithstanding these unfolding
environmental problems, few studies have examined bloom
forecast in highland lakes.

FIGURE 1 | A map of Lake Erhai with the location of the sampling sites.
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Lake Erhai, a typical high altitude lake in the Chinese Yunnan
Province, has suffered increasingly frequent cyanobacterial
blooms despite the relative lower nutrients and higher
illumination characteristic of highland lakes compared to
lowland lakes (Xu, 1996; Paerl et al., 2011). These responses
are difficult to model explicitly according to conventional
models based on quantitive indicators and environmental
drivers. Before 1970s, Lake Erhai was an oligotrophic lake
(Jin et al., 2005). Since the 80s, however, the lake has been
affected by man-made eutrophication resulting from the growing
resident population (Jin et al., 2005). This situation exacerbated
after the 90s, as district population and human activities
continued to increase, resulting in frequent cyanobacterial
blooms (Wu and Wang, 1999). Large scale Anabaena-
dominated cyanobacterial bloom firstly appeared during
the summer of 1996 (Dong, 1999). However, the dominant
cyanobacterial species during summer shifted to Microcystis
after 2008 (Wen and Ma, 2011; Wei et al., 2012), coincident
with an increase in bloom frequency and intensity. Here, we
explore the potential for using multiwavelength Phyto-PAM

fluorometry as a simple early warning forecast method for
Microcystis blooms based on field data collected monthly
over 2 years, with a focus on predictive performance and
methodological constraints. Our research should give new
insight into prediction of cyanobacteria blooms and provide
a convenient and efficient way for the establishment of early
warning systems of cyanobacterial blooms in eutrophic aquatic
ecosystems.

MATERIALS AND METHODS

Study Site and Sampling Method
Data presented in this study correspond to a 2-year (June
2013–May 2015) field survey conducted in Lake Erhai (25◦36′–
25◦58′ N, 100◦05′–100◦17′ E), the second largest high-altitude
freshwater lake of the Yunnan Highlands in China with
the normal elevation is 1974 m, to trace algal dynamics
and Microcystis bloom. Water samples were taken monthly
from three water depths (surface, middle, and bottom) at

FIGURE 2 | Technique flow diagram of the application of method early warning the algal cell density and Microcystis bloom by measuring chlorophyll fluorescence
Fv/Fm (BC).
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seven sites (Figure 1), then pooled for the measurement of
physicochemical parameters, physiological indicators, and algal
densities at each site. The water samples were stored in
transparent glass bottles of 2.5 L and kept bottles half full.
After sampling was completed (within 5 h), we measured the
CFpars and physicochemical parameters immediately in the
laboratory.

Identification of Phytoplankton
One-L water samples were immobilized by 1% Lugol’s iodine
solution and concentrated to 50 ml by a siphon after
sedimentation for 48 h in Utermhol chambers to analyze the
phytoplankton composition (Huang et al., 1999). Concentrated
samples (0.1 ml) were thereafter counted and measured
under 400× magnification using an Olympus microscope
(Olympus BX21, Tokyo, Japan) after mixing. Colonial Microcystis
cells were separated using an ultrasonic device (JY88-II,
Scientiz, Ningbo, Zhejiang, China) and their constituent
cells counted. Taxonomic identification of the phytoplankton
species was performed according to Hu and Wei (Hu,
2006).

Measurements of Physicochemical
Parameters
All samples for nutrient and chlorophyll a determination were
stored in the portable refrigerator (0◦C) in the field and

analyzed immediately upon returning to the laboratory. Samples
for total phosphorus (TP), dissolved total phosphorus (DTP),
dissolved inorganic phosphorus (DIP), total nitrogen (TN),
nitrate (NO−3 ), ammonium (NO+4 ), and chlorophyll a (Chl a)
concentrations were analyzed following standard preservation
and analytical procedures of the Water Environment Federation
(Association et al., 1915). The concentrations of Chl a was
determined by spectroradiometer (SHIMADZU UV-2550, Japan)
after appropriate aliquots (200–1000 ml) were filtered through
Whatman GF-C glass microfiber filters and 24 h extraction in
90% acetone at 4◦C in the dark. The absorbance of the processed
samples was recorded at two different wavelengths (665 and
750 nm) following the protocol of Lorenzen (1967) for calculating
Chl a concentration. Water temperature (T), pH value, dissolved
oxygen (DO), and conductivity (COND) were measured onsite at
0.5 m below the water surface with a YSI ProPlus multiparameter
water quality meter (Yellow Springs, OH, United States). The
Secchi depth (SD) was assessed with a black and white Secchi disk
(20 cm in diameter) to determine water transparency. PAR was
measured at water depths of 0, 0.5, 1.0, 1.5, and 2.0 m using an
underwater radiation sensor (UWQ-8342) connected to a data
logger (Li-1400; Li-Cor Company, Lincoln, NE, United States).
Light attenuation coefficient of water column (K) was calculated
based on the equation: Id = Is(1-K)/K, where Id and Is are
irradiance at the corresponding water depth and water surface,
respectively (Duarte et al., 1986).

FIGURE 3 | Cell density successions (A) and composition successions (B) of Microcystis, Non- Microcystis Cyanophyta and Non-Cyanophyta phytoplankton cell
density.
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Measurements Chlorophyll Fluorescence
Parameters
A Phyto-PAM (PHYTO-PAM Phytoplankton Analyzer, Heinz
Walz GMBH, Effeltrich, Germany) was used to measure the
maximum quantum yield [Fv/Fm = (Fm – F0)/Fm] and the
effective quantum yield [1F/Fm

′ = (Fm
′ – F0

′)/Fm
′] (Kühl et al.,

2001). PAM fluorometry sensors estimate photosynthetic activity
by comparing fluorescence yield of PSII under ambient irradiance
(F) and after application of a saturating pulse (Fm) (Bilger et al.,
1995; Schreiber et al., 1995a; Schreiber, 2004). F0 and Fm are
the minimum and maximum fluorescence of a dark-adapted
sample during a saturating light pulse, respectively. Similarly,
F0
′ and Fm

′ are the minimum and maximum fluorescence of
a light-adapted sample during a saturating light pulse. Because
emission wavelengths (peaking at 470, 520, 645, and 665 nm)
do not correspond to the peak wavelengths of absorption of
the relevant pigments, the deconvolution procedure requires the
ratios of fluorescence yields of cyanobacteria, green algae, and
diatoms/dinoflagellates to show pronounced differences upon
excitation with these wavelengths.

Statistics and Inferences
The analytical process is schematically shown in Figure 2.
Generalized linear mixed models (GLMMs) (Bolker et al., 2009)

were used to detect the key environment drivers (i.e., light,
temperature, and nutrient) correlated to phytoplankton biomass
(Chl a) during the period of field monitoring. In present study,
we used Chl a as a measure of algal biomass according to
previous studies in both freshwater and marine ecosystems
(Carlson, 1977; Barlow et al., 1993; Schlüter et al., 2000; Chen
et al., 2003). Sampling site within the lake was introduced
as a random effect in the model to avoid pseudoreplication
by introducing correlation among species (Hurlbert, 1984).
The random effects might also account for some unknown
factors that influence the phytoplankton biomass in the lake,
such as differences in flow velocity and nutrient concentration
among sampling sites. Variables of environment drivers were
transformed using square root to normalize the data for
analysis.

Generalized linear mixed models (Bolker et al., 2009)
was also used to test whether CFpars can predict algae
density or biomass. The total phytoplankton cell density (Ct),
cyanobacteria cell density (Cc), and Microcystis cell density
(Cm) were used as response variables. The Fv/Fm from total
channel [Fv/Fm (TC)], Fv/Fm from blue channel [Fv/Fm (BC)],
1F/Fm

′ from total channel [1F/Fm
′ (TC)] and 1F/Fm

′ from
blue channel [1F/Fm

′ (BC)] were used as predictor variables.
Site effects were also incorporated as random effect in these
models.

FIGURE 4 | Monthly time series of Chlorophyll a (A), dissolved inorganic phosphorus (B), water temperature (C), and light attenuation coefficient (D). The mean
value and associated standard deviation among sites is shown in each panel.
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Informed by the results from the GLMMs, we built a bloom
prediction model by fitting a seasonal trigonometric regression
to each cell density parameter (Ct , Cc, and Cm) and the values
of Fv/Fm and 1F/Fm

′ according to the following equation
(Pollock, 2000):

y = β0 + β1x+ β2sin(2πx)+ β3cos(2πx)+ ε

Where y is cell densities (Ct , Cc, or Cm) or Fv/Fm or
1F/Fm

′, x is time (month), β0 is the intercept and β1 is the
slope of the regression, which represent stochastic local trend
components; β2 and β3 are the coefficients of the trigonometric
(cyclical) seasonal components [sin(2πx) and cos(2πx)]. The
error term is represented by ε. The values of x and y were
selected at random for running the trigonometric regressions
and Each model ran 9999 times for re-randomization tests and
the cross correlations between cell density and CFpars were
calculated by the autocorrelation function (ACF) with associated
confidence intervals at the 0.05 level. Cross-correlation values can
be considered as the time lag between cell density and CFpars,
which are reported as mean and standard deviation.

All statistical analyses were conducted in R 3.1.0 (R Core
Team, 2014) using the packages reshape2 (Wickham, 2007), lme4
(Bates et al., 2011), and ggplot2 (Wickham, 2009).

RESULTS

Phytoplankton Cell Densities
Our sampling campaign lasted 2 years and included two
cyanobacteria bloom phases. Cyanophyta was the major
phylum of phytoplankton during the whole year with 50%
of total phytoplankton cell density, and Microcystis was
the overwhelming dominant genus during the periods of
cyanobacterial blooms with 78% of total cyanobacterial cell
density (Figure 3). At specific bloom phases Microcystis
reached up to 80% of all cyanobacterial cell density with the
cell densities exceeding 1 × 107 cells L−1, while those of
cyanobacterial exceeded 1.5 × 107 cells L−1 comprising 60% of
all phytoplankton cell density (Figures 3A,B).

Driving Factors of Phytoplankton Cell
Densities
The mean concentration of Chl a during the sampling period
(June 2013 to May 2015) was 13.33 ug/L, with a peak value
exceeding 30 ug/L. Water temperature and light attenuation
coefficient followed similar seasonal variations (Figure 4).
The maximum level of water temperature encountered in

FIGURE 5 | Fitted light attenuation coefficient (A), dissolved inorganic phosphorus (B), and water temperature (C) for Chlorophyll a by using GLMMs analysis.
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Lake Erhai was 25.7◦C, and the mean water temperature
during sampling period was of 18.0◦C (Figure 4C). Light
attenuation coefficient showed a mean of 0.83 and a maximum
of 2.49 (Figure 4D). The results from GLMMs model
showed a highly significant relationship (p < 0.0001) of
both water temperature and light attenuation coefficient to
Chl a concentration (Figure 5). In contrast, all nutrient
parameters, pH, DO, SD, and COND showed lower non-
significant correlations with Chl a concentration (data not
shown). The annual change of water temperature and the
light attenuation coefficient in Lake Erhai, characteristic of a
highland lake, and their close relationship to Chl a, suggest a
potential relationship between algal cell densities, photosynthetic
activity and the seasonal succession of algae, which can be
predicted directly/indirectly by measuring the fluorescence
parameters.

Testing Parameters of GLMMs
To test the practicability of using the CFpars for determining
the algal cell density in water columns, we used Fv/Fm (TC),
Fv/Fm (BC), 1F/Fm

′ (TC), 1F/Fm
′ (BC), Ct , Cc, and Cm fitting

time cycle changes of GLMMs. All parameters were significantly
correlated with seasonality (p < 0.05). Further, Fv/Fm (TC),
Fv/Fm (BC), and Cm were highly significantly correlated with
seasonal variation (p < 0.001) (Table 1). As a result, all these
parameters could be potentially selected for model creation to
estimate phytoplankton cell density by fluorescence, where model
prediction of algal cell density is a function of its Chlorophyll light
response.

Time Lag Between Algal Cell Density and
Fluorescence Parameters
The relationship between the algal cell density and Fv/Fm or
1F/Fm

′ value was also first identified by GLMMs, then fitted
using trigonometric regression. We found significant positive
non-linear correlations between fluorescence parameters and cell
density (Figures 6–8).

No apparent time lag was found between Fv/Fm (TC) and
Ct (Figures 6b,f) or Cc (Figures 7b,f) or Cm (Figures 8b,f).
However, the time lag between Fv/Fm (BC) and Ct (Figures 6b,f)
or Cc (Figures 7b,f) or Cm (Figures 8b,f) was almost 40 days.
Fv/Fm (BC) lead on average Ct by 38.9± 5.3 days (Figures 4C,D).
Fv/Fm (BC) lead Cc by 37.8 ± 5.6 days (Figures 7c,g). Fv/Fm
(BC) forward lead Cm by 39.1 ± 5.5 (Figures 8c,g). Similarly,
no time lag was found between1F/Fm

′ (TC) and neither Ct
(Figures 6d,h), Cc (Figures 7d,h), or Cm (Figures 8d,h). Time
lags were found in the other parameters, with the 1F/Fm

′

(BC) leading total phytoplankton cell density by 0.2 ± 0.9
days (Figures 6e,i); 1F/Fm

′ (BC) leading Cc by 0.1 ± 0.6 days
(Figures 7e,i); and1F/Fm

′ (BC) leading Cm by 0.5 ± 1.3 days
(Figures 8e,i).

Application of Fv/Fm (BC) to Early
Warning of Microcystis Blooms
According to the strong time lag between Fv/Fm and cell density,
forecasting Microcystis bloom and the cell density in Lake Erhai
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FIGURE 6 | Trigonometric regression of the total phytoplankton cell density ( × 107 cells L−1) (a) and fluorescence measurements [Fv/Fm (TC) (b), Fv/Fm (BC) (c),
1F/Fm

′ (TC) (d), and 1F/Fm
′ (BC) (e)]. We fitted these seasonal trends with a time-lag analysis [Fv/Fm (TC) (f), Fv/Fm (BC) (g), 1F/Fm

′ (TC) (h), and 1F/Fm
′ (BC)

(i)]. The legged days and associated standard deviation among sites is shown in each panel.

should be possible by in lake monitoring of the Fv/Fm (BC) value
(Figure 9). The trigonometric regression (Figure 9A) shows
that the likelihood of a cyanobacteria bloom can increase when
the value of Fv/Fm reach 0.28 and the trend keeps upward.
But if the trend decreases, the possibility of cyanobacteria
bloom can become low even if the value of Fv/Fm remains
higher than 0.28. If the trend of Fv/Fm declines and the Fv/Fm
value is lower than 0.28, a cyanobacteria bloom seems unlikely.
Here, we define 107 cells L−1 as the threshold value for a
cyanobacteria bloom. The peak value of Fv/Fm (BC) is usually

followed by a peak value of phytoplankton after approximately
40 days.

DISCUSSION

In present study, we developed a novel method to predict
Microcystis bloom via physiological parameters of algae and
provided a rapid and simple way of early warning for blooms.
Compare to the common approaches (direct physicochemical
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FIGURE 7 | Trigonometric regression of the cyanobacteria cell density (a) and fluorescence measurements [Fv/Fm (TC) (b), Fv/Fm (BC) (c), 1F/Fm
′ (TC) (d), and

1F/Fm
′ (BC) (e)]. We fitted these seasonal trends with a time-lag analysis [Fv/Fm (TC) (f), Fv/Fm (BC) (g), 1F/Fm

′ (TC) (h), and 1F/Fm
′ (BC) (i)]. The legged days

and associated standard deviation among sites is shown in each panel.

measurements combined with regular monitoring) of bloom
forecast (Trimbee and Prepas, 1987; Recknagel et al., 1997;
Wong et al., 2007; Winder and Sommer, 2012; Ruiz-de la
Torre et al., 2013; Gill et al., 2017), our method could save
both time and labor by handling just one forecast factor
through a single operation. Compare to the remote sensing
approaches, the effective ways which widely used for short-term
bloom forecast by using satellite and airborne measurements
of spectral reflectance of water color (Wynne et al., 2013; Gill

et al., 2017) even sometimes they were limited to the use
of cloudless remote-sensing images and constrained by pixels,
our method emphasized on chlorophyll fluorescent parameters
(Fv/Fm) instead of monitoring Chl a concentrations. A similar
method for bloom prediction has not been reported so far.
Both abiotic environmental factors (O’neil et al., 2012; Paerl
and Paul, 2012; Winder and Sommer, 2012; Ruiz-de la Torre
et al., 2013) and biotic factors (Provasoli, 1958; González et al.,
2000; Chattopadhayay et al., 2002) could affect the concentrations

Frontiers in Plant Science | www.frontiersin.org 9 June 2018 | Volume 9 | Article 869

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-00869 June 26, 2018 Time: 16:29 # 10

Wang et al. Early Warning of Algal Density

FIGURE 8 | Trigonometric regression of the Microcystis cell density (a) and fluorescence measurements [Fv/Fm (TC) (b), Fv/Fm (BC) (c), 1F/Fm
′ (TC) (d), and

1F/Fm
′ (BC) (e)]. We fitted these seasonal trends with a time-lag analysis [Fv/Fm (TC) (f), Fv/Fm (BC) (g), 1F/Fm

′ (TC) (h), and 1F/Fm
′ (BC) (i)]. The legged days

and associated standard deviation among sites is shown in each panel.

of Chl a and trigger cyanobacterial blooms. Unlike the effects
of environmental factors on phytoplankton, the maximum
quantum yield (Fv/Fm) indicates directly photosynthetic activity
of phytoplankton (Schreiber et al., 1995b; Shi et al., 2016).
Fv/Fm can drop significantly when algae in response to changing
environmental conditions (Shen and Song, 2007; Shi et al., 2016).
Therefore, Fv/Fm can be considered as a sensitive indicator
that can reflect algae viability assessment (Genty et al., 1990;
Oxborough and Baker, 1997; Boyd et al., 2000).

The GLMMs, trigonometric regression and ACF are the main
analytical models used in our method for prediction of time lag
responses in dynamics of phytoplankton. GLMMs model are a
popular and widely used method for selecting driving factors in
fisheries research (Venables and Dichmont, 2004) and plant litter
decomposition (Veen et al., 2015), and seemed to successfully
determine the dominant factors in our study. The trigonometric
regression can effectively reflect and forecast the time series
changes and seasonal trends of electricity demand (Harvey and
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FIGURE 9 | The early warning of algal cell density and Microcystis bloom by simulating the time lag between Fv/Fm (BC) and algal cell density. (A) Total
phytoplankton, (B) Cyanobacteria, (C) Microcystis.

Koopman, 1993; Zhou et al., 2006), but has not been applied
before to algal bloom forecasting. Again, our results show that
it can fit to the purpose of reconstructing seasonal patterns of
cell density, Fv/Fm and 1F/Fm

′. The combination of results from
the GLMMs and trigonometric regressions allowed in turn for
the estimation of time lags between algal cell density and the
fluorescence parameter using the ACF, and the random error
was examined by Permutation test. Given light intensity play an
important role in the dynamics of phytoplankton of Lake Erhai,
the fluorescence parameters could capture the physiological
characteristics of algae. The model created by fluorescence
parameters had considerable predictive capacity of early bloom
warning.

Our method should be applicable to algal bloom forecasting
in other eutrophic lakes, but it might be not suitable for lakes
where the diversity of phytoplankton is too high. Due to the
complex pigment composition of chloroplast, each species of
algae has its own excitation and emission wavelength, resulting in
species-specific channel in different water environments through
the fluorescence method (Schreiber, 2004). In the present study,
cyanophyta was the clear dominant phylum and Microcystis the
overwhelming dominant genus of cyanophyta. Thus, the blue
channel value of Fv/Fm can reflect the PSII function of Microcystis
and infer the possible cell density. The forecasting ability of a
model for early warning of algal blooms depends also on the
quantity of data and the frequency of sampling (Andersen and
Bollerslev, 1998; Ghysels et al., 2006). Whether monthly or higher
sampling frequencies (e.g., fortnightly, weekly, or daily) are most
appropriate for early warning by time lag analysis deserves
further research. At the same time, an in situ measurement might
be more helpful for accurate prediction.

CONCLUSION

We have established a rapid, simple and convenient novel method
to estimate the algal cell density in a plateau lake by measuring
chlorophyll fluorescence Fv/Fm; a sensitive physiological

parameter which directly reflects growth potentiality of algal
and forecasts algal further growth rather than early warning
of contamination. The traits of Fv/Fm make it more efficient
for prediction of algal bloom than using physicochemical
parameters. Our study implies that in addition to the parameters
of chlorophyll fluorescence, other physiological parameters
of algal might also can be applied to the prediction of algal
bloom. These results suggest using critical thresholds between
Fv/Fm value and bloom occurrence might give new insight into
prediction of cyanobacteria blooms and provide a convenient and
efficient way for establishment of early warning of cyanobacteria
bloom in eutrophic aquatic ecosystems.
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