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Timely monitoring nitrogen status of rice crops with remote sensing can help us optimize

nitrogen fertilizer management and reduce environmental pollution. Recently, the use

of near-surface imaging spectroscopy is emerging as a promising technology that

can collect hyperspectral images with spatial resolutions ranging from millimeters to

decimeters. The spatial resolution is crucial for the efficiency in the image sampling

across rice plants and the separation of leaf signals from the background. However, the

optimal spatial resolution of such images for monitoring the leaf nitrogen concentration

(LNC) in rice crops remains unclear. To assess the impact of spatial resolution on the

estimation of rice LNC, we collected ground-based hyperspectral images throughout the

entire growing season over 2 consecutive years and generated ten sets of images with

spatial resolutions ranging from 1.3 to 450mm. These images were used to determine

the sensitivity of LNC prediction to spatial resolution with three groups of vegetation

indices (VIs) and twomultivariatemethodsGaussian Process regression (GPR) and Partial

least squares regression (PLSR). The reflectance spectra of sunlit-, shaded-, and all-leaf

leaf pixels separated from background pixels at each spatial resolution were used to

predict LNC with VIs, GPR and PLSR, respectively. The results demonstrated all-leaf

pixels generally exhibited more stable performance than sunlit- and shaded-leaf pixels

regardless of estimation approaches. The predictions of LNC required stage-specific

LNC∼VI models for each vegetative stage but could be performed with a single model

for all the reproductive stages. Specifically, most VIs achieved stable performances from

all the resolutions finer than 14mm for the early tillering stage but from all the resolutions

finer than 56mm for the other stages. In contrast, the global models for the prediction of

LNC across the entire growing seasonwere successfully establishedwith the approaches
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of GPR or PLSR. In particular, GPR generally exhibited the best prediction of LNC with

the optimal spatial resolution being found at 28mm. These findings represent significant

advances in the application of ground-based imaging spectroscopy as a promising

approach to crop monitoring and understanding the effects of spatial resolution on the

estimation of rice LNC.

Keywords: leaf nitrogen concentration (LNC), imaging spectrometers, spatial resolutions, paddy rice, vegetation

indices (VIs), Gaussian Process Regression (GPR), Partial Least Squares Regression (PLSR)

INTRODUCTION

Nitrogen (N) is the key nutrient parameter determining the
photosynthetic functioning and productivity in crops (Inoue
et al., 2012). N application deficiency could lead to lower
chlorophyll content, lower photosynthetic assimilation, less
biomass production, and reduced grain yield (Wang et al., 2014;
Jay et al., 2017). Higher N application can improve the crop
yield but it would also cause a series of environmental pollution
issues and even yield decrease when the fertilization becomes
excessive (Kaushal et al., 2011; Inoue et al., 2012). Therefore,
timely monitoring of crop N status for precision N management
purposes is critical for increasing grain yields andN use efficiency
while also reducing environmental pollution (Miao et al., 2011;
Zhang et al., 2011; Inoue et al., 2012).

In the past few decades, remote sensing has been proven
as a promising approach to estimate crop N status at the field
scale. As one of the most important crops for global food
security, rice (Oryza sativa L.) has been investigated in numerous
studies for determining canopy leaf N concentration (LNC) or
plant N concentration using canopy reflectance spectra collected
with field spectrometers (e.g., ASD FieldSpec Pro spectrometer)
(Table 1). A series of studies applied multivariate regression (e.g.,
stepwise multiple linear regression) in the selection of optimal
bands or variables for detecting rice N status (e.g., Tang et al.,
2007; Yu et al., 2013) (Table 1). These methods usually produce
high predictive accuracy but sometimes at the cost of over-fitting
and intensive computation, especially when excessive variables
were selected (Yu et al., 2013). Other studies use vegetation
indices (VIs) that employ two or three bands in the visible, red-
edge, near-infrared (NIR), or shortwave infrared regions to assess
rice N status (e.g., Xue et al., 2004; Wang et al., 2012; Tian
et al., 2014). These VI-based approaches are easier to operate as
compared to those multivariate regressions and can also produce
higher accuracies and better robustness in assessing N status.

Most of previous studies focused on estimating N status
in a dense canopy after the jointing stage and only a few
evaluated the performance of LNC monitoring before canopy
closure (Xue et al., 2004; Yu et al., 2013; Tian et al., 2014). The
canopy spectra collected with field non-imaging spectrometers
represent a mixture of reflectance signals from rice organs and

Abbreviations: CIRed−edge , red edge chlorophyll index; EVI, enhanced vegetation

index; GPR, Gaussian Process regression; LNC, leaf nitrogen concentration (%);

MTCI, MERIS terrestrial chlorophyll index; OSAVI, optimized soil-adjusted

vegetation index; PLSR, partial least squares regression; PRI, photochemical

reflectance index; TCARI, transformed chlorophyll absorption reflectance index;

UAV, unmanned aerial vehicle; VIs, vegetation indices.

water, soil or duckweed backgrounds in rice paddy fields (Gnyp
et al., 2014; Sun et al., 2017). These environmental properties
could negatively influence the spectroscopic estimation of LNC.
In particular, the spectral properties of background materials
dominate the overall canopy spectral signals during the early
growth stages, which are critical periods for N fertilizer
application and rice biomass formation (Nguyen and Lee, 2006;
Tian et al., 2014). Furthermore, panicles gradually emerge
from the sheath and are located in the upper-layer of rice
canopies (Gnyp et al., 2014) at advanced reproductive stages.
The coexistence of leaves and panicles in rice canopies makes
the canopy reflectance signals more complicated and also creates
uncertainties in the quantification of leaf N status from canopy
reflectance spectra.

Recently, the use of ground-based or low-altitude UAV-based
(unmanned aerial vehicle, UAV) multispectral and hyperspectral
cameras has provided a promising avenue for implementing
precision agriculture (Vigneau et al., 2011; Zhang and Kovacs,
2012) and crop phenotyping (Araus and Cairns, 2014). These
cameras can provide a high spatial resolution with a range
from a few millimeters to a few decimeters and high spectral
resolution simultaneously. The spatial resolution (the smallest
object that can be recognized from the imaging data) for different
imaging sensors is determined by the size of IFOV (instantaneous
field of view) and the altitude of the observation platform
(Atkinson, 2017). This is directly related to the efficiency of data
collection and processing, which can be improved as platform
altitude increases and spatial resolution degrades (Jay et al., 2017).
However, a high spatial heterogeneity might be observed within
a coarser pixel size that can lead to a degree of uncertainty
in the spectroscopic estimation of biochemical variables (Croft
et al., 2013). Thus, the determination of optimal spatial resolution
from sensitivity analyses is required for a specific application
(Ming et al., 2011) such as the estimation of crop LNC to offer
a good compromise between the estimation accuracy and the
measurement efficiency of crop canopy images.

Ground-based imaging spectrometers can be used to collected
images of crop canopies with an extremely high spatial
resolution, which allowed us to do the sensitivity analysis
using the strategy of upscaling for generating different spatial
resolution imageries (Wu et al., 2009). With a simple setup of
imaging spectrometers in the field, Jay et al. (2017) collected
high resolution images of sugar beet canopies and successfully
evaluate the sensitivity of chlorophyll content estimation to
spatial resolution. However, their findings might be limited
for monitoring rice N status because there were substantial
differences in the canopy structure between sugar beet (with
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TABLE 1 | Summary of studies on the spectroscopic estimation of rice N status using field spectrometer measurements.

Reference Coverage of growth stages Method Data source Nitrogen

concentration

Xue et al., 2004 Tillering, jointing, heading, and filling SR(810, 560) MSR16 radiometer Leaf N

Nguyen and Lee, 2006 Panicle initiation and booting PLS model GER 1500 spectroradiometer Leaf N

Tang et al., 2007 Booting, heading, milking, and maturing SMLR model FieldSpec Pro FR

spectroradiometer

Leaf N

Zhu et al., 2007a Jointing, booting, heading, and filling NDVI(1220, 710) MSR16 radiometer Leaf N

Zhu et al., 2007b Heading and filling NDVI(1220, 610) MSR16 radiometer Leaf N

Lee et al., 2008 Panicle initiation D735 Model LI-1800

spectroradiometer

Plant N

Stroppiana et al., 2009 Tillering, stem elongation, booting, flowering NDVI(503, 483) FieldSpec Pro FR

spectroradiometer

Plant N

Wang et al., 2012 Jointing, booting, heading, and filling (R924 –R703 + 2 × R423)/(R924

+ R703 −2 × R423)

FieldSpec Pro FR

spectroradiometer

Leaf N

Yu et al., 2013 Tillering, jointing, booting, heading,

flowering, and filling

SMLR model FieldSpec Pro FR

spectroradiometer

Leaf N

Cao et al., 2013 Panicle initiation, stem elongation, and

heading

SMLR model Crop Circle ACS-470 active

sensor

Plant N

Tian et al., 2014 Tillering, jointing, booting, heading, filling

and milking

SR(553, 537) FieldSpec Pro FR

spectroradiometer

Leaf N

Yao et al., 2014 Panicle initiation, stem elongation, and

heading

NDVI GreenSeeker sensor Plant N

Moharana and Dutta, 2016 Booting, heading, and filling R705/(R717 + R491) FieldSpec Pro FR

spectroradiometer

Leaf N

Qin et al., 2016 Jointing, heading, milking, ripening D738/D522 HR-1024i Leaf N

wider and more flat leaves) and paddy rice (with narrower and
more tilt leaves).

For the estimation of crop LNC using ground-based
hyperspectral systems (Li et al., 2014), previous studies were
devoted to crops like wheat and sugar beet and focused only
on observations of well-illuminated leaves (i.e., sunlit leaves)
in the field (Vigneau et al., 2011; Jay et al., 2014). As a large
proportion of rice leaves under natural light conditions in the
field, shaded leaves were not considered in these experiments
for the assessment of leaf or plant N status. Additionally, the
hyperspectral images used in all of those studies (Vigneau
et al., 2011; Jay et al., 2014) were obtained at either a single
growth stage or over a narrow time window in the full
growing season. It remains unclear how their models, based on
multivariate regression methods (e.g., partial linear regression)
and prediction approaches, would perform for other growth
stages when canopy composition changes. Such concerns are
evidenced by the fact that the relationships between the VIs
of leaves and LNC were found to vary with the growth stages
of rice (Xue et al., 2004; Yu et al., 2013). With the use of
canopy reflectance spectra, Xue et al. (2004) and Yu et al.
(2013) demonstrated that the VIs were well-correlated with
LNC for individual stages but not so for pooled data from all
stages.

In this regard, we focused on the LNC estimation in paddy rice
canopies throughout the entire growing season using imaging
spectroscopy data with various spatial resolutions ranging from
millimeter- to centimeter-resolution. A total of 16 VIs commonly
used for assessing N status were examined in terms of their

relationships with LNC and their corresponding predictions
of LNC for individual stages or stage-groups. Furthermore,
we evaluated the feasibility of using multivariate methods
for establishing regression models across all growth stages.
The specific research objectives were: (1) to compare the
LNC∼VI relationships and validate the predictive performance
for individual growth stages or stage-groups at each spatial
resolution; (2) to evaluate the sensitivity of global LNC estimation
to spatial resolution usingmultivariate regressionmethods across
all growth stages; (3) to determine the optimal spatial resolution
for the LNC estimation in rice canopies.

MATERIALS AND METHODS

Experimental Design
Two rice (Oryza sativa L.) experiments were designed,
encompassing a combination of treatments of rice cultivars,
planting density, and N rate. These two experiments were
respectively conducted in 2014 and 2015 from July to September
at the experimental station of National Engineering and
Technology Center for Information Agriculture (NETCIA),
Rugao, Jiangsu, China (120◦19′ E, 32◦14′ N) with the same
treatments for each year. The predominant soil texture was loam
and the organic carbon concentration in soil was 12.95 g·kg−1.
The annual average temperature was 14.6◦C and annual average
precipitation was 1055.5mm, respectively.

Four N fertilization rates [0 (N0), 100 (N1), 200 (N2), and 300
(N3) kg N ha−1] were applied in the form of urea, with 40% at
preplanting, 10% at tillering, 30% at jointing and 20% at booting.
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In particular, there were two planting densities (0.30m by 0.15m
and 0.50m by 0.15m) for N1 and N2 rates and one planting
density (0.30m by 0.15m) for N0 and N3 rates. Each treatment
had three replicates which were arranged in a randomized block
design. For all plots, 135 kg P2O5 ha−1 (as phosphate fertilizer)
and 190 kg K2Oha−1 (as potassium fertilizer) were applied before
transplanting. The two rice cultivars were Japonica rice of erect
plant type, Wuyunjing 24 (V1), and Indica rice of spread type,
Y liangyou 1 (V2). Each plot size was 5m by 6m and a total of
36 plots (12 cultivation conditions with three replications) were
grown in each experiment.

Acquisition and Preprocessing of
Hyperspectral Imagery
Hyperspectral Image Data Acquisition
All hyperspectral images were acquired by a pushbroom scanning
sensor (ImSpector V10E-PS, SpecIm, Finland) mounted on a
platform about 1.2m above the rice canopies (Figure 1). Our
platform could be lifted up to a maximum height of 3m above
the ground and we could ensure fields of view in the same size at
the top of the canopy throughout the entire growing season. The
spectral range of this sensor was from 360 to 1025 nm divided
into 520 bands with a spectral resolution of 2.8 nm. The spatial
dimension of image data was acquired by the movement of
a linear actuator. The spatial resolution at near-nadir position
(42.8◦Field of view) was about 1.3mm and the swath width was
about 0.9m. The exposure time of this sensor was fixed manually
to adapt to brightness variation between scans under natural
light conditions, with∼0.2ms for sunny days. This hyperspectral
imaging system completed a scene by scanning rice canopies
across the row orientation (5m wide) and generated a total of
432 images for the two experiments. In particular, 36 images
were collected for each growth stage (Figure 2). The summary
of image acquisition dates is shown in Table 2.

Data Preprocessing
The image preprocessing procedures including subtraction of
sensor electronic noise (dark current) and radiometric correction
were implemented within the specVIEW software (Specim, Oulu,
Finland). The final relative reflectance values were converted
from the original digital number (DN) values (i.e., pixel
brightness values) using the calibration equation as follows (Zhou
et al., 2017):

Reftarget =
DNtarget − DNnoise

DNpanel − DNnoise
× Refpanel (1)

where, DNtarget, DNnoise, and DNpanel is the DN value of target,
electronic noise (dark current) and 99% reflective white reference
panel, respectively. Ref target and Ref panel is the reflectance value
of target and reference panel, respectively. A barium sulfate
(BaSO4) panel was placed on the tripod as the white reference
panel Herrmann et al., 2013. The relative reflectance data were
smoothed using the Minimum Noise Fraction (MNF) transform
procedure in the ENVI 4.8 (EXELIS, Boulder, CO, USA) software
environment. The spectral data in the 400–900 nm range were
retained because of strong noise in other spectral regions even
after smoothing.

Image Spatial Subsampling
To avoid the bi-directional reflectance distribution reflectance
(BRDF) effects on the left and right edges of images caused
by the impact of wide viewing geometry, we cropped original
images and only used the middle half of the original images (i.e.,
the swath width was about 45 cm). The performance of LNC
estimation was evaluated over various spatial resolutions. Given
the swath width was 450mm, we selected the spatial resolutions
by dividing 450mm by a factor of two iteratively. The original
spatial resolutions of 1.3mm was degraded to 2, 4, 7, 14, 28,
56, 113, 225, 450mm by aggregating over cells of N × N pixels
as suggested in Jay et al. (2017). An example image at different
spatial resolutions is illustrated in Figure 3.

Discrimination of Non-vegetation Background and

Vegetation
To investigate the relationships between LNC and VIs derived
from pure leaf pixels across the whole image at 1.3mm spatial
resolutions, we firstly identified vegetation pixels applying a
threshold of the enhanced vegetation index (EVI) (Pinto et al.,
2016; Zhou et al., 2017) (EVI > 0.45). The EVI is an optimized
vegetation index with improved vegetation monitoring through
minimizing the effects of background influences and atmosphere
influences (Liu and Huete, 1995). Its discrimination capacity for
separating non-vegetation background and vegetation pixels has
been proved in previous studies (Pinto et al., 2016; Zhou et al.,
2017). Afterwards, we constructed the classification decision tree
developed in Zhou et al. (2017) by applying photochemical
reflectance index (PRI) (Gamon et al., 1992) and transformed
chlorophyll absorption reflectance index (TCARI) (Haboudane
et al., 2002) thresholds at two sequential steps for discriminating
all the pixels of sunlit and shaded canopy leaves and panicles in
the images. The PRI was originally developed to track the current
de-epoxidation state of the xanthophyll pigment and used as
a proxy of light use efficiency (LUE) in many studies (Gamon
et al., 1992; Cheng et al., 2012; Damm et al., 2015). The PRI
values for panicles were substantially lower than those for leaves
because of the substantially less efficient photosynthesis and
systematically lower light use efficiency for panicles (Zhou et al.,
2017). The TCARI had been widely used as a proxy of vegetation
chlorophyll content (Haboudane et al., 2002). The differences
in the strength of apparent chlorophyll absorption led to clear
separations of sunlit and shaded counterparts throughout the
whole growing season (Kokaly et al., 2003; Castro and Sanchez-
Azofeifa, 2008; Zhou et al., 2017). Specifically, we extracted all
the leaf pixels with PRI > −0.058 and all panicle pixels with PRI
≤ −0.058. Then, the pixels of sunlit leaves and shaded leaves
were identified with TCARI values greater and less than 0.172,
respectively; the sunlit and shaded panicles were identified with a
TCARI value of greater and lower than 0.241, respectively. More
detailed information regarding the discrimination of different
components within rice canopies could be found in Zhou et al.
(2017).

We calculated the green fraction (the fraction of green
vegetation pixels observed by the sensor) from the original
images with 1.3mm spatial resolution for which the fraction of
mixed pixels was negligible. Then, we followed the strategy in

Frontiers in Plant Science | www.frontiersin.org 4 July 2018 | Volume 9 | Article 964

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Zhou et al. Assessment of Rice Nitrogen Status

FIGURE 1 | (A) Experimental setup of the near-ground hyperspectral imaging system in the paddy field and (B) onset of the hyperspectral camera in the system.

FIGURE 2 | Example true color images cropped from hyperspectral scenes acquired throughout the growing season in 2014. A total of 12 plots (one replication) for

each growth stage were shown here. V1: Wuyunjing 24 (Japonica rice); V2: Y liangyou 1 (Indica rice). N0-N3: four N fertilization rates (0, 100, 200, and 300

kg·N·ha−1). D1-D2: two row spacings (30 and 50 cm). ET, early tillering stage; LT, late tillering stage; JT, jointing stage; LB, late booting stage; HD, heading stage; LF,

late filling stage.

Jay et al. (2017) to adjust the threshold values of EVI, TCARI,
and PRI for individual resolutions to keep the green fraction
close to that calculated at the 1.3mm spatial resolution. As shown
in Figure 4, the EVI threshold values decreased as the spatial
resolution degraded for the early tillering stage and the late
tillering stage but slightly increased for the reproductive stages.
In contrast, TCARI threshold values exhibited a tendency to

decline from 2mm resolution to 225mm resolution for each
stage. The PRI threshold values increased with the degradation
of spatial resolution for the heading stage but decreased for the
filling stage. Given only one pixel left when degrading the original
cropped image to 450mm spatial resolution, we did not provide
the separate thresholds for this resolution. Additionally, the
average spectra of all-leaf pixels, sunlit-, and shaded-leaf pixels

Frontiers in Plant Science | www.frontiersin.org 5 July 2018 | Volume 9 | Article 964

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Zhou et al. Assessment of Rice Nitrogen Status

TABLE 2 | Summary of image acquisition dates (also denoted as days after transplanting: DAT) for the rice experiment.

Years Early

tillering

Late

tillering

Jointing Early

booting

Late

booting

Heading Early

filling

Late

filling

2014 8 Jul.

(22)

20 Jul.

(34)

4 Aug.

(49)

/ 20 Aug.

(65)

3 Sept.

(78)

/ 20 Sept.

(96)

2015 9 Jul.

(24)

21 Jul.

(36)

31 Jul.

(46)

14 Aug.

(60)

25 Aug.

(71)

/ 9 Sept.

(86)

/

FIGURE 3 | Example true color images with gradual degradation of spatial resolution acquired on 8 July 2014. Illustration for (A) 1.3mm, (B) 14mm, (C) 28mm, (D)

56mm, (E) 113mm and (F) 225mm.

FIGURE 4 | The profiles of EVI (A), TCARI (B), and PRI (C) threshold values adjusted for coarser resolutions to keep the similar green fraction. ET, early tillering stage;

LT, late tillering stage; JT, jointing stage; BT, booting stage; HD, heading stage; FL, filling stage.
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for 450mm spatial resolution were assigned as the average spectra
of whole-image pixels [vegetation pixels and background pixels)
across the original cropped image (1.3mm spatial resolution)].

Calculation of VIs
VIs are designed with band combinations to amplify their
sensitivity toward particular biochemical or biophysical
parameters and while also minimize the possible confounding
effects (Malenovský et al., 2015). We included indices from the
literature, specifically the evaluation of N status of crops based
on leaf and canopy level reflectance. We selected three types
of published VIs, including the ratio indices, the normalized
difference indices, and the combined vegetation indices to
estimate LNC as listed in Table 3. These three types of indices
have been commonly used for monitoring vegetation nitrogen
status. In this study, reflectance spectra were firstly averaged over
all pixels for different types of leaf pixels (i.e., all-leaf, sunlit-leaf,
and shaded-leaf) at each spatial resolution and the VIs were then
calculated. The band selection for each index was deliberately
implemented as suggested in Yu et al. (2013) by involving
different spectral ranges for blue, red, green, red-edge, and NIR.

Ratio indices represent the simplest type. Ratio indices are
calculated as the ratio of reflectance in two wavebands: the
first band is sensitive to pigment absorption features and leaf
scattering; the second band is only sensitive to leaf scattering
and used as a reference band to minimize leaf scattering effects
(Blackburn, 2007; Jay et al., 2017). For example, CIRed−edge

TABLE 3 | Published VIs related to N status of crops used in this study.

Index Equation References

SIMPLE RATIO INDICES

SR[800, 675] R800/R675 Jordan, 1969

SR[810, 560] R810/R560 Xue et al., 2004

SR[750, 550] R750/R550 Kim et al., 1994

SR[750, 710] R750/R710 Zarco-Tejada et al., 2001

CIRed−edge R800/R720 −1 Gitelson et al., 2003

NORMALIZED DIFFERENCE INDICES

NDVI (R800-R670)/(R800+R670) Rouse et al., 1974

GNDVI (R750-R550)/(R750+R550) Gitelson et al., 1996

ND705 (R750-R705)/(R750+R705) Gitelson and Merzlyak,

1994

mND705 (R750-R705)/(R750+R705-2*R445) Sims and Gamon, 2002

mSR705 (R750-R445)/(R705-R445) Sims and Gamon, 2002

MTCI (R750-R710)/(R710-R680) Dash and Curran, 2004

PRI (R531-R570)/(R531+R570) Gamon et al., 1992

COMBINED VEGETATION INDICES

TCARI 3*[(R700-R670)-0.2*(R700-

R550)(R700/R670)]

Haboudane et al., 2002

OSAVI (1+0.16)(R800-R670)/(R800+R670+

0.16)

Rondeaux et al., 1996

TCARI/OSAVI TCARI/OSAVI Haboudane et al., 2002

DCNI (R720-R700)/(R700-R670)/(R720-

R670+0.03)

Chen et al., 2010

(Gitelson et al., 2003) is a commonly used ratio index for
estimating chlorophyll content in crops. CIRed−edge combines
a red-edge band that is well-correlated to chlorophyll content
(Horler et al., 1983) and a reference band located in the near-
infrared domain.

The normalized difference indices are calculated with a
few wavebands (commonly two or three wavebands): the first
waveband is sensitive to a target parameter (e.g., chlorophyll
content); other bands are used to minimize the influence of
leaf scattering, leaf surface (specular) reflection, soil background,
or atmosphere for enhancing the relationships with the target
parameter. For example, mND705 combines a red-edge band
(705 nm) that is sensitive to chlorophyll content (Lamb et al.,
2002) with a near-infrared shoulder band (750 nm) and a blue
band (445 nm) to minimize the influences of leaf scattering and
specular reflection, respectively.

The combined vegetation indices are built based on a few
spectral indices: the first index is sensitive to a target parameter;
other indices are used to minimize the influence of soil
background or canopy structure for enhancing the relationships
with the target parameter. For example, TCARI/OSAVI
(Haboudane et al., 2002) has been commonly used to
estimate crop chlorophyll content. Specifically, the transformed
chlorophyll absorption ratio index (TCARI) (Haboudane et al.,
2002) and the optimized soil-adjusted vegetation index (OSAVI)
(Rondeaux et al., 1996) are related to leaf chlorophyll content
and leaf area index, respectively. When the TCARI combined
with the OSAVI, the relationships with leaf chlorophyll content
can be strengthened by reducing the influence of soil background
and canopy structure.

Multivariate Methods
Using multivariable methods is helpful for taking advantage of
hyperspectral data with large numbers of wavebands at fine
spectral resolution (Inoue et al., 2012).

Partial Least Squares Regression (PLSR)
Partial Least Squares Regression (Martens and Næs, 1989; Wold
et al., 2001) is one of the reliable analytical tools for multivariable
data analysis and have been widely used in the assessment of
crop nitrogen status (Vigneau et al., 2011; Inoue et al., 2012;
Ecarnot et al., 2013; Yu et al., 2014). It possesses an advantage
to avoid high multi-collinearity among variables, which is the
inherent issue in stepwise multiple linear regression (Inoue et al.,
2012). When compared with multiple stepwise regression or
principal component, PLSR generally exhibits better predictive
performance (Ye et al., 2008; Ecarnot et al., 2013; Yu et al., 2014).
Specifically, PLSR models are built based on latent variables
instead of real variables (Yu et al., 2014).

Gaussian Process Regression (GPR)
GPR is a non-parametric method that learns the relationship
between the input variables (e.g., reflectance) and output
parameters (e.g., LNC) by fitting a flexible probabilistic
(Bayesian) model directly in function space, with no intermediate
model or model parameters (Verrelst et al., 2012, 2013). Over the
last decade, GPR has emerged as an effective machine learning
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approach to retrieving biophysical parameters (Verrelst et al.,
2012, 2013, 2016). In particular, GPR has been used for mapping
leaf area index and fractional vegetation cover (Verrelst et al.,
2012) and quantifying vegetation traits such as leaf chlorophyll
content (Verrelst et al., 2012, 2013) and canopy water content
(Verrelst et al., 2016).

GPR has alleviated some shortcomings of similar machine
learning methods, while generally achieving good predictive
performances and stabilities. For example, training GPR is
far simpler than neural networks or support vector machines
by using very flexible kernels with several free parameters.
Furthermore, GPR provides a ranking of features (e.g.,
wavelengths) and samples (e.g., reflectance spectra) and thus
partly overcoming the blackbox problems encountered in non-
parametric regression methods (Verrelst et al., 2012).

LNC Measurements
After each measurement of canopy hyperspectral images, three
clusters of plants at the center of the spectral sampling area from
each plot were selected randomly and destructively sampled for
the determination of leaf weight and LNC. For each sample, all
green leaves were separated from their stems, and oven-dried for
30min at 105◦C, and then for about 24 h at 80◦C till constant
weight. Dried leaf samples were ground and then stored in plastic
bags prior to chemical analysis. LNC (%) was determined with
micro-Keldjahl analysis method (Tian et al., 2014).

Calibration and Validation of Predictive
Models
The predictive models were divided into two types: stage-specific
and stage-non-specific (i.e., global models that are suitable for the
full season). Specifically, the stage-specific models for individual
growth stages before booting or stage-groups after booting were
constructed using simple linear or non-linear regression analysis
between LNC and VIs derived from the average spectra of all
the leaf pixels, sunlit, or shaded leaf pixels for individual spatial
resolution datasets.

The global models were constructed using two multivariable
methods: PLSR (Martens and Næs, 1989; Wold et al., 2001)
and GPR (Rasmussen and Williams, 2006) based on the
samples across all growth stages. Specifically, we calibrated
models between LNC and reflectance spectra (400–900 nm) or
continuum-removed reflectance spectra (550–750 nm) (Kokaly
et al., 2003) using PLSR and GPR, respectively. Additionally, we
selected the optimal number of latent variables for calibrating the
PLSR model by leave-one-out cross-validation on the calibration
set.

Two replications for each treatment were used for calibrating
predictive models (i.e., 2/3 of the samples used as the calibration
samples) and one replication (i.e., 1/3 of the samples used as the
validation samples) were used for validating the models. With
regard to the stage-specific models, there were 24 calibration
samples and 12 validation samples for individual growth stages
before booting but 144 calibration samples and 72 validation
samples for the stage-group after booting (i.e., reproductive
stages). For the global models, there were 288 calibration samples
and 144 validation samples through the whole growing season.

The performance of models was assessed using the predictive
coefficient of determination (R2), rootmean square error (RMSE)
between the measured and predicted LNC values.

RESULTS

Seasonal Variation in LNC and Spectral
Properties of All-Leaf Pixels and
Whole-Image Pixels
Figure 5 shows the statistics of LNCmeasurements for individual
growth stages in 2014 and 2015. Generally, the LNC values
for 2014 and 2015 decreased from 4.29 to 1.36% with the
development of growth stages. For both years, LNC changed
dramatically from early tillering to jointing stages.

Regardless of spectral datasets for all-leaf pixels and whole-
image pixels, the average reflectance of all plots in the visible
region decreased from the early tillering stage to the booting or
heading stage and then raised until the filling stage (Figure 6).
However, the reflectance in the NIR region showed an opposite
tendency as compared to the visible region. With regard to the
comparison between the reflectance spectra of all-leaf pixels and
whole-image pixels for individual stages, the NIR reflectance
spectra averaged over all the leaf pixels exhibited higher
amplitudes than those averaged over all canopies, especially
during the early growth stages.

Relationships of Rice LNC With VIs Derived
From All-Leaf Pixels and Whole-Image
Pixels for Various Stages
Table 4 shows a summary of squared Spearman’s correlation
coefficients for all VIs relating to LNC by growth stage. From
the early tillering stage to the jointing stage, most of the
correlations (p < 0.05) for the VIs derived from all-leaf pixels
exhibited higher R2-values than those derived from whole-image
pixels. This contrast generally became less significant with the
development of growth stages but was still apparent at the
group of reproductive stages. Among the VIs examined, the ones
employing red-edge bands (i.e., SR [750, 710], ND705, mSR705,
MTCI, mND705, CIRed−edge) displayed higher R2-values than
others. CIRed−edge, MTCI and TCARI/OSAVI represented the
best performing VIs for the three groups, respectively. With
regard to the performance of these three representative VIs,
TCARI/OSAVI generally exhibited higher ρ

2 thanCIRed−edge and

MTCI at the late tillering stage but lower ρ
2 at the reproductive

stages. In contrast, these three VIs exhibited similar ρ
2-values for

remaining two stages (early tillering and jointing).
Figure 7 shows the scatter plots of LNC∼VI models with

three representative VIs derived from all-leaf pixels and whole-
image pixels for different growth stages. Within both all-leaf
pixels and whole-image pixels represented by the three VIs, the
LNC∼VI models were different among the first three stages and
another single model could fit for the remainder (reproductive
phase) of growth stages. From early tillering to reproductive
stages, the LNC decreased substantially but the VIs did not
follow the decrease, which led to the presence of four clusters
in each of the scatter plots. Specifically, the scatter plots of the
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FIGURE 5 | The temporal profiles of LNC in paddy rice over the whole season in 2014 (A) and 2015 (B). ET, early tillering stage; LT, late tillering stage; JT, jointing

stage; EB, early booting stage; LB, late booting stage; HD, heading stage; EF, Early filling stage; LF, Late filling stage.

FIGURE 6 | Mean reflectance spectra derived from all-leaf pixels (A) and whole-image pixels (B) at individual growth stages. Plots represent the combined data from

2014 and 2015. ET, early tillering stage; LT, late tillering stage; JT, jointing stage; BT, booting stage (including early and later booting stages); HD, heading stage; FL,

filling stage (including early and later filling stages).

VIs derived from all-leaf pixels were more concentrated than
those of the VIs derived from whole-image pixels for any of
the stages before booting, with the most significant discrepancy
being for the early tillering stage. While the LNC∼VI models for
the stages of late tillering and jointing exhibited similar slopes
to those for the reproductive stages, the models for the early
tillering stage differed from all of them in slope and intercept.
These model differences between stages precluded the data from
being fitted with a global model for the whole season. A multi-
stage model was possible only for data from the post-booting
stages as shown in Figure 7 andTable 4. For the correlations with
LNC in the pooled data over reproductive stages, most indices
derived from all-leaf pixels exhibited marginal differences in R2

as compared to those derived from whole-image pixels except
TCARI.

Sensitivity of the Stage-Specific LNC∼VI
Relationships to Spatial Resolution
Figure 8 shows the sensitivity (in terms of ρ

2) of LNC∼VI
relationships (derived from all-leaf pixels, sunlit-, and shaded-
leaf pixels) to spatial resolution for different growth stages.
Generally, the correlations of VIs with LNC decreased with the

degradation of spatial resolutions at a specific stage (or stage-
group). Specifically, most ρ

2-values for the early tillering stage
remained nearly stable from 1.33 to 14mm spatial resolutions,
except for a maximum (ρ2 = 0.73 as the highest value for the
early tillering stage) being observed at 7mm spatial resolution
for TCARI/OSAVI derived from shaded-leaf pixels. In contrast,
most ρ

2-values decreased substantially from 14 to 450mm
spatial resolution regardless of leaf pixel types. The changing
patterns of ρ

2 for the late tillering, jointing, and reproductive
stages were generally similar to that of the early tillering stage
except the decline starting from 56mm spatial resolution for
VIs derived from all-leaf pixels and shaded-leaf pixels but
from 113mm spatial resolution for VIs derived from sunlit-leaf
pixels.

Comparing three types of leaf pixels, most VIs of sunlit leaves
displayed weaker relationships with LNC than those of all leaves
and shaded leaves. In particular, VIs of sunlit leaves exhibited
much lower correlations with LNC at the late tillering stage for
1.3 ∼ 14mm spatial resolution (ρ2 = 0.23∼0.62). In contrast,
more stable values of ρ

2 were observed for considering all-leaf
pixels over different spatial resolutions. Especially, MTCI derived
from all-leaf pixels exhibited closet ρ

2 between different spatial
resolutions at specific stages.
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TABLE 4 | Squared correlation coefficients (ρ2) from Spearman’s correlation for the relationships between LNC and VIs derived from all-leaf pixels or whole-image pixels

(leaf + background pixels) of the original images at 1.3mm spatial resolution for individual growth stages in the vegetative period and the group of reproductive stages.

VIs Early tillering Late tillering Jointing Reproductive

Leaf

pixels

Leaf

+background

pixels

Leaf

pixels

Leaf

+background

pixels

Leaf

pixels

Leaf

+background

pixels

Leaf

pixels

Leaf

+background

pixels

SIMPLE RATIO

SR[800, 675] 0.27** 0.27** 0.43** 0.23** 0.42** 0.37** 0.43** 0.28**

SR[810, 560] 0.49** 0.29** 0.46** 0.28** 0.58** 0.47** 0.64** 0.46**

SR[750, 550] 0.49** 0.26** 0.45** 0.27** 0.55** 0.44** 0.59** 0.40**

SR[750, 710] 0.69** 0.35** 0.59** 0.34** 0.66** 0.52** 0.67** 0.53**

CIRed−edge 0.71** 0.39** 0.61** 0.40** 0.67** 0.58** 0.70** 0.61**

NORMALIZED DIFFERENCE INDEX

NDVI 0.27** 0.27** 0.41** 0.23** 0.42** 0.37** 0.47** 0.31**

GNDVI 0.49** 0.26** 0.45** 0.27** 0.55** 0.44** 0.59** 0.40**

ND705 0.69** 0.35** 0.60** 0.31** 0.64** 0.49** 0.65** 0.50**

mND705 0.62** 0.39** 0.69** 0.36** 0.69** 0.57** 0.71** 0.59**

mSR705 0.62** 0.39** 0.69** 0.36** 0.69** 0.57** 0.71** 0.59**

MTCI 0.70** 0.41** 0.64** 0.52** 0.69** 0.63** 0.71** 0.63**

PRI 0.05 0.12* 0.01 0.08 0.08 0.29** 0.51** 0.36**

COMBINED DIFFERENCE INDEX

TCARI 0.42** 0.06 0.64** 0.01 0.75** 0.06 0.66** 0.33**

OSAVI 0.15** 0.25** 0.07 0.18** 0.37** 0.39** 0.36** 0.22**

TCARI/OSAVI 0.64** 0.47** 0.76** 0.67** 0.72** 0.60** 0.69** 0.52**

DCNI 0.48** 0.28** 0.62** 0.49** 0.75** 0.56** 0.63** 0.48**

*P < 0.01; **P < 0.001. The highest correlations in each column are highlighted in bold.

As shown in Table 5, the best performing VI for all
the individual stages before booting was TCARI/OSAVI. In
particular, the best models were observed at a finer resolution
for the early tillering stage (shade-leaf pixels at 7mm spatial
resolution) and the late tillering stage (all-leaf pixels at 4mm
spatial resolution) but at a coarser resolution for the jointing stage
(all-leaf pixels at 56mm spatial resolution). For the reproductive
stages, MTCI derived from all-leaf pixels at 28mm spatial
resolution performed better than other situations.

Sensitivity of Global LNC Predictions to
Spatial Resolution
When applying the global models (i.e., stage-non-specific models
for all stages) to the validation dataset, the prediction accuracies
generally decreased with the degradation of spatial resolution.
The R2 for all-leaf pixels slightly changed from 1.3 to 28mm
(e.g., R2 = 0.69∼0.72 for GPR using reflectance spectra
of all-leaf pixels) and then gradually decreased. Specifically,
all-leaf pixels exhibited more stable predictive accuracies
over different spatial resolutions (R2 = 0.55∼0.73 for GPR;
R2 = 0.50∼0.63 for PLSR) than sunlit-leaf pixels (R2 = 0.43∼0.75
for GPR; R2 = 0.45∼0.63 for PLSR) and shaded-leaf pixels
(R2 = 0.53∼0.68 for GPR; R2 = 0.42∼0.60 for PLSR). In
contrast, the accuracies for the sunlit-leaf pixels dramatically
declined with the degradation of spatial resolutions after 7mm
spatial resolution. In particular, sunlit-leaf pixels produced the
best prediction of LNC at 1.3 ∼ 4mm spatial resolution

(R2 > 0.74, RMSE < 0.33 %) while performing GPR regardless
of using reflectance spectra and continuum-removed reflectance
spectra.

GPR generally exhibited higher R2 and lower RMSE
values than PLSR regardless of spectral information derived
from all-leaf pixels, sunlit-leaf pixels and shaded-leaf pixels
(Figure 9). With regard to reflectance spectra and continuum-
removed spectra, the former generally showed better predictive
performances than the latter for PLSR but similar accuracies
for GPR. Specifically, the reflectance spectra of shaded-leaf
pixels exhibited higher R2 as compared to the continuum-
removed spectra of shaded-leaf pixels when performing
GPR.

Figure 10 shows the band-by-band values of parameter σ for
GPR models and regression coefficients for PLSR models from
degraded imaging data with 28mm spatial resolution, which
is optimal for generating stable predictive performance. In the
case of GPR model, the band with the lowest σ represents
the most contribution to the regression model. As shown
in Figure 10, most contributing bands were located around
the red region (680 nm), the red-edge region (700 nm), the
blue region (420 nm) and the green region (520 nm, 560 nm)
regardless of leaf pixel types. Specifically, all-leaf pixels generally
exhibited lower σ-values than sunlit- and shaded-leaf pixels
over all the wavelengths. In contrast, the highest σ-values
were observed in the near-infrared shoulder region for sunlit
leaves.
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FIGURE 7 | Best-fit linear relationships of LNC with three representative VIs derived from all-leaf pixels and whole-image pixels: (A,D) CIRed−edge, (B,E) MTCI and

(C,F) TCARI/OSAVI across the original cropped images at 1.3mm spatial resolution. ET, early tillering stage; LT, late tillering stage; JT, jointing stage; RP, reproductive

stages (stages after booting).

For PLSR models, the importance of each band was evaluated
with the coefficient values. The important bands (coefficients in
absolute value) for PLSR models were found around the similar
region as the GPR models. The absolute coefficient values for
all-leaf pixels were generally higher than sunlit- and shaded-
leaf pixels. However, there were no substantial differences in the
coefficients of PLSR models among three types of leaf pixels in
the near-infrared shoulder region.

DISCUSSION

We investigated the LNC∼VI models and two multivariate
regression models (i.e., PLSR and GPR) throughout the entire
growing season of rice using multi-scale imaging spectroscopy
data. To the best of our knowledge, this represents the first
attempt to date to estimate rice LNC in paddy fields with near-
ground hyperspectral imaging data.
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FIGURE 8 | The squared Spearman’s correlation (ρ2) between three representative VIs and LNC as a function of spatial resolution. VIs are derived from the average

reflectance spectra of all-leaf pixels, sunlit- and shaded-leaf pixels across the whole image for different growth stages. The VIs for all-leaf pixels, sunlit- and

shaded-leaf pixels at 450mm spatial resolution were all calculated from the average reflectance spectra of whole-image pixels. ET, early tillering stage; LT, late tillering

stage; JT, jointing stage; RP, reproductive stages (stages after booting). (A–C) CIRed−edge derived from all-, sunlit- and shaded-leaf pixels. (D–F) MTCI derived from

all-, sunlit- and shaded-leaf pixels. (G–I) TCARI/OSAVI derived from all-, sunlit- and shaded-leaf pixels.

Comparison of the Relationships With LNC
Between All-Leaf Derived VIs and
Whole-Image Derived VIs
Our results demonstrated that the all-leaf derived VIs generally
correlated better with LNC than whole-image derived VIs
(Table 4) during individual growth stages before booting,
especially for the early tillering stage. This is consistent with
previous studies on wheat (Vigneau et al., 2011) and sugar beet
(Jay et al., 2014), which reported better predictive performances
of LNC before canopy closure using the pure-pixel leaf spectra

derived from field imaging spectrometer data. This is an

important finding because optimal N fertilizer application

depends heavily on the determination of crop LNC for improving
the yield formation during early growth stages (Nguyen and Lee,
2006; Eitel et al., 2011; Yu et al., 2013; Tian et al., 2014). The lower
correlations of LNC with VIs observed for whole-image pixels

were mainly attributed to the confounding effects of soil, water

or duckweed background interferences (Yu et al., 2013; Sun et al.,
2017) present in the field of view. In this regard, the advantage
of using field imaging spectrometers is the ability that enables
us to extract the pure leaf pixels for directly monitoring leaf N
status.
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TABLE 5 | The prediction accuracies for the best-fit linear relationships between

LNC and a specific VI from three representative VIs at a specific spatial resolution

for the early tillering stage, the late tillering stage, the jointing stage, and

reproductive stages.

Growth

stages

Best VIs R2 RMSE (%)

Early tillering TCARI/OSAVI (Shaded-leaf pixels, 7mm) 0.65 0.25

Late tillering TCARI/OSAVI (All-leaf pixels, 4mm) 0.66 0.18

Jointing TCARI/OSAVI (All-leaf pixels, 56mm) 0.67 0.18

Reproductive

stages

MTCI (All-leaf pixels, 28mm) 0.72 0.23

After the booting stage, rice canopy closure occurred in most
field plots and the background materials were less exposed. This
might lead to closer correlations with LNC for whole-image
derived VIs (Table 4). However, all-leaf derived VIs still exhibited
higher correlations with LNC than whole-image derived VIs for
the stage group of reproductive stages (Table 4). These results
represent a great potential for assessing rice N status during late
growth stages to improve the prediction of grain quality (Yu et al.,
2013).

The Impact of Rice Growth Stage on
LNC∼VI Models
A few studies have found that the relationships between VIs and
LNC for early growth stages of paddy rice are different from those
for later stages (Xue et al., 2004; Yu et al., 2013 and Tian et al.,
2014), which was partly due to the difficulty in removing the
confounding effects of background materials on the reflectance
spectra of the whole canopy. Xue et al. (2004) demonstrated
that LNC was related to VIs for each single stage instead of
for all growth stages. Our results confirmed the influence of
growth stages on the consistency of the LNC∼VI relationships
across growth stages (Xue et al., 2004 and Yu et al., 2013).
Specifically, stage-specific regression models were found for the
three early stages (i.e., early tillering, late tillering, and jointing)
before booting. In contrast, the regression models for all the
reproductive stages could be grouped into a single model. This
is probably because rice crops usually uptake and accumulate
N in leaves and stems in the vegetative period with the rate of
leaf biomass accumulation exceeding the rate of N uptake (i.e.,
N dilution effect of growth with substantial decreases of LNC)
(Sheehy et al., 1998; Yang et al., 2014). During vegetative stages,
the performance of LNC∼VI models were affected not only by
the biomass or LAI, but also by the underlying water reflection
in the paddy rice field (Mistele and Schmidhalter, 2008; Zhou
et al., 2014). In contrast, these influences were reduced during
reproductive stages because of relatively stable leaf biomass and
less photon interaction with the underlying water background
when the canopy closure occurred in most plots (Yu et al., 2013).
In addition, the LNC in crops is often estimated from spectral
data based on the relationship between LNC and leaf chlorophyll
content (Schlemmer et al., 2013). However, this relationship
would not hold the same for the whole season (Wang et al., 2014).

For example, the distinct LNC∼CIRed−edge model for the early
tillering stage were probably attributed to the lower values of leaf
chlorophyll content but higher values of LNC (Wang et al., 2014).
Although leaf or canopy chlorophyll content could be estimated
with VI-based global models (Zhou et al., 2017), the estimation
of LNC in crops was still performed with stage-specific models.

Interpretation of the Impacts of Spatial
Resolution on the Stage-Specific LNC∼VI
Relationships
Our results demonstrated that the correlations of VIs with
LNC generally decreased as the spatial resolution degraded for
each specific stage (or stage-group). This is mainly due to
the background influence in mixed pixels. There were more
difficulties in the discrimination of vegetation and background
pixels from coarser spatial resolution imageries. This pattern was
in agreement with the previous studies of resolution effects on the
relationships between VIs and leaf traits such as the chlorophyll
content (Jay et al., 2017). In particular, most ρ

2-values remained
stable when the resolution degraded from 1.3 to 14mm for the
early tillering stage but from 1.3mm to a coarser resolution of
56mm for the other stages (Figure 8). The main reason could
be the fact that the green fraction values (average value of
0.15 for all the plots) for the early tillering stage were much
lower than those for the other stages (Supplementary Figure 1).
This would lead to more background influence in mixed pixels
and more difficulties in the separation of vegetation and non-
vegetation background pixels when using coarser images. Thus,
the optimal resolution (14mm) for the early tillering stage was
much finer than other stages. In this regard, we suggested using
finer resolution imageries (finer than 14mm) at the early tillering
stage of paddy rice.

The stability in the correlation with LNC over different
spatial resolutions varied with leaf pixel types. The most stable
performances for all-leaf pixels might be attributed to the more
pixel numbers that representing more nitrogen-related spectral
information as compared to sunlit- and shaded-leaf pixels.
Specifically, all-leaf derived MTCI exhibited closet ρ

2 between
different spatial resolutions at specific stages. Given that MTCI
was originally developed as an indicator of canopy chlorophyll
content from low-resolution satellite sensors (Dash and Curran,
2004), the good performances for MTCI might be attributed
to their relatively stable sensitivity with nitrogen-related leaf
traits (e.g., leaf chlorophyll and nitrogen content) regardless
of using high resolution data (Haboudane et al., 2008; Hunt
et al., 2013; Jay et al., 2017) and low resolution data (Dash and
Curran, 2004; Jay et al., 2017). Similar to the findings in Zhou
et al. (2017), the results obtained here also exhibited higher
correlations with nitrogen-related leaf traits for shaded-leaf pixels
as compared to sunlit-leaf pixels when using finer resolution data.
This could be explained by the fact that the multiple scattering
among a larger fraction of shaded leaves enhances the apparent
absorption features of leaves and leads to extended optical lengths
with a not weak signal (Zhou et al., 2017). Furthermore, the
specular reflection from sunlit leaves could negatively influence
the spectroscopic estimation of LNC (Vigneau et al., 2011).
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FIGURE 9 | LNC prediction accuracies for GPR and PLSR using reflectance spectra (REF) and continuum-removed spectra (CR) derived from all-leaf pixels (A,D),

sunlit-leaf pixels (B,E) and shaded-leaf pixels (C,F).

FIGURE 10 | The dedicated parameter σ of each band for GPR and the regression coefficient of each band for PLSR using average reflectance spectra (REF) of

all-leaf pixels (A,D), sunlit-leaf pixels (B,E) and shaded-leaf pixels (C,F) from imaging data with 28mm spatial resolution.

Frontiers in Plant Science | www.frontiersin.org 14 July 2018 | Volume 9 | Article 964

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Zhou et al. Assessment of Rice Nitrogen Status

The influence of specular reflection for sunlit-leaf pixels could
be the main driver of the weaker relationships between VIs
and LNC while using the images with finer spatial resolutions,
especailly for the late tillering stage under strong illumination
conditions (Figure 8). The spatial heterogeneity increased with
the degradation of spatial resolution. When using the coarser
images, the stronger correlations of sunlit-leaf derived VIs with
LNC may be explained by the fact that the classified sunlit-
leaf pixels were mixed with shaded-leaf pixels. However, the
correlations could also decrease when using the spatial resolution
coarser than 113mm due to the confounding effect of the
background materials.

Regarding the best cases for each specific stage,
TCARI/OSAVI was highlighted as the optimal VI derived
from finer resolution data for the early and late tillering stage
but derived from coarser resolution data for the jointing stage.
TCARI/OSAVI was developed to predict crop chlorophyll
content from remote sensing data while minimizing the
influence of leaf area index (i.e., canopy structure effects) and soil
background effects (Haboudane et al., 2002). These advantages
of TCARI/OSAVI could be the main driver of becoming the best
performing VI for all the individual stages before booting when
the environmental properties from low green fraction canopies
adversely affects the spectroscopic estimation of LNC.

Comparison of Various Approaches for
Spectral Assessment of LNC
The use of 2∼4 band VIs often constrains the regression analysis
and cannot overcome the N dilution effect to build a global
LNC∼VI model for all the growth stages of paddy rice (Yu
et al., 2013). In contrast, the application of the PLSR and GPR
models both allows quantitative evaluation of leaf N status over
rice canopies throughout the entire growing season (Figure 9).
In contrast to the LNC-VI models, the PLSR and GPR models
generated better predictive performances when using the spectra
of sunlit-leaf pixels derived from the finer resolution images.
This could be explained by the better ability of the multivariate
regression methods (e.g., GPR and PLSR) to reduce the addictive
effects caused by the specular reflection (Verrelst et al., 2012).
Similar to the patterns observed for LNC∼VI models, all-leaf
pixels also exhibited more stable performances than sunlit-
and shaded-leaf pixels when using PLSR and GPR models.
The optimal spatial resolution was 28mm since the predictive
accuracies kept stable from 1.3 to 28mm and then gradually
decreased. This resolution was close to the optimal resolution of
35mm found in Jay et al. (2017) for predicting leaf chlorophyll
content in sugar beet canopies. This indicates that a compromise
could be made around 28mm to obtain a high sensitivity to
LNC variations while minimizing background effects on the
spectroscopic estimation of LNC.

As compared to PLSR, the better predictive performances
for GPR might be because GPR can track both signal and
noise properties and thus can partly overcome the blackbox
problem by providing a ranking of both features and samples
for a specific task (Verrelst et al., 2012, 2013). While using the
continuum-removed spectra instead of reflectance spectra as the

input spectra in the GPR and PLSR models, the chlorophyll
absorption feature in the red region could be the main driver
of the comparable or slightly worse performance. Specially, the
most contributing band was located at the red spectral region
around 680 nm (Figure 10), which is in accordance with the
chlorophyll absorption peak (Inoue et al., 2012). The spectral
areas close to the chlorophyll absorption peak in the blue spectral
region (420 nm) were also found to be important for the GPR
model. The other contributing bands were located at the red-
edge region (700 nm) and the green region (520 and 560 nm).
These two regions have been widely proved to be closely related
with chlorophyll content and commonly used in the indices for
the assessment of chlorophyll content such as CIRed−edge and
CIGreen. It is worth noting that the NIR shoulder region was
considered substantially less important for the GPRmodels based
on sunlit-leaf pixels as compared to those based on shaded-
leaf pixels. This could be explained by the fact that the NIR
reflectance spectra of sunlit leaves were less influenced by the
canopy structure parameters (Vigneau et al., 2011; Jay et al.,
2017). In contrast, the NIR reflectance spectra of shaded leaves is
not only related to biochemical parameters but is also governed
by the variation in the canopy structural parameters. These
structural variables could influence the multi-scattering within
rice canopies and thus particularly affect the reflectance of shaded
leaves in the NIR region (Verrelst et al., 2012; Zhou et al.,
2017).

Opportunities and Limitations
Assessing the predictive performances of different methods
showed that GPR models provided a better approach for
estimating rice LNC at the field scale. This makes it possible to
assess N status of individual plants and to benefit the spatially
variable management of N throughout the entire growing season
of paddy rice. In the case of rice crops, similar accuracies
were obtained for all the resolutions finer than 28mm, but
the accuracies decreased for coarser resolutions. With the
development of low-altitude unmanned aerial vehicle (UAV)
systems, the combinations between hyperspectral cameras and
UAVs are now becoming efficient and affordable and enable
the acquisition of image measurements to a larger area with
high spatial (e.g., 28mm) and spectral resolutions simultaneously
(Zarco-Tejada et al., 2012; Jay et al., 2017). In particular, the
measurements of about 3 cm spatial resolution imageries can
offer a good compromise between accuracy and efficiency for
estimating LNC of paddy rice throughout the entire growing
season from an appropriate flight altitude. This provides a
practical approach for timely monitoring LNC of rice crops at
critical growth stages.

Good robustness performances of LNC prediction are
expected for paddy rice crops because the results in this study
are derived from a combination of years, rice cultivars, planting
densities, and N rates. However, the retrieval of whole canopy
LNC could be further improved by usingmulti-angle observation
data or three-dimensional reconstruction data (Jay et al., 2015)
because of their better abilities to assess the N status of rice in
middle and bottom layers as compared to using only the nadir
viewing data (Li et al., 2013; He et al., 2016). Furthermore, various
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plant types (i.e., spread type, semi-spread type, or erect type)
of rice cultivars can affect leaf surface effects, canopy structural
properties, and N uptake processes (Li et al., 2013). In this regard,
more genotypes should be included in our future work.

CONCLUSIONS

We report on the use of near-ground imaging spectroscopy data
to estimate LNC of rice crops throughout the entire growing
season from 2-year experiments. Three group of VIs (a total
of 16 indices) commonly used for the estimation of LNC and
two multivariate methods (PLSR and GPR) were evaluated with
spectral datasets of three types of leaf pixels (sunlit-, shaded-, and
all-leaf) derived from millimeter to centimeter-scale imageries.
The most important conclusions that derived from this study
were as follows:

CIRed−edge, MTCI and TCARI/OSAVI were selected as the
representative VIs from each group of VIs. The prediction of
LNC needed stage-specific LNC∼VI models before booting but
could be performed with a single model across the stages after
booting.

All-leaf derived VIs achieved more stable relationships with
LNC over different spatial resolutions than sunlit- and shaded-
leaf derived VIs. In particular, similar results were obtained from
all the resolutions finer than 14mm for the early tillering stage
but from all the resolutions finer than 56mm for the other stages.

TCARI/OSAVI performed the best for all the individual
stages before booting. For the the reproductive stages, the best
model was observed for all-leaf derived MTCI at 28mm spatial
resolution.

Both of the GPR and PLSR methods successfully performed
the global predictions of LNC throughout the entire growing
season. However, the GPR method generally achieved better
predictive performances than the PLSR method.

Using the spectra of all-leaf pixels as the input variables in
the PLSR and GPRmodels achieved more stable performances as
compared to using the spectra of sunlit- and shaded-leaf pixels.
The optimal spatial resolution was 28mm since similar results
were observed from 1.3 to 28mm but deteriorated for coarser
resolutions.

The approach of using GPR in this study take advantage of
high spatial and spectral resolution to improve the estimation
of LNC in paddy rice canopies as compared to commonly used
VIs and PLSR method. Specifically, the use of reflectance spectra
derived from all-leaf pixels at the spatial resolution of about 3 cm
based on UAV observations is promising to accurately estimate
LNC and also be useful for spatially variable applications of N
fertilizers.
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