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The tropical seagrass species, Halophila stipulacea, originated from the Indian Ocean
and the Red Sea, subsequently invading the Mediterranean and has recently established
itself in the Caribbean Sea. Due to its invasive nature, there is growing interest in
understanding this species’ capacity to adapt to new conditions. One approach to
understanding the natural tolerance of a plant is to compare the tolerant species with
a closely related non-tolerant species. We compared the physiological responses of
H. stipulacea exposed to different salinities, with that of its nearest freshwater relative,
Vallisneria americana. To achieve this goal, H. stipulacea and V. americana plants
were grown in dedicated microcosms, and exposed to the following salt regimes:
(i) H. stipulacea: control (40 PSU, practical salinity units), hyposalinity (25 PSU) and
hypersalinity (60 PSU) for 3 weeks followed by a 4-week recovery phase (back to
40 PSU); (ii) V. americana: control (1 PSU), and hypersalinity (12 PSU) for 3 weeks,
followed by a 4-week recovery phase (back to 1 PSU). In H. stipulacea, leaf number and
chlorophyll content showed no significant differences between control plants and plants
under hypo and hypersalinities, but a significant decrease in leaf area under hypersalinity
was observed. In addition, compared with control plants, H. stipulacea plants exposed
to hypo and hypersalinity were found to have reduced below-ground biomass and C/N
ratios, suggesting changes in the allocation of resources in response to both stresses.
There was no significant effect of hypo/hypersalinity on dark-adapted quantum yield
of photosystem II (Fv/Fm) suggesting that H. stipulacea photochemistry is resilient
to hypo/hypersalinity stress. In contrast to the seagrass, V. americana exposed to
hypersalinity displayed significant decreases in above-ground biomass, shoot number,
leaf number, blade length and Fv/Fm, followed by significant recoveries of all these
parameters upon return of the plants to non-saline control conditions. These data
suggest that H. stipulacea shows remarkable tolerance to both hypo and hypersalinity.
Resilience to a relatively wide range of salinities may be one of the traits explaining the
invasive nature of this species in the Mediterranean and Caribbean Seas.
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INTRODUCTION

Seagrasses (order: Alismatales) are a unique group of marine
flowering plants (angiosperms) that re-entered the oceans and
secondarily colonized marine habitats. Phylogenetic analysis
of the Alismatales has indicated that the secondary return of
seagrasses to the sea occurred three–four times independently
through parallel evolution from a common aquatic (freshwater)
ancestor of terrestrial origin (Les et al., 1997; Orth et al.,
2006; Wissler et al., 2011). In returning to the sea, some
60–90 million years ago (Les et al., 1997), seagrasses were
faced with the physiological challenges related to growing in
marine conditions (Olsen et al., 2016). These challenges entailed
adaptive morphological and physiological traits common across
all seagrass species, causing them to be considered as a
single functional group (Les et al., 1997; Olsen et al.,
2016). These adaptive traits include blade or subovate leaves,
epidermal chloroplasts, loss of the stomata, internal gas
transport that facilitates root proliferation in permanently
flooded anoxic sediments (den Hartog, 1970; Hemminga and
Duarte, 2000), submarine (hydrophilous) pollination (Björk et al.,
2008) and tolerance to high salinity environments (Touchette,
2007).

Halophila stipulacea (Forsk.) Aschers. is a small, dioecious
tropical seagrass that was originally described from the Red Sea
(Forskal, 1775; Lipkin, 1975). It is widely known as a euryhaline
species because of its wide range of salinity tolerance (den
Hartog, 1970; Por, 1971). H. stipulacea was first reported in the
Mediterranean Sea in 1894, only 25 years after the opening of
the Suez Canal, making it a Lessepsian migrant (Lipkin, 1975).
Since then it has become established along the coastlines of
Egypt, Lebanon, Turkey, Albania, Greece, Italy, Libya, Cyprus
and Tunisia (Lipkin, 1975; Gambi et al., 2009; Sghaier et al.,
2011). Surprisingly, in 2002, this seagrass was reported in the
Caribbean Sea (Ruiz and Ballantine, 2004), and in just over
10 years has spread to most eastern Caribbean island nations
and recently to the South American continent (Vera et al.,
2014; Willette et al., 2014; van Tussenbroek et al., 2016). Studies
from the Caribbean have shown that H. stipulacea is physically
displacing local Caribbean seagrass species (e.g., Syringodium
filiforme) by monopolizing their space (Willette and Ambrose,
2012; Steiner and Willette, 2014). It has been suggested that the
invasiveness of H. stipulacea could be attributed to its ability to
acclimate to a wide range of physiological conditions including
water temperatures, light intensities, nutrient levels and salinities
(Por, 1971; reviewed by Gambi et al., 2009; Sharon et al., 2009,
2011).

Salinity is a major environmental component that can
influence the growth, function, structure, and distribution of
seagrasses (Montague and Ley, 1993; Salo et al., 2014). Most
seagrass species are adapted to grow at salinities ranging from
20 to 40 Practical Salinity Units (PSU; 35 PSU having a
concentration for the major ions of 540 mM Cl− 460 mM
Na+, and 50 mM Mg+; Touchette, 2007). While these salt
concentrations are much higher than those found in saline
habitats where terrestrial plants exist, changing salinities can also
influence the structure and function of seagrass communities

(Montague and Ley, 1993), including the disappearance of
seagrass meadows (Zieman et al., 1999; Rudnick et al.,
2005).

In terms of their ability to withstand marine salinities,
seagrasses are halophytes, i.e., they can thrive in salt
concentrations that would kill 99% of other plant species
(Flowers and Colmer, 2008). Increases or decreases in salinity
have been shown to affect the photosynthetic capacity, growth,
pigment content, biomass and C/N balance in seagrasses
(Fernández-Torquemada and Sánchez-Lizaso, 2011; Sandoval-
Gil et al., 2012; Garrote-Moreno et al., 2015; Piro et al., 2015a,b).
Several studies have been conducted to study salt tolerance
in both temperate and tropical seagrasses (Koch et al., 2007;
reviewed by Touchette, 2007; Sandoval-Gil et al., 2014; Collier
et al., 2014). Koch et al. (2007) tested the response of three
tropical seagrass species to hypersalinity (induced slowly and
also pulsed). Based on growth and photosynthetic parameters,
they demonstrated that Thalassia testudinum and Halodule
wrightii are able to tolerate high salinities of 60 and 65 PSU,
respectively. Interestingly, Sandoval-Gil et al. (2014) reported
that inter and intra-specific divergences play an important
role in determining the threshold of salinity tolerance in the
temperate seagrasses Cymodocea nodosa and Posidonia oceanica.
This is indicated by the intra-specific physiological plasticity
that was observed between different populations of Cymodocea
nodosa and P. oceanica. While Collier et al. (2014) also noticed
inter-species specific hyposalinity thresholds, they proposed a
response analogous to a stress-induced morphometric response
(SIMR) – the seagrasses show up to a 400% increase in shoot
density at sub-lethal salinities. This SIMR precedes mortality in
two of the three seagrass species chosen for the study (Collier
et al., 2014).

The only known study investigating salinity tolerance in
H. stipulacea has shown that the epidermal concentrations
of Na+ and Cl− are lower than the surrounding seawater,
indicating the existence of some ion exclusion mechanisms
(Beer et al., 1980). They also demonstrated that carbon-fixing
enzymes such as phosphoenolpyruvate carboxylase are able
to function in the presence of salt in vitro, an important
adaptive mechanism to salinity. However, very few studies have
measured responses of tropical seagrasses to both hyper and
hyposalinities (Collier et al., 2014), and none have compared
responses of seagrasses to differing salinities with that of their
freshwater relatives. Comparing close halophytic and non-
halophytic terrestrial relatives has proven a very fruitful approach
to understanding halophytism in the Brassicaceae (Inan et al.,
2004; Amtmann, 2009; Orsini et al., 2010; Oh et al., 2012; Bartels
and Dinakar, 2013). These comparative studies have revealed
a plethora of salt adaptation mechanisms including anatomical
structures, tight control of entry and compartmentation of Na+
uptake, salt-resilient photochemistry, constitutive up- and down-
regulation of stress tolerance genes and metabolites, and sub-
functionalization and neo-functionalization of duplicated genes
(Inan et al., 2004; Volkov et al., 2004; Kant et al., 2006; Stepien
and Johnson, 2009; Dassanayake et al., 2011; Kazachkova et al.,
2013; Oh et al., 2014). Similarly, the recent comparison of the
Zostera marina genome with a freshwater relative (the duckweed,
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Spirodela polyrhiza) has revealed genetic changes related to
adaptation to a marine environment (Olsen et al., 2016).

The order of Alismatales includes eleven families of aquatic
freshwater species and four families that are fully marine species
(i.e., seagrasses; Les et al., 1997; Wissler et al., 2011). The
phylogenetically closest freshwater relative of H. stipulacea, the
tropical seagrass species which is the focus of our study, is
Vallisneria americana (Les et al., 1997). Both species belong
to the Hydrocharitaceae family, and both the Halophila and
Vallisneria genera are classified within the same subfamily
(Hydrilloideae Luerss.; reviewed by Les et al., 2006). In fact,
phylogenetic studies of the Hydrocharitaceae that compared both
morphological characteristics and a suite of molecular markers
(chloroplast rbcL, matK, trnK intron sequences, ribosomal ITS
region sequences; Les et al., 2006), showed that H. stipulacea is
more closely related to V. americana than to many other seagrass
species, and the two species share some metabolic features such
as production, accumulation, and use of carbohydrates (Kraemer
et al., 1999). Although V. americana is considered a freshwater
(aquatic) angiosperm (Kraemer et al., 1999), several studies
suggest that V. americana can tolerate up to 20 PSU (Doering
et al., 1999; Boustany et al., 2010). However, the salinity tolerance
limits of V. americana varies between populations (Doering et al.,
1999; Frazer et al., 2006; Boustany et al., 2010; Lauer et al., 2011).

Applying the comparative approach used to understanding
salt tolerance mechanisms in terrestrial halophytes, the aim of
this study was to lay the foundations for detailed molecular
investigations into H. stipulacea halophytism by comparing the
physiological responses to changes in salinity in the tropical
seagrass H. stipulacea, with that of its closest freshwater relative,
V. americana. To the best of our knowledge, this is the first
comparison of physiological and growth responses of a seagrass
species with its freshwater relative.

MATERIALS AND METHODS

Plant Collection and Experimental
Design
Intact H. stipulacea plants were collected from meadows growing
at 6–8 m depth (Supplementary Figure S1) in the northern Gulf
of Aqaba (North beach site; 29.546150◦N 34.964819◦E; Mejia
et al., 2016) by SCUBA-diving. In order to reduce variability,
only shoots less than 1 year-old were collected (i.e., shoots
with less than 12 leaf scars on the vertical rhizome; Pérez
and Romero, 1992). Plants were brought into our seagrass
dedicated microcosm with controlled temperature, salinity and
light (Figure 1A) and planted in 15 aquaria (40 cm width× 33 cm
height, ∼45 L of seawater in each aquarium), placed in
temperature-controlled water baths at 25◦C and layered with
20 L of natural sediment (10 cm high; Figures 1A,B). Two
months prior to collecting plants, sediment was collected from
a location near the plant collection site, sieved (∼3 mm pore) to
exclude macro-invertebrates and stones, autoclaved (to exclude
potential microbial contaminations) and placed into aquaria. In
each aquarium, 13 shoots (with their corresponding rhizomes
and roots) were planted in 10 cm of sediment and the aquarium

was filled with artificial seawater (Red Sea Salt, Israel) at a
control salinity level of 40 PSU (the year-round average salinity
of Eilat’s water1). Lighting was provided via T5 fluorescent
lamps (Osram Lumilux HO 865/54W cool daylight with the
color temperature of 6500 degrees Kelvin2). Photosynthetically
active radiation (PAR) values and duration (10–12 h of light,
∼100–120 µmol photons s−1 m−2) at the bottom of the aquaria
were set to mimic midday light at the site during November
2016 at 6–8 m depth. Independent powerheads were installed to
obtain proper water circulation in each aquarium. Salinity, pH,
and temperature were measured in each aquarium daily using
a digital salinity/conductivity/temperature meter (WTW 340i,
WTW, Germany). Conditions (25◦C, 40 PSU) in the microcosms
were maintained for 21 days to allow plant acclimation before
starting experiments.

For gradual ramping of salinities up from 40 to 60 PSU
(5 PSU/day), artificial Red Sea salt mixtures (which also
contained a complete set of micronutrients and appropriate
salts but negligible nitrates or phosphates3) were dissolved in
distilled water and added daily to the aquariums in parallel to
replacing 2–4 liters of aquarium water until the desired final
salt concentrations in the aquariums were reached (Figure 2A).
Similarly, for the gradual ramping down from 40 to 25 PSU,
aquarium water that was set at 40 PSU (acclimation period) was
gradually replaced by adding small amounts (2–4 liters/day) of
distilled water (0 PSU) until the desired final salt concentration
(25 PSU) in the aquaria was reached. This ramping up/down
process has been previously shown to be slow enough to prevent
(or at least attenuate) osmotic shock (Kahn and Durako, 2006;
Griffin and Durako, 2012). A set of control plants (n = 5 aquaria)
were maintained at 40 PSU throughout the entire experiment
(Figure 2A). In all three treatments, throughout the entire period
of the experiment, 10% of the water (25, 40, and 60 PSU) was
replaced each week. The plants were maintained under these
conditions for 22 days, and harvested at various time points
(Figure 2A). Salinities in the aquaria were then ramped either up
(from the 25 PSU hyposalinity treatment) or down (from the 60
PSU hypersalinity treatment) to the control salinity (40 PSU) at
the same rate and method as at the beginning of the experiment
(5 PSU/day). After returning to control salinities of 40 PSU,
the plants were allowed to recover at this salinity level over a
period of another 21 days and then harvested for analysis. To
avoid experimental bias, all tanks and treatments were completely
randomized.

Throughout the entire experiment, plants were measured
and sampled for a suite of fitness, physiological and molecular
parameters. Measurements were taken at the following time
points: day 0 – just before starting the salinity treatments; day 5 –
the day on which the final salinity concentrations were reached;
day 12, day 19, day 26 – at 1-week intervals (when plants were
exposed to 1, 2, and 3 weeks, respectively, of high/low salinities);
day 33 – 1 day after ramping up/down back to the control 40 PSU
for recovery; day 60 – after 4 weeks of recovery at control salinity

1http://www.iui-eilat.ac.il/Research/NMPmeteodata.aspx
2https://www.osram.com
3https://www.redseafish.com/red-sea-salts/red-sea-salt/
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FIGURE 1 | (A) The seagrass (Halophila stipulacea) dedicated microcosm fully controlled for water temperature, light, and salinity (the image is being published with
the consent of the depicted individual; Photographed by Yoram Zvieli). (B) H. stipulacea growing in some of the aquaria (photographed by Gidon Winters).
(C) The Vallisneria americana dedicated microcosm with aquaria and sediment type identical to those used in the seagrass setup (photographed by Gidon Winters).

of 40 PSU (Figure 2A). Plant harvesting was always performed at
the same time of day (11:30–12:30) in order to take into account
any effects of the circadian clock. All growth and physiological
measurements were carried out on the second youngest leaf pair,
which exhibits the least variability within the shoots and is the
most representative tissue (Durako and Kunzelman, 2002).

For the parallel V. americana experiments, plants were
obtained from a commercial supplier in Israel4 in October 2016,
after which they were grown in sediment, light, temperature and
water circulation conditions similar to the H. stipulacea plants
(Figure 1C).

Preliminary work (with other plants) tested the effects
of different salinities on H. stipulacea (15, 25, 40, 60, and
65 PSU; Supplementary Figure S2). The fact that previous
studies determining salinity thresholds in V. americana used
different populations and varying durations of stress, frequency,
and intensities (Boustany et al., 2015), made it difficult
to compare across different salinity stress studies. Hence,
preliminary experiments were conducted to test the highest
tolerance threshold for V. americana (0, 10, 12, and 15 PSU;
Supplementary Figure S3). The results of these experiments

4http://www.ofra-aqua.co.il

(Supplementary Figure S3) confirmed the work of Twilley and
Barko (1990) showing the highest tolerance for V. americana to
be around 12–13 PSU. Thus, for V. americana, we selected 12
PSU as the higher salinity concentration to stress the plants as
the plants died at 15 PSU and there were no significant effects
of hypersalinity at 10 PSU (Supplementary Figure S3). Control
levels were chosen as 1 PSU (as opposed to 0 PSU), due to the
fact that V. americana is mostly found growing in estuary water,
where natural minimal salinities are larger than 0 PSU (Twilley
and Barko, 1990; Kraemer et al., 1999).

Similarly, for H. stipulacea we selected 25 and 60 PSU since
lower salinity (15 PSU) prevented any recovery of leaf number
and Fv/Fm (Supplementary Figures S2A,C). The hypersalinity
treatment of 60 PSU was chosen since our preliminary results
showed that going up to 65 PSU seemed lethal to H. stipulacea
(Supplementary Figure S2).

The idea of the comparison between H. stipulacea and
V. americana was to compare plants exposed to salinities that
yielded a response to salt but were not lethal. Hence, the final
salinity conditions selected for the V. americana experiments
were 1 PSU (control) and 12 PSU (hypersalinity). Starting from
control levels, salinity was ramped up to 12 PSU (Figure 2B)
at 2.5 PSU/day (by replacing freshwater with saline mixtures
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FIGURE 2 | Experimental design for investigating the physiological response of H. stipulacea (A) to control, hyper and/or hyposalinity (40, 60, and 25 PSU,
respectively) and its freshwater relative, V. americana (B) to control and hypersalinity (1 and 12 PSU, respectively). In both species, there were five tanks for each
treatment (n = 5). Salinities were kept at these levels for 3 weeks followed by a recovery phase of another 4 weeks (salinities returned to control levels of 40 and 1
PSU, for H. stipulacea and V. americana, respectively). Physiological, fitness and photosynthetic parameters were performed throughout the experiment at various
time-points (red arrowheads). Graphical depiction of salinity levels during the recovery phase in (A) (25 and 60 PSU) and (B) (12 PSU) were slightly modified for visual
clarification by separation of the lines.

as described above for H. stipulacea) to avoid osmotic shock.
Measurements were taken at the same time points as for
H. stipulacea on the leaves from the second youngest shoot.

Growth and Physiological Measurements
Growth and biochemical parameters including leaf number, leaf
area, dry weight of above/below-ground tissues, chlorophyll, and
carotenoid content, and carbon/nitrogen ratios in above/below-
ground tissues were measured over the course of the experiment
as physiological indicators of stress. For leaf and shoot counts,
three plants were selected randomly per aquarium, plants were
marked, and the number of leaves and shoots were counted
for the same three plants at every time-point; these three
measurements were averaged into a single biological replicate,

and this was performed for five tanks (n = 5) in each condition
(control, hypo, and hypersalinity). Leaf area was measured
by selecting the second youngest leaves from three random
plants from each aquarium (at each time point these three
measurements were averaged into a single biological replicate,
n = 5 aquaria in each treatment), and digitally scanned (Cannon
Lide 110 scanner). The leaf area was then measured using
ImageJ (Abramoff et al., 2004; Mejia et al., 2016). Because the
morphology of V. americana differs from that of H. stipulacea
(Figures 1B,C), leaf counts were determined as for H. stipulacea
except that we also measured the number of leaves per shoot
(there are more leaves per shoot for V. americana than in
H. stipulacea). Additionally, blade length was measured as
indicated in Doering et al. (1999). The three measurements
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from the same aquarium were averaged into a single biological
replicate, n = 5 aquaria in each treatment.

Biomass and C/N Ratios
For biomass and C/N ratios, three plants were randomly selected
per aquarium at the end of the experiment (day 60 only, due to
the need to sacrifice the entire plant for this measurement) and
dried in the oven at 60◦C for 24 h. The above- and below-ground
tissues were then weighed to compare biomass across the three
treatments. For determining C/N ratios, the dried tissues were
later ground to powder in a TissueLyser (Retsch GmbH & Co.
KG) and 6 mg of the tissue was weighed in a tin capsule and
analyzed in a Flash 2000 Organic Elemental Analyzer (Thermo
Scientific, USA). Calibration was performed using 2–3 mg of 2,5-
Bis(5-tert-butyl-benzoxazol-2-yl)thiophene (BBOT) containing
6.51% N, 72.53% C, 6.09% H, and 7.44% S. Each sample was run
for 660 s and was recalculated with a blank (empty capsule) and
BBOT standard measurements.

Chlorophyll Florescence and Pigment
Content
For determination of quantum efficiency of photosystem II
(Fv/Fm; Genty et al., 1989), five plants were selected per
aquarium and fluorescence was measured using a PAM (Pulse
Amplitude Modulation) chlorophyll fluorometer (PAM-2500,
Walz, Germany). The same five plants were measured over time
(at every time point) for any change in quantum efficiency.
Measurements from the same aquarium were averaged into a
single biological replicate, with n = 5 aquaria in each treatment.
Leaves were dark adapted for 10 s prior to the measurement
using a dark adaption leaf clip (Winters et al., 2011). For
measuring chlorophyll and carotenoids, 100 mg fresh tissue was
harvested from three plants in each aquarium at each time point.
Pigments were extracted in 100% methanol, kept overnight at
4◦C in the dark, and measured according to Lichtenthaler (1987)
in a microplate reader (EPOCH 2, Biotek Instruments, Inc.,
United States) according to Warren (2008). Concentrations were
normalized to the fresh weight (FW) of the sampled tissues.

Statistical Analysis
For H. stipulacea, a one-way ANOVA with repeated measures
(IBM SPSS version 19) with a Greenhouse-Geisser correction was
performed to identify the effects of each salinity treatment on the
physiological data such as leaf number, leaf area, shoot number,
blade length, quantum yield, and chlorophyll content (treated as
dependent variables) for measurements at different time-points.
Post hoc mean comparisons with the Tukey–Kramer HSD test
were performed to identify specific salinity or time points which
exhibited significant differences. For measurements of biomass
and C/N ratios that were taken only at the last time point (day
60), a one-way ANOVA (SPSS version 19) was performed. Since
the V. americana experiment, included only control (1 PSU) and
hypersalinity (12 PSU), pairwise comparisons were performed
(control vs. hypersalinity) to find the specific time point which
displayed significant differences. All the treatment effects were
considered statistically significant at P < 0.05. Normality of data

was tested using Shapiro–Wilk’s test and QQ plots. Homogeneity
of variances was tested using the Levene’s test.

RESULTS

Changes in Salinity Have No Effect on
H. stipulacea’s Capability to Produce
New Leaves While V. americana Exhibits
Growth Reduction and Recovery
In order to examine the effect of hypo and hypersalinity on
the growth of the tropical seagrass, H. stipulacea and its closest
freshwater relative, V. americana, the seagrass was exposed to
40, 25, and 60 PSU (control, hyposalinity, and hypersalinity
treatments, respectively) while V. americana was exposed to 1
and 12 PSU (control and hypersalinity treatments, respectively).
Figure 3 shows images of H. stipulacea and V. americana plants
at various time points (Figure 2) during the experiment.

Leaf Number
For H. stipulacea, a constant increase in leaf number was observed
throughout the experiment in all three salinity treatments
(Figure 4A; one-way ANOVA with repeated measures, P < 0.01;
Table 1) although plants exposed to hyposalinity (25 PSU)
showed a trend of lower number of leaves throughout the
experiment, compared with plants in control and hypersalinity
(40 and 60 PSU, respectively). While there was no significant
interaction between the effect of the salinity treatment and time
on the changes in leaf number in H. stipulacea (one-way ANOVA
with repeated measures, P > 0.05; Table 1), more senescence
was seen in leaves at hyposalinities at day 33 in comparison with
control plants (Figures 3G,H). On the other hand, V. americana
plants exposed to hypersalinity (12 PSU) showed a significant
decrease (one-way ANOVA with repeated measures, P < 0.05;
Table 2) in the number of leaves compared to control plants
(1 PSU) (Figure 4B). Furthermore, although by the end of
the salinity exposure (day 33), V. americana plants exposed to
hypersalinity possessed half the number of leaves observed in
control plants (Figure 4B), leaf number recovered to control
levels by the end of the recovery period. Significant interaction
between salinity over the time of the experiment was also seen
(one-way ANOVA with repeated measures, P < 0.05; Table 2).
V. americana exposed to hypersalinity suffered large losses in
above-ground biomass (Figure 3R), and the effects of the salinity
treatment were still visible even after 3 weeks into the recovery
phase (Figure 3T), where plants had been returned to control
salinity levels.

Leaf Area and Blade Length
Exposure to hypersalinity resulted in a large decrease in leaf area
(Figure 4C) in H. stipulacea (one-way ANOVA with repeated
measures, P < 0.05; Table 1). A trend toward reduced leaf
area was also observed in response to hyposalinity, but this
decrease was smaller, slower and not statistically significant
(one-way ANOVA with repeated measures followed by Tukey
test, P > 0.05; Table 1). However, leaf area in plants exposed to
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FIGURE 3 | Photographs showing the differences in growth of H. stipulacea (A–L) and V. americana (M–T) plants after treatment with different salinities. Days 1–60
correspond to time points during the experiment (see Figure 2). (1) showing responses of H. stipulacea plants to control (40 PSU; A,D,G,J), hyposalinity (25 PSU;
B,E,H,K) and hypersalinity (60 PSU; C,F,I,L). (2) showing responses of V. americana plants to control (1 PSU; M,O,Q,S) and hypersalinity (12 PSU; N,P,R,T).

hyposalinity continued to drop even after plants were returned to
control salt levels until there was a significant leaf area reduction
compared to control plants by day 60 (one-way ANOVA with
repeated measures followed by Post hoc Tukey test, P < 0.05).
On the other hand, leaf area in H. stipulacea plants exposed to
hypersalinity stopped decreasing once plants were returned to
control salt levels although leaf area did not recover to that of
control plants at least over the period allowed for recovery in
this experiment. The interaction between the salinity treatment
and time was also significant (one-way ANOVA with repeated
measures, P < 0.05; Table 1).

In V. americana, there was a significant difference over time in
blade length between the control and stressed plants immediately
after the plants were exposed to high salinity (one-way ANOVA
with repeated measures, P < 0.05; Table 2 and Figure 4D).
However, most of the leaves that were marked for blade length
measurement were lost during the recovery phase and therefore
no measurements could be taken for the last time point in
the stressed V. americana plants. The increase in V. americana
leaf number during the recovery phase was due to new leaf
production (Figure 4B).

A significant decrease was also observed in shoot number
(one-way ANOVA with repeated measures, P < 0.05; Table 2)
in stressed V. americana plants in comparison to the plants
at control salinity (Figure 4E). Pairwise comparisons showed
significant differences at days 26 and 33 (one-way ANOVA with
repeated measures followed by pairwise comparisons, P < 0.05).
However, there was no significant interaction of salinity and
time (one-way ANOVA with repeated measures, P > 0.05;

Table 2). During recovery, V. americana plants produced new
shoots and at day 60 there was no significant difference between
control plants and plants that were exposed to hypersalinity
(one-way ANOVA with repeated measures followed by pairwise
comparisons; P > 0.05).

H. stipulacea Exhibits Stress-Resilient
Photosynthetic Capacity
Measurements of chlorophyll fluorescence parameters can
provide information about photochemistry that is driving
photosynthesis (Maxwell and Johnson, 2000). In H. stipulacea,
Fv/Fm, which evaluates the maximum efficiency of photosystem
II (PSII; Maxwell and Johnson, 2000), showed no significant
interaction between salinity and time (one-way ANOVA with
repeated measures, P > 0.05; Table 1) throughout the experiment
(Figure 5A). There were also no significant differences in
total leaf chlorophyll content (Figure 5C), carotenoid levels
(Figure 5E) or chlorophyll a and chlorophyll b (data not
shown) between plants under control and salinity treatments
over the time of the experiment (one-way ANOVA with repeated
measures, P > 0.05; Table 1). However, in V. americana,
Fv/Fm exhibited a strong trend (one-way ANOVA with repeated
measures, P = 0.0534; Table 2) for differences between treatments
over time. However, this lack of significant difference between
control and salt-stressed plants lasted only until day 33 by which
time Fv/Fm was significantly reduced (one-way ANOVA with
repeated measures followed by Post hoc Tukey test, P < 0.05)
in plants exposed to hypersalinity (Figure 5B). After return
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FIGURE 4 | Growth measurements in H. stipulacea (Left; A,C) and V. americana (Right; B,D,E) throughout the experiment. H. stipulacea plants were exposed to
control, hyper and hyposalinity (40, 60, and 25 PSU, respectively). V. americana plants were exposed to control and hypersalinity (1 and 12 PSU, respectively). Data
represent mean ± SD in the number of leaves per plant (A,B), leaf area (cm2; C), blade length (cm, D) and shoot number per plant (E). Time-points with different
letters are significantly different between treatments, P ≤ 0.05 as determined by Tukey–Kramer HSD for H. stipulacea and pairwise comparisons for V. americana.
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TABLE 1 | Results of one-way repeated measures ANOVA for the effects of the salinity treatment (25, 40, or 60 PSU) on different variables in H. stipulacea.

Variable Effect dF Mean of squares F P-value n

Leaf number Time 1.697 855.055 14.019 0.000 5

Time∗Salinity 3.395 79.254 1.299 0.303 5

Salinity 2.000 93.195 1.621 0.238 5

Leaf area Time 2.220 1.855 7.485 0.006 3

Time∗Salinity 4.439 1.250 5.042 0.010 3

Salinity 2.000 1.613 8.242 0.019 3

Fv/Fm Time 2.899 0.001 4.836 0.007 5

Time∗Salinity 5.798 0.000 1.126 0.367 5

Salinity 2.000 0.001 1.169 0.344 5

Total chlorophyll Time 3.325 0.100 2.600 0.061 5

Time∗Salinity 9.976 0.062 1.620 0.140 5

Salinity 3.000 0.191 1.582 0.250 5

Carotenoids Time 3.281 0.001 2.083 0.115 5

Time∗Salinity 9.844 0.001 1.911 0.077 5

Salinity 3.000 0.004 1.253 0.338 5

Shown are the different dependent variables, effect, degrees of freedom (df), mean of squares, F- and P-values and the number of biological replicates (n).

TABLE 2 | Results of one-way repeated measures ANOVA for the effects of the salinity treatment (1 vs. 12 PSU) on different variables in V. americana.

Variable Effect dF Mean of squares F P-value n

Leaf number Time 1.486 180.234 5.021 0.034 5

Time∗Salinity 1.486 353.041 9.835 0.005 5

Salinity 1.000 775.557 11.250 0.010 5

Blade length Time 1.184 44.613 28.970 0.001 4

Time∗Salinity 1.184 41.177 26.739 0.001 4

Salinity 1.000 42.875 8.258 0.028 4

Shoot number Time 1.550 12.637 7.649 0.014 4

Time∗Salinity 1.545 3.788 2.293 0.160 4

Salinity 1.000 8.383 6.717 0.041 4

Fv/Fm Time 2.519 0.001 0.717 0.534 4

Time∗Salinity 2.519 0.003 3.076 0.066 4

Salinity 1.000 0.000 0.359 0.571 4

Total chlorophyll Time 2.123 281.552 19.599 0.000 5

Time∗Salinity 2.123 48.893 3.403 0.055 5

Salinity 1.000 17.503 11.410 0.010 5

Carotenoids Time 2.439 16.052 23.370 0.000 5

Time∗Salinity 2.439 2.145 3.123 0.058 5

Salinity 1.000 2.009 27.76 0.001 5

Shown are the different dependent variables, effect, degrees of freedom (df), mean of squares, F-and P-values and the number of biological replicates (n).

to control salinity, the stressed plants were able to recover
and there was no significant difference between the control
and stressed plants at day 60. While total chlorophyll and
carotenoid contents for V. americana plants also displayed
no significant difference between treatments over time (one-
way ANOVA with repeated measures, P > 0.05; Table 2),
there were strong trends that indicated some differential effect
(Table 2) between control and salt-stressed V. americana plants
(Figure 5D). This is suggested by differences in chlorophyll and
carotenoid contents between the treatments shown toward the
end of the experiment, after the return of salt-stressed plants to
control salt conditions, where both total chlorophyll (Figure 5D)
and carotenoid (Figure 5F) levels increased significantly above

that of control plants (one-way ANOVA, followed by Pairwise
comparisons, P < 0.05; Figure 5F).

Changes in Salinity Cause a Greater
Effect on the Biomass and C/N Ratios of
H. stipulacea Than V. americana
Biomass and C/N ratios of H. stipulacea and V. americana
were determined from plants harvested at day 60 (27 days into
the recovery period). A significant decrease (one-way ANOVA,
P < 0.05; Table 3) in the biomass of both below- and above-
ground tissues from H. stipulacea plants previously exposed
to hypo or hypersalinity was observed compared to plants
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FIGURE 5 | Photo-physiological parameters measured in H. stipulacea (Left; A,C,E) and V. americana (Right B,D,F) throughout the experiment. Data represent
mean ± SD in dark-adapted quantum yield of PSII (Fv/Fm; A,B), total chlorophyll (chlorophyll a+b; C,D) and carotenoid (E,F) concentrations. Time-points with
different letters are significantly different between treatments, P ≤ 0.05 as determined by Tukey–Kramer HSD for H. stipulacea and pairwise comparisons for
V. americana.
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that were maintained during the entire experimental period in
control salinities (Figure 6A). This finding indicates a long-
lasting impact of the salinity treatment on H. stipulacea plants.
A long-term effect of salinity on V. americana biomass was also
observed but only in above-ground tissues (Figure 6B; one-way
ANOVA, P < 0.05; Table 4). There was no significant difference
(one-way ANOVA, P > 0.05; Table 4) in biomass of below-
ground V. americana tissues between control and salt-treated
plants.

C/N ratios of H. stipulacea above- and below-ground tissues
exposed to both hypo and hypersalinity exhibited a significant
reduction at the end of the experiment (one-way ANOVA,
P < 0.05; Table 3) compared to control plants (Figure 6C).
However, no differences (one-way ANOVA, P < 0.05; Table 4)
in V. americana C/N ratios between control and salt-treated
plants were observed in either above- or below-ground tissues
(Figure 6D).

DISCUSSION

In terms of their ability to withstand marine salinities, seagrasses
are defined as halophytes (Zhu, 2001; Touchette, 2007; Munns
and Tester, 2008). This is probably even more so for the tropical
H. stipulacea since it is dominant in the northern Red Sea, where
salinity is rarely lower than 40–41 PSU (Katz et al., 2015). While
it is obvious that H. stipulacea and V. americana are very different
plants that exist in very different habitats and in particular,
different salt environments, they are genetically very close (Les
et al., 1997, 2006). Both these species are capable of extensive
clonal growth (Lovett-Doust and Laporte, 1991), and both have
a relatively wide, although not overlapping, salt range. Here, we
are not comparing salt tolerance per se between the two species
but comparing the responses of each plant to changes in salinity.
In this context, it is important to note that the transcriptome
and metabolome of the halophytic Arabidopsis relative, Eutrema
salsugineum exhibit a much lower global response to salt stress
than salt-sensitive Arabidopsis (Gong et al., 2005; Lugan et al.,
2010; Kazachkova et al., 2013). However, at higher salinity levels
than is required for Arabidopsis to respond, stress-mediated
induction of the E. salsugineum transcriptome does occur
suggesting that the stress-sensitive and stress-tolerant species
possess different sensitivities to salt (Gong et al., 2005; Amtmann,
2009). A similar situation could occur between V. americana
and H. stipulacea as the seagrass only exhibits an effect of salt
on growth at a far higher salt level than its freshwater relative
(Figures 3, 4).

Most seagrasses are thought to be sensitive to hypersalinity
(Ogata and Matsui, 1965; Biebl and McRoy, 1971; Zieman, 1975;
Adams and Bate, 1994; Kamermans et al., 1999; Van Katwijk et al.,
1999). While there are a few studies on the effect of temperature
and light on H. stipulacea (Angel et al., 1995; Schwarz and
Hellblom, 2002; Sharon et al., 2009, 2011), this is, to the best of
our knowledge, the first paper exploring the salinity range and
effects of salinity on the physiology and growth of this euryhaline
seagrass species.

Leaf Size Modulation – An Important
Mechanism to Cope With Salinity in
H. stipulacea
Among other traits such as ion homeostasis, photosynthesis,
yield components and senescence, plant growth is an important
trait associated with salt stress (Negrão et al., 2017). Plants
reduce their growth rate immediately after the onset of stress
and to begin to conserve and distribute their resources as
needed (Skirycz and Inzé, 2010). Several reports on terrestrial
plants suggest a reduction in leaf area as a general response
to salinity stress (Marcelis and Van Hooijdonk, 1999; Wang
and Nii, 2000; Maggio et al., 2007). Our results support this
general response to stress – H. stipulacea suffered reductions in
leaf area when exposed to hyper or hyposalinity (Figure 4C),
with hyposalinity also causing a trend toward reduction in leaf
number (Figure 4A). Previous studies showed that H. stipulacea
modified leaf size in response to varying temperature (Procaccini
et al., 1999), light levels (Schwarz and Hellblom, 2002; Mejia
et al., 2016; Rotini et al., 2017) and hydrodynamics (Procaccini
et al., 1999; Mejia et al., 2016). Hence, leaf size modulation
may be an important mechanism in H. stipulacea to cope
not only with salinity but with other abiotic stresses as
well. It might be worth noting that under hyposalinity, leaf
area was not very different from control plants until after
day 33. This could be considered as a late response or
damage, at least in comparison to H. stipulacea’s response to
hypersalinity.

In contrast, V. americana showed a significant reduction
in the number of leaves, number of shoots/plant and blade
length (Figures 4B,D,E). In the case of leaf and shoot number,
V. americana seemed to only show an effect of hypersaline
stress 3 weeks after stress induction. These results are in
agreement with other studies suggesting a similar effect of
salinity on blade length, shoot number and leaf number in
this freshwater species (Bourn, 1932, 1934; Haller et al., 1974;
Frazer et al., 2006). Boustany et al. (2010) showed hardly any

TABLE 3 | Results of one-way ANOVA for the effects of the salinity treatment (25, 40, or 60 PSU) on different variables in H. stipulacea at day 60.

Variable Effect dF Mean of squares F P-value n

C/N above-ground Salinity 2.000 82.190 14.692 0.001 3

C/N below-ground Salinity 2.000 61.642 7.346 0.024 3

Biomass above-ground Salinity 2.000 0.018 5.260 0.023 5

Biomass below-ground Salinity 2.000 0.034 20.966 0.000 5

Shown are the different dependent variables, effect, degrees of freedom (df), mean of squares, F- and P-values and the number of biological replicates (n).
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FIGURE 6 | Effects of salinity treatments (see legend of Figure 5 for details) on the above- and below-ground dry biomass and C/N ratios in H. stipulacea (Left; A,C)
and V. americana (Right; B,D) measured the end of the experiment (day 60 only). Data represent mean ± SD. Bars with different letters are significantly different
between treatments, P ≤ 0.05 as determined by Tukey–Kramer HSD for H. stipulacea and pairwise comparisons for V. americana.

TABLE 4 | Results of one-way ANOVA for the effects of the salinity treatment (1 vs. 12 PSU) on different variables in V. americana at day 60.

Variable Effect dF Mean of squares F P-value n

C/N above-ground Salinity 1.000 7.200 0.652 0.443 5

C/N below-ground Salinity 1.000 15.996 0.775 0.404 5

Biomass above-ground Salinity 1.000 1.020 51.752 0.000 5

Biomass below-ground Salinity 1.000 0.004 0.362 0.564 5

Shown are the different dependent variables, effect, degrees of freedom (df), mean of squares, F- and P-values and the number of biological replicates (n).

negative effects on V. americana plants of 3 weeks exposure
to 18 PSU but nearly complete mortality after 10 weeks of
exposure which also complements other reports including Davis
and Brinson (1976), Staver (1986), and French and Moore
(2003). In our study, during the recovery period, there was an

increase in leaf and shoot number comparable to the levels
of the plants grown in control conditions. This recovery was
similar to the recovery observed by Doering et al. (2001), that
summarized recovery of V. americana plants in two stages: (i)
the allocation of energy to the production of new blades on

Frontiers in Plant Science | www.frontiersin.org 12 July 2018 | Volume 9 | Article 950

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-00950 July 2, 2018 Time: 15:33 # 13

Oscar et al. Salt Tolerance in Tropical Seagrass

individual shoots; (ii) the production of new shoots with blades.
Though the recovery period used by Doering et al. (2001) was
over 2 months (compared with our 1-month recovery period),
our results demonstrating increases in shoot and leaf number,
confirm similar recovery patterns. It is interesting to note that
V. americana plants responded immediately to hypersalinity by
slowing down the growth of existing leaves (Figure 4D). There
were no measurements for the last time point after recovery
because the leaves marked for measurements of blade length
were lost (Figure 3T). This could be due to V. americana
accumulating salt in older leaves and then shedding them, which
is a known plant response to salinity (Munns and Tester, 2008),
and it will thus be important to perform detailed measurement
of ion concentrations in tissues of both V. americana and
H. stipulacea.

H. stipulacea Photochemical
Characteristics Are Resilient to Hypo
and Hypersalinity
Quantum efficiency of photosystem II (Fv/Fm) has been used
an as an indicator of stress in seagrasses (Biber et al., 2005;
Massa et al., 2009; Winters et al., 2011; Dooley et al., 2013)
including salinity stress (Ralph, 1998; Fernández-Torquemada
and Sánchez-Lizaso, 2005; Koch et al., 2007). Studies on other
seagrasses indicate that Fv/Fm is negatively affected by exposure
to salinity stress over time (Ralph, 1998; Kahn and Durako,
2006; Pagès et al., 2010). H. stipulacea was reported to have
‘plastic’ photosynthetic capabilities at varying irradiances, and
even showing an alteration in its PSI:PSII ratio (Sharon et al.,
2009, 2011). Previous studies on H. stipulacea have also shown
that enzymes involved in photosynthesis, RuBP and PEPcase,
and located in the epidermal tissue, were active even under
higher salinity conditions (Beer et al., 1980). H. stipulacea
also displayed lower epidermal concentrations of Na+ and
Cl− ions when compared to the exterior and other tissues
(Beer et al., 1980). This might be one of the mechanisms
by which H. stipulacea maintains photosynthetic capacity
throughout the experiment in both hypo and hypersalinity
conditions (Figure 5A). It is well-known that to maintain
photosynthetic efficiency, plants change the concentrations
of their photosynthetic pigments in response to changes in
water quality and light regimes (Campbell et al., 2003; Ralph
et al., 2007). Indeed, there were changes in number and
ultrastructure of chloroplasts in H. stipulacea under high light
conditions (Beer et al., 1980). In contrast to other seagrasses
(Kahn and Durako, 2006; Pagès et al., 2010), our results
show that there was no significant decrease or increase in the
dark-adapted quantum yield (Fv/Fm) and chlorophyll content
(Figures 5A,C) in response to salinity stress, indicating a
rather stable photosynthetic capacity. In contrast, V. americana
showed a reduction in Fv/Fm values during the experiment,
but this took time and was evident only after day 19, which
might be an indication of accumulative damage to the PSII
reaction centers (Maxwell and Johnson, 2000). However, in
terms of Fv/Fm, the V. americana plants demonstrated full
recovery when returned to control salinity conditions as seen

in the measurements at day 60 (Figure 5B). It is worth
mentioning that although Fv/Fm measurements are widely used
and are reliable diagnostic indicators of photophysiological stress
(Murchie and Lawson, 2013) and photoinhibition (Winters et al.,
2003), non-photochemical quenching, and effective quantum
yield measurements (Ralph, 1998) will give us a more complete
picture of the photosynthetic properties of H. stipulacea and
V. americana. In V. americana plants, our results also show
an increase in total chlorophyll and carotenoid content under
hypersalinity (Figures 5D,F). This is in contrast to other
studies which showed a reduction in chlorophyll content
at higher salinities suggesting effects on the photochemical
efficiency of the plants (Doering et al., 1999; French and
Moore, 2003; Boustany et al., 2015). The increase in chlorophyll
and carotenoid content observed in V. americana may be
due to an increase in the number of chloroplasts as seen
in other studies (Aldesuquy and Gaber, 1993; Misra et al.,
1997). However, further studies are required to confirm these
observations.

H. stipulacea Might Mobilize Stored
Reserves From Below-Ground Tissues to
Support Production of New Leaves
For H. stipulacea, measurements made after 27 days of recovery
(day 60), showed significant hyper and hyposalinity-mediated
reduction in above- and below-ground biomass (Figure 6A).
Loss of above-ground biomass may be seen as a response to
salinity by H. stipulacea in an attempt to survive by producing
new leaves but with reduced leaf area. Exposure to both hypo
and hypersalinity treatments caused a long-term change in the
biomass of the rhizomes, which are also associated with storage
of carbohydrates (e.g., sucrose; Gu et al., 2012). Indeed, stress
was shown to reduce underground biomass in the temperate
seagrass Z. marina. In Z. marina, light limitation suppressed
production of new roots, led to a reduction of sucrose reserves,
and caused a decrease in growth rate with increased sucrose
synthase activity in leaf tissues toward the end of the stress (light
limitation) period (Alcoverro et al., 1999). Sucrose synthase is
a key enzyme involved in degradation of sucrose and increased
activity of the enzyme indicated that sucrose was being used for
the synthesis of more effective and compatible solutes (Touchette,
2007). It was previously shown that light or carbon limitation
mobilizes stored reserves to support shoot or leaf proliferation at
the expense of below-ground growth (Zimmerman and Alberte,
1996; Clabby and Osborne, 1997; Zimmerman et al., 1997).
This ability, if present in H. stipulacea, needs to be confirmed
through further studies including accumulation/depletion of
specific amino acids or osmolytes in response to changing
salinity.

The long-term loss of underground carbon storage was
also evident by the C/N ratios measured at the end of the
recovery period (Figures 6C,D). H. stipulacea plants that were
exposed to high or low salinities showed significant decreases
in the above- and below-ground C/N ratios even at day 60,
27 days after they were returned to control salinity levels
(Figure 6C). There is a strong correlation between the C/N ratio
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of seagrasses with N concentration within the plant (Duarte,
1992). H. stipulacea showed higher C/N ratios in roots and
rhizomes relative to leaves in plants at depths shallower than
24 m mainly due to lower nitrogen concentrations (Schwarz
and Hellblom, 2002). In agreement with these results, our
results showed that below-ground tissues exhibited a lower
N concentration than the above-ground tissues under control
and stressed conditions (Figure 6C). The reduction in C/N
ratio observed under hypo and hypersalinities was due to an
increase in N content (Supplementary Table S1) in comparison
to control plants. These results are in line with known studies
showing an increase in tissue nitrogen content and certain
amino acids at hypersaline conditions (Pulich, 1986; Twilley and
Barko,1990).

While studies have shown a significant decrease in both below-
and above-ground biomass in V. americana as a response to
increased salinities (Frazer et al., 2006; Boustany et al., 2015),
only a few studies have shown that the roots might be more
tolerant to increased salinity than shoots (Doering et al., 2001;
Boustany et al., 2010). Boustany et al. (2010) reported that when
V. americana plants were exposed to hypersalinity (8 PSU),
there was an increase in the root:shoot ratio. Furthermore, at
18 PSU the plants lost all the above-ground biomass but 20%
of the roots were able to regrow when the plants were returned
to control conditions (Boustany et al., 2010). Doering et al.
(2001) showed an 80% reduction in above-ground biomass in
V. americana plants exposed to 18 PSU salinity, which recovered
after 115 days of growth back in control salinity conditions.
In the study presented here, exposure to hypersalinity of 12
PSU caused a 60% reduction in the above-ground V. americana
biomass, even after recovery (Figure 6B). Although the duration
of our experiment was not as long as the other studies,
the effects of salinity on the shoots showed similar results,
confirming that roots were more tolerant to hypersalinity than
shoots.

Surprisingly, C/N ratio measurements in V. americana did
not show any significant change between the control and treated
plants (Supplementary Table S2). This might have been due to
recovery of the plants, as shown by the recovery of leaf number
during the period from days 33 to 60 (Figure 4B). Similarly,
Boustany et al. (2015) observed that recovery from salinity begins
as soon as control salinity conditions are restored. Therefore,
the possibility that C/N ratio in V. americana was affected by
hypersalinity cannot be ruled out.

Although the emphasis in this study was on physiology, the
results shown here also have important ecological implications.
While H. stipulacea is native to the Red Sea and the Indian Ocean,
it is invasive in the Mediterranean (Gambi et al., 2009) and
the Caribbean (Steiner and Willette, 2014). With the increases
in brine discharges in the Mediterranean, Red Sea and Persian
Gulf (Bashitialshaaer et al., 2011) and with the Mediterranean
Sea undergoing a process of ‘tropicalization’ (Bianchi and Morri,
2003; Borghini et al., 2014), it is becoming warmer and saltier
(changes of 0.12◦C ± 0.07 year−1 and 0.008 ± 0.006 year−1

in water temperatures and salinities, respectively in the Eastern
Mediterranean; Ozer et al., 2017). This process will occur even
faster after the recent doubling of the capacity of the Suez

Canal (“Double Trouble”; Galil et al., 2015, 2017). Thus, the
potential threat to local Mediterranean biodiversity posed by
H. stipulacea is considered serious. Indeed, H. stipulacea has
been included in the “100 Worst Invasive Alien Species in the
Mediterranean” (Streftaris and Zenetos, 2006). This concern is
even more warranted considering the alarming studies from the
Caribbean showing that H. stipulacea is actually displacing local
seagrass species (Steiner and Willette, 2014), and the studies
from the Mediterranean showing vast declines in the local slow-
growing P. oceanica (Marba and Duarte, 2010; Jordà et al.,
2012).

Similar to the tolerance to increased salinities, the tolerance
to reduced salinities might provide H. stipulacea an advantage
in situations of terrestrial freshwater run-offs when local salinity
levels temporarily drop (e.g., Katz et al., 2015; Winters et al.,
2017).

The current study demonstrates that H. stipulacea is
quite capable of tolerating, at least in the short-term (3–
4 weeks), both increased (60 PSU) and decreased salinities
(25 PSU). While we have no information about other
seagrass species from this region, if indeed H. stipulacea
has a wider salinity tolerance than other local species, it
might have an advantage in the coming future compared
with other seagrass species that might tolerate a much
narrower range of salinity changes. We therefore hypothesize
that tolerance to a wide range of salinities (both hypo
and hypersalinities) could provide H. stipulacea with an
advantage compared with other seagrass species, and might
explain some of its opportunistic and invasive character. We
might be seeing much more H. stipulacea in the impending
future.

CONCLUSIONS AND PERSPECTIVES

How do these closely related species – H. stipulacea and
V. americana inhabit environments with such different salinities?
Answering this question would help us not only in understanding
the ability of H. stipulacea to survive in new environments
(Dittami et al., 2017) and predict extension of this invasive species
to other seas but also aid in elucidating salt tolerance mechanisms
in seagrasses and plants in general.

Our results demonstrate that H. stipulacea has a remarkable
tolerance to hyper and hyposalinity, and it is likely that
H. stipulacea possesses salinity tolerance mechanisms that are
absent in its close freshwater relative. The most visible differences
in salt tolerance between the two species are leaf size modulation
and the ability to produce new shoots probably at the expense of
the below-ground tissue in H. stipulacea. Clearly, H. stipulacea is
able to maintain its photosynthetic capability under both hyper
and hyposalinity. This resilience to changing salinity may also
be an important trait explaining the invasive nature of this
species in the Caribbean Sea. Even though H. stipulacea does not
exhibit much response to changing salinities in terms of growth
and photosynthesis, the effects of hyper and hyposalinity in
this seagrass cannot be dismissed considering the salt-mediated
effects on biomass and C/N ratios. Contrasting responses to
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hypersalinity between H. stipulacea and V. americana are
most evident just before and after the recovery phase; during
this shift from hypersalinity back to control salinity levels,
V. americana displays recovery of all growth and photochemical
measurements to pre-stress values. The roots/below-ground
tissues of V. americana are more tolerant to changing salinities in
comparison with H. stipulacea. On-going work has moved on to
molecular profiling in both these closely related species and holds
great potential in separating molecular traits associated with
adaption to an aquatic lifestyle (found in both H. stipulacea and
V. americana) and those specifically associated with adaptation
to high levels of salinity associated with the marine environment
(found only in H. stipulacea). With recent studies on the
microbiome of H. stipulacea (Mejia et al., 2016; Rotini et al., 2017)
it is increasingly believed that plant–microbe interactions play an
important role in plant adaptation to new environments. It would
be interesting to study how much of H. stipulacea’s tolerance to
salinity may be attributed to its associated microbes. More studies
including accumulation of osmolytes and compartmentalization
of Na+ ions in both these plant species would reveal interesting
details regarding plant tolerance mechanisms. One way of
comprehending ecological traits such as salinity is to combine
phenotypic and physiological assessments with transcriptomic
and their equivalent metabolic pathways (Exadactylos, 2015).
With the emergence of molecular profiling and omics techniques
in seagrass biology (Procaccini et al., 2007; Davey et al., 2016;
Lee et al., 2016; Olsen et al., 2016), recent studies have focused
on the effects of light, increased water temperature, salinity,
high CO2 levels at the transcriptomic level in seagrasses. These
studies are revealing new insights into mechanisms adapted by
seagrasses to survive under various abiotic stresses (Franssen
et al., 2011; Kong et al., 2014; Piro et al., 2015a,b; Salo et al., 2015;
Marín-Guirao et al., 2017; Ruocco et al., 2017). Comparisons
of the transcriptome and the metabolome of H. stipulacea
and V. americana might reveal more about salinity tolerance
mechanisms present in H. stipulacea.
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