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Plants have evolved numerous defensive traits that enable them to resist herbivores.
In turn, this resistance has selected for herbivores that can cope with defenses by
either avoiding, resisting or suppressing them. Several species of herbivorous mites,
such as the spider mites Tetranychus urticae and Tetranychus evansi, were found to
maximize their performance by suppressing inducible plant defenses. At first glimpse
it seems obvious why such a trait will be favored by natural selection. However,
defense suppression appeared to readily backfire since mites that do so also make
their host plant more suitable for competitors and their offspring more attractive for
natural enemies. This, together with the fact that spider mites are infamous for their
ability to resist (plant) toxins directly, justifies the question as to why traits that allow
mites to suppress defenses nonetheless seem to be relatively common? We argue that
this trait may facilitate generalist herbivores, like T. urticae, to colonize new host species.
While specific detoxification mechanisms may, on average, be suitable only on a narrow
range of similar hosts, defense suppression may be more broadly effective, provided
it operates by targeting conserved plant signaling components. If so, resistance and
suppression may be under frequency-dependent selection and be maintained as a
polymorphism in generalist mite populations. In that case, the defense suppression trait
may be under rapid positive selection in subpopulations that have recently colonized
a new host but may erode in relatively isolated populations in which host-specific
detoxification mechanisms emerge. Although there is empirical evidence to support
these scenarios, it contradicts the observation that several of the mite species found
to suppress plant defenses actually are relatively specialized. We argue that in these
cases buffering traits may enable such mites to mitigate the negative side effects of
suppression in natural communities and thus shield this trait from natural selection.

Keywords: defense suppression, host plant manipulation, resistance, Tetranychus, effectors, jasmonate,
herbivore, buffering trait

INTRODUCTION

Among the diverse organisms that parasitize plants are numerous species of mites (Arachnida:
Acari). With a body size of usually less than a millimeter, these mites are among the smallest
herbivores. They feed by piercing an epidermal or mesophyll cell with their stylet-like mouthparts,
after which they suck up the cellular contents (Helle and Sabelis, 1985; Lindquist et al., 1996;
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Bensoussan et al., 2016). Despite their relatively limited per
capita consumption, herbivorous mites are a pest on nearly
every agriculturally or horticulturally important plant species,
causing massive economic losses worldwide (Helle and Sabelis,
1985; Lindquist et al., 1996; Van Leeuwen et al., 2015). That is
because herbivorous mites generally have high fecundity, a short
developmental time and a female-biased offspring ratio, which,
among others, allows them to build up populations large enough
to destroy entire plants within just a few weeks (Helle and Sabelis,
1985; Lindquist et al., 1996).

In order to protect themselves from mites and other
phytophagous organisms, plants have evolved a plethora of
defensive traits. A subset of these traits is aimed at deterring,
inhibiting or killing the parasite via mechanisms that range from
physical obstruction to the production of (volatile) metabolites
or proteins that either directly harm the attacker, e.g., due to
their toxic or antinutritional properties, or that do so indirectly
via facilitating the recruitment of the attacker’s natural enemies
(Figure 1A) (Jones and Dangl, 2006; Heil, 2008; Mithöfer and
Boland, 2012; Schuman and Baldwin, 2016). A major source of
resistance to small arthropod herbivores, including mites, are
the glandular trichomes, as these represent physical barriers that
also produce, store and/or exude large amounts of (volatile)
defensive metabolites and proteins (Glas et al., 2012). Many
defensive traits, however, are more specific in the sense that
they: (a) are most effective against a relatively narrow range of
attackers, and; (b) are confined to a single plant species, -family,
-order or -clade (Mithöfer and Boland, 2012; Couto and Zipfel,
2016; Schuman and Baldwin, 2016). Furthermore, in many cases
the amounts of defensive metabolites and proteins are low or
absent under unstressed conditions but increase considerably
upon attack. Probably, inducible defenses have evolved to save
resources and/or to limit autotoxic effects (Mithöfer and Boland,
2012; Couto and Zipfel, 2016; Schuman and Baldwin, 2016). Such
inducibility requires a rapid and robust signaling machinery to
activate the appropriate defenses in a timely manner, which starts
with detection of the attacker.

How plants recognize mite-feeding or the extent to which they
can tell mites apart from other herbivores, is yet unknown. Plants
are thought to recognize their attacker based on the perception
of two classes of molecules: The first one being damage-
associated molecular patterns (DAMPs), which are plant-derived
and modified or dislocated as a consequence of wounding
(Heil and Land, 2014; Gust et al., 2017). Spider mites seem to
avoid causing unnecessary damage and, hence, the release of
DAMPs, by inserting their stylet in between epidermal cells or
via open stomata to reach the mesophyll (Bensoussan et al.,
2016). The second one being microbe- or herbivore-associated
molecular patterns (MAMPs or HAMPs, respectively), which
can be attacker-derived, plant-derived (but often modified by
the attacker) or conjugates of the two (Boller and Felix, 2009;
Acevedo et al., 2015). DAMP-, MAMP-, and presumably also
HAMP-recognition is mediated by pattern-recognition receptor
(PRR) proteins (Couto and Zipfel, 2016). Such recognition
activates an intracellular signaling cascade that, within minutes,
results in the induction of defenses (Couto and Zipfel, 2016). This
entire process is known as pattern-triggered immunity (PTI).

Whereas PTI has been well established for plants attacked by
diverse microbial phytopathogens and is expected to function in
plant–herbivore interactions as well, experimental evidence for
the latter hypothesis is still scarce and often indirect. For instance,
while several HAMPs have been characterized at the molecular
level, no matching PRR has been identified (Acevedo et al., 2015;
Schmelz, 2015). Likewise, some plant PRRs have been implicated
in plant resistance to herbivores (Gilardoni et al., 2011; Cheng
et al., 2013; Gouhier-Darimont et al., 2013; Liu et al., 2015; Hu
et al., 2018) but the matching herbivory-derived ligands remain
elusive. Hence, while it is likely that they exist, mite-derived
HAMPs and cognate plant PRRs have not been identified yet.

The PTI signaling cascade critically depends on the action of
several phytohormones, the most important ones are jasmonic
acid (JA) and salicylic acid (SA) (Pieterse et al., 2012; Couto and
Zipfel, 2016). Generally, JA is required to mount effective defense
responses against herbivores as well as microbial pathogens with
a necrotrophic life style (Pieterse et al., 2012). By contrast,
resistance against biotrophic microbial pathogens depends on SA
(Glazebrook, 2005; Pieterse et al., 2012). Curiously, some mites,
including the extremely polyphagous cosmopolitan pest species
Tetranychus urticae, simultaneously induce JA and SA-regulated
defenses (Figure 1A) (Kant et al., 2004; Zhurov et al., 2014;
Alba et al., 2015; Schimmel et al., 2017a,b), although plant
resistance to these mites predominantly depends on JA (Kant
et al., 2008; Zhurov et al., 2014; Villarroel et al., 2016). Signaling
components of the JA and SA pathways can interact with each
other, synergistically or antagonistically, but can also interact with
signaling components of growth-regulating hormonal pathways
(Pieterse et al., 2012). Hormonal crosstalk is thought to adaptively
tailor defense responses to different enemies as well as to
minimize wasting resources on unnecessary defenses (Thaler
et al., 2012). Finally, many of the defense responses activated
during PTI are induced not only in the attacked tissue but also in
non-attacked, systemic tissues (Fu and Dong, 2013; Schuman and
Baldwin, 2016). Herbivorous mites, too, induce defense responses
in systemic leaves (Sarmento et al., 2011a), which may increase
the resistance of these tissues when attacked later on (Agut et al.,
2016).

Pattern-triggered immunity confers resistance to the majority
of all plant parasites, meaning to those that induce defenses
and are susceptible to them. Many phytophagous organisms,
however, have acquired traits that enable them to overcome plant
defenses (Kant et al., 2015). These traits can roughly be divided
into three categories: (1) avoidance, (2) metabolic resistance, and
(3) suppression, i.e., host plant manipulation. The avoidance of
(induced) plant defenses entails a behavioral strategy that has
been observed for diverse arthropod herbivores (Dussourd, 2017)
at spatial resolutions ranging from between individual plants
(Kessler et al., 2004) to within a single leaflet (Shroff et al., 2008).
Metabolic resistance to plant defenses can arise from target-site
insensitivity or from detoxification mechanisms that may include
metabolite modification, degradation and/or secretion (Despres
et al., 2007; Heckel, 2014). Defense suppression is achieved via
sabotage of the host plant’s molecular machinery. To do so, plant-
feeding organisms have evolved specialized molecules which they
secrete into or onto their host and which interfere in various
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FIGURE 1 | Schematic, simplified overview of the direct and indirect interactions between cultivated tomato plants, herbivorous spider mites, and carnivorous
predatory mites. (A) Mite herbivory induces direct and indirect plant defenses that hamper mite performance. While feeding, Tetranychus urticae triggers the
accumulation of the phytohormones jasmonic acid (JA) and salicylic acid (SA), which, in turn, promotes the production of (volatile) metabolites and proteins (arrow 1),
aimed at harming or deterring the mite (inhibition line 2a). Such plant-produced metabolites and proteins may similarly affect mites that simultaneously or
subsequently feed from the same or from not previously attacked, systemic tissues (inhibition line 2b). Additionally, they may mediate the attraction and arrestment of
the attacker’s natural enemies (arrow 3), thereby facilitating predation of the herbivore (inhibition line 4). The areal surface of tomato plants contains glandular
trichomes (inset), which not only represent a physical barrier for mites, but also produce large amounts of defense-associated (volatile) metabolites and proteins.
(B) In natural communities, herbivorous mites that suppress plant defenses may suffer from negative side effects associated with this trait. That is, by suppressing
defenses, the host becomes a better food source, including for competitors, which may therefore be promoted on a shared leaf (arrow 5). Furthermore,
defense-suppressing mites themselves may become a better food source for their natural enemies, i.e., better than defense-inducing mites (inhibition line 6). (C) For
more polyphagous mite species, intraspecific variation in traits related to mite–plant interactions exists within natural populations. Three T. urticae genotypes have,
for instance, been described: (i) Mites that induce defenses on wild type (WT) tomato and that are susceptible to these defenses (brown mites). Consequently, these
mites have a low fitness on WT plants, a much higher fitness on JA-impaired mutants (def-1) and an extremely low performance on transgenic 35S::prosystemin (PS)
plants that constitutively display JA defense responses. (ii) Mites that are susceptible to tomato defenses but nevertheless maintain a high fitness because they
suppress these defenses (black mites). These mites perform as well on WT as on def-1, but have a lower fitness on PS, presumably because they cannot suppress
the extraordinarily strong defenses of PS plants. Mites from this genotype appear to be relatively rare as compared to the defense-inducing/susceptible ones.
(iii) Mites that induce defenses but that are metabolically resistant to plant-produced defensive metabolites or proteins and, therefore, have an equally high fitness on
WT, def-1 and PS (pink mites). This genotype appears to be rare as well. Note that mites are not drawn to scale and are distinctively colored for illustrative purposes
only. In nature, T. urticae from the three described genotypes are, by eye, morphologically indistinguishable.

ways with the host’s ability to defend itself (Hogenhout and Bos,
2011; Kant et al., 2015; Khan et al., 2018). Such molecules are
referred to as “effectors” or “virulence factors,” but it is important
to point out that effectors that suppress defenses in one host
plant may elicit defenses in another (in the latter case they are
also referred to as “avirulence factors”) (Hogenhout et al., 2009).
Here we will use the term “effector” in the context of host-plant
defense suppression. Finally, it is of note that symbioses with
microorganisms, or alternatively horizontal gene transfer events

from microbes, may underlie a herbivore’s ability to overcome
plant defenses (Douglas, 2015; Wybouw et al., 2016).

Among herbivorous arthropods, suppression of defenses has
been observed in several insect species (Stahl et al., 2018), three
spider mites species (T. urticae: Kant et al., 2008; T. evansi:
Sarmento et al., 2011a; T. ludeni: Godinho et al., 2016) and
an eriophyoid mite species (Aculops lycopersici: Glas et al.,
2014). Research on defense suppression by arthropods has almost
exclusively focused on the source of suppression (i.e., effectors)
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and the effect of suppression on plant physiology (Stahl et al.,
2018). Defense suppression has obvious benefits for herbivores
as the down-regulation of defenses coincides with an increase
in herbivore fitness (Kant et al., 2008; Sarmento et al., 2011a;
Alba et al., 2015; Schimmel et al., 2017a). This observation
comes mostly from laboratory experiments lacking the natural
ecological context. Yet, for understanding which factors drive
the emergence, persistence, and disappearance of this trait
this context may be crucial. For example, defense suppression
appeared not only to benefit the herbivore doing it but also
its competitors residing on the same leaf (Kant et al., 2008;
Sarmento et al., 2011b; Alba et al., 2015) and may underlie
patterns of mite species-succession observed in the field (Glas
et al., 2014). In addition, defense suppression may promote
predation (Figure 1B), given that the predatory mite Phytoseiulus
longipes consumed more spider mite eggs that had been produced
on defense-suppressed plants than eggs produced on plants
with induced defenses (Ataide et al., 2016). This suggests that
plant defensive substances, produced in response to herbivory,
are transferred to the mite’s eggs and may hamper predators,
unless defenses are suppressed. In nature, mites commonly live
in close proximity to other herbivorous- and predatory mites,
i.e., on the same plant or even on the same leaf (De Moraes
and Lima, 1983; Rosa et al., 2005; Ferragut et al., 2013; Glas
et al., 2014). If so, then how do defense-suppressing mites control
the apparent ecological costs of suppression? This question
becomes even more puzzling when considering that species like
T. urticae possess an extraordinary number of genes associated
with metabolic resistance (Grbić et al., 2011; Dermauw et al.,
2013) and, hence, may not need to suppress defenses in the first
place. By means of this review, we propose scenarios that may
explain why defense suppression seems to be a relatively common
trait among specialist as well as generalist plant-feeding mites.

We will first present the mechanistic background of
defense suppression by herbivorous mites, including how to
experimentally tell suppression apart from induction or from
stealth feeding. Then, we will explore the eco-evolutionary
scenario’s that may favor this trait. Finally, we will outline which
traits may enable herbivorous mites to counteract the negative
side effects of defense suppression that can occur when living in
natural communities. We will focus on the direct and indirect
interactions between cultivated tomato (Solanum lycopersicum),
the generalist two-spotted spider mite (T. urticae), and the
specialist tomato red spider mite (T. evansi), because these
three species have become a model for addressing mechanistic
or ecological questions on the costs and benefits of defense
induction versus suppression by arthropod herbivores.

MECHANISTIC BACKGROUND OF
PLANT DEFENSE SUPPRESSION BY
MITES

The ability to suppress plant defenses is a trait that allows a
phytophagous organism to lower the magnitude of a defensive
process, either constitutive or induced, such that it gains a
reproductive advantage. Although this definition could include

behavioral sabotage such as vein-cutting (Dussourd, 2017), we
will focus here on the suppression of molecular processes.
The definition also excludes stealth feeding (Walling, 2008),
because this does not affect the defensive process as such. It
is important to realize that suppression does not need to be
absolute, i.e., down to- or below levels of non-attacked plants,
as it can already be effective when defenses are down-regulated
to intermediate levels (Glas et al., 2014; Alba et al., 2015).
In our experience, such absolute suppression is rare. Defense-
suppressors rather reduce the extent to which a subset of defenses
are induced (Glas et al., 2014; Alba et al., 2015). For example,
when compared to non-infested controls, an infestation with
defense-suppressing T. urticae or T. evansi typically results in the
increased accumulation of JA and SA, as well as in the increased
expression of defense-associated genes, yet the magnitude of
these defense responses is very small when compared to an
infestation with non-adapted T. urticae (Alba et al., 2015;
Schimmel et al., 2017a,b). These properties make it challenging
to experimentally tell suppression apart from induction as well
as from stealth feeding. However, there are three selection
criteria that, together, enable researchers to identify defense-
suppressors.

The first of these criteria is that defense-suppressing mites
should have a similar fitness on wild-type (WT) plants versus
on defense-deficient mutants (Figure 1C). That is because
suppression renders WT plants phenotypically equivalent to such
mutants in terms of their susceptibility to herbivores. Indeed,
whereas non-adapted T. urticae performed much better on the
JA-biosynthesis mutant defenseless-1 (def-1) than on WT tomato
(Li et al., 2002), defense-suppressing T. urticae and T. evansi
mites performed just as well on WT as on def-1 plants (Kant
et al., 2008; Alba et al., 2015). Since defense-resistant mites will
also have an equally high fitness on WT and defense-deficient
mutants, this assay can be expanded with a set of hyper-defended
plants, such as transgenic 35S::prosystemin (PS) plants, to further
discriminate the suppressor mites from the defense-resistant ones
(Kant et al., 2008). The idea behind this is that suppressors can no
longer suppress the extraordinarily strong defenses of PS plants,
while resistant mites remain unaffected by them (Figure 1C).

The second criterion is that, on a shared host, defense-
suppressing mites should be able to facilitate conspecific and/or
heterospecific mites, including non-adapted ones. The reasoning
behind this is threefold: (1) Plants attacked by suppressor mites
are a better food source than plants attacked by defense-inducing
mites. This will translate into a higher herbivore fitness on the
former. (2) Suppression is most likely not free of costs for mites,
i.e., it requires resources/energy, thus also suppressors will benefit
when defenses are already suppressed by others. (3) Mites that
have adapted to plant defenses by not inducing them (avoidance)
or by evolving insensitivity (metabolic resistance) will not pass
this test, as they are unable to facilitate other mites. Accordingly,
compared with their respective controls, non-adapted T. urticae
had a higher reproductive performance when their tomato host
was either previously or simultaneously infested with defense-
suppressing T. urticae (Kant et al., 2008; Alba et al., 2015) or
T. evansi (Sarmento et al., 2011b; Alba et al., 2015). Similar
experiments have identified T. ludeni (Godinho et al., 2016) and
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A. lycopersici (Glas et al., 2014) as defense-suppressors. Despite
the reported success of these co-infestation assays, they may also
deliver variable results because the outcome strongly depends on
the infestation conditions, such as timing of the infestations and
the number of mites used (de Oliveira et al., 2016; Schimmel
et al., 2017a,b). In addition, these co-infestation assays cannot
discriminate between effects due to induced/suppressed defenses
on the one hand and, for example, effects on plant resources on
the other.

Whereas the first two criteria are bioassay-based and, thus,
have mite performance as readout, the third criterion is based on
a molecular assay and aimed to assess the impact of an alleged
suppressor on an induced defense via an ask-the-plant approach.
In practice this means that defense-suppressing mites should be
able to suppress defenses that are induced by non-adapted mites
or, in principle, by any other type of induction. The magnitude
of defenses in plants that were infested with suppressor mites
during or after the induction treatment should be lower than in
plants that only received the induction treatment. For example,
expression levels of defense-associated genes were significantly
lower in tomato leaflets simultaneously infested with defense-
suppressing T. evansi and defense-inducing T. urticae than in
leaflets solely infested with defense-inducing T. urticae (Alba
et al., 2015), even though the mite density was two-fold higher
on the dual-infested leaves. This assay should be combined with
one or both of the other methods as statistically significant down-
regulation of defenses is by itself not proof for a biologically
relevant effect. Finally, this assay may overlook relatively weak
suppressors or suppressors with a primarily local effect.

How suppression of plant defenses by mites, or by herbivorous
arthropods in general, works at the molecular level is still
poorly understood. Suppression by T. urticae, T. evansi, and
A. lycopersici was found to act downstream from phytohormone
accumulation and independently of JA–SA crosstalk (Glas et al.,
2014; Alba et al., 2015). While feeding, mites secrete saliva,
which contains effector proteins that sabotage the host’s defenses,
resulting in effector-triggered susceptibility (Figures 2A,B)
(Jonckheere et al., 2016; Villarroel et al., 2016). Combined
genomic and transcriptomic analyses have revealed that spider
mites are likely capable of producing and secreting several
hundreds of salivary proteins (Jonckheere et al., 2016; Villarroel
et al., 2016). Further proteomic analyses of salivary secretions
collected using an artificial diet system have thus far identified
95 proteins from T. urticae’s saliva (Jonckheere et al., 2016).
It remains unknown, though, how many of the (putative)
salivary proteins actually interfere with the host’s defenses. Firstly,
because the sequence identity of effectors is usually very species-
specific thus hampering in silico identification (Arnold et al.,
2009; Lo Presti et al., 2015). Secondly, effectors not necessarily
target plant defenses to trigger host susceptibility (Van Schie and
Takken, 2014; Macho, 2016). Thirdly, salivary proteins may have
effector-unrelated functions. For example, several mite salivary
proteins were predicted to be carbohydrate or protein catabolic
enzymes, suggesting a role in the degradation of plant material,
possibly prior to ingestion (Jonckheere et al., 2016). Lastly,
salivary proteins may be multifunctional. Salivary proteases of
insects, for instance, may serve to (pre)digest proteins as food but

may additionally target plant defensive proteins (Zhu-Salzman
and Zeng, 2015).

Recent microscopic observations indicate that spider mites
probably have much lower consumption rates than was hitherto
assumed (Bensoussan et al., 2016). On common bean (Phaseolus
vulgaris), the average duration of a single T. urticae feeding
event was found to last nearly 14 min (Bensoussan et al., 2016),
i.e., considerably longer than the roughly 3 s reported earlier
(Liesering, 1960). If feeding events indeed last several minutes
instead of seconds, pre-digestive functions of secreted salivary
proteins would be conceivable. Likewise, this amount of time
could allow effectors to interfere with host defenses in the pierced
cell prior to ingestion. Additionally, it may allow effectors or
their secondary signals to translocate to neighboring cells or to
the apoplast to suppress defenses in plant tissues beyond the
attacked cell (Figure 2B) (Bensoussan et al., 2016; Rioja et al.,
2017). Indeed, there is empirical evidence for defense suppression
to occur systemically within leaflets (Alba et al., 2015) and within
compound leaves (Sarmento et al., 2011a). However, suppression
appears to be a predominantly local event, i.e., largely restricted to
the mite’s multicellular feeding patch (Schimmel et al., 2017a,b).
Molecular studies at single cell resolution are required to assess
the true spatial extent of suppression.

We can only speculate about how mite salivary effector
proteins operate inside the host plant. Most likely they interact
with plant proteins to modulate their function such that the plant
becomes more suitable as food. Numerous of such in planta
targets have been identified for effectors from diverse microbial
phytopathogens and for many of these their mode of action
has been characterized as well, providing valuable insights into
the molecular mechanisms underlying pathogen virulence (Khan
et al., 2018; Xin et al., 2018). The majority of phytopathogen
effectors as well as their in planta targets appear to be of
proteinaceous nature (Khan et al., 2018), but note that this
could be due to a methodological bias. Large scale protein-
protein interaction assays have revealed that a subset of the
effectors deployed by phytopathogens targets and modifies a
relatively small but conserved set of plant signaling “hubs,”
which represent highly connected nodes within the plant protein
network, as each of them (potentially) interacts with dozens of
other plant proteins (Mukhtar et al., 2011; Wessling et al., 2014).
Examples of effector-targeted hub proteins are: TCP transcription
factors, which function at the nexus of plant development
and defense (Lopez et al., 2015); subunits of the ubiquitin-
proteasome system, which are crucial for protein turnover
including during phytohormone signaling (Banfield, 2015); JAZ
proteins, which are transcriptional repressors of JA responses
(Howe et al., 2018), and; papain-like cysteine proteases, which
have diverse functions in immune signaling (Misas-Villamil et al.,
2016). Consistent with their role in PTI, mutations in effector-
targeted hub proteins generally have dramatic consequences
for plant resistance to phytopathogens (Mukhtar et al., 2011;
Wessling et al., 2014). Other components of the PTI machinery,
i.e., that are (relatively) less well-connected, are manipulated
by phytopathogen effectors as well. These include conserved
detection and signaling components (e.g., PRRs, co-receptors,
receptor-like cytoplasmic kinases, MAP kinases, transcriptional
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FIGURE 2 | Schematic, simplified overview of the in planta molecular interplay between herbivorous spider mites and their host. (A) Spider mites use their
stylet-shaped mouthparts to retrieve the contents of mesophyll cells, which may trigger the activation of plant defense responses that render the plant resistant.
Mites pierce mesophyll cells and inject them with saliva prior to ingestion of their contents. This may cause the release of damage- and/or herbivore-associated
molecular patterns (DAMPs and HAMPs, respectively) that are recognized by plant pattern-recognition receptors (PRRs) and which leads to pattern-triggered
immunity (PTI). Spider mites seem to minimize the release of DAMPs by inserting their stylet via open stomata (not shown) or in between epidermal cells to reach the
mesophyll. (B) Mites may interfere with PTI and other host processes by injecting salivary effector molecules (E) that target and interact with various plant proteins (T)
to inhibit or to exploit their function and, thereby, render the plant susceptible. This process is termed effector-triggered susceptibility (ETS). (C) Plants have evolved
receptor proteins (R) that detect effectors directly or indirectly and subsequently restore PTI responses plus induce additional defenses that altogether render the
plant resistant again. This process is referred to as effector-triggered immunity (ETI). Herbivory by mites likely induces PTI- or ETI-associated defense responses
beyond the attacked cell, i.e., also in non-attacked tissues, but the spatiotemporal dynamics of such systemic responses are not fully understood. Likewise, mites
are thought to manipulate their host plant beyond the attacked cell, for instance via the intracellular transport of effectors. Note that mite-HAMP and plant-PRR pairs
have not been identified yet. Mites, plant cells and their (secreted) components are not drawn to scale.

regulators; Macho and Zipfel, 2015; Khan et al., 2018) as well as
proteins that are produced by the plant to actually fight off the
pathogen (e.g., proteases and protease inhibitors; Jashni et al.,
2015). Finally, phytopathogen effectors have been found to target
proteins with less obvious connections to plant immunity but
whose manipulation is nevertheless essential for virulence and
pathogen proliferation (Van Schie and Takken, 2014; Macho,
2016). Examples of such so-called susceptibility proteins are:
nutrient transporters (Chen et al., 2010), proteins involved in
vesicular trafficking (Xin et al., 2016) and cell cycle regulators
(Wildermuth et al., 2017). The first reports of proteinaceous plant

targets of effectors from herbivorous arthropods indicate that
at least some members of this diverse group of plant-feeders
may have evolved mechanisms to manipulate their host that are
similar to those of microbial phytopathogens. That is, effectors
secreted by larvae of the Hessian fly (Mayetiola destructor) were
shown to interact with the wheat (Triticum spp.) Skp subunit
of the ubiquitin-proteasome system (Zhao et al., 2015) and
effector Mp1 secreted by the aphid Myzus persicae was found to
interact with Arabidopsis (Arabidopsis thaliana) as well as potato
(Solanum tuberosum) VPS52, which is thought to be involved
in vesicular trafficking (Rodriguez et al., 2017). Since mites are
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not highly mobile, small, and feed from one cell at a time, we
hypothesize that there will be considerable overlap between the
effector targets of biotrophic microbial pathogens and those of
mites, in particular for generalists like T. urticae. Specifically,
we predict effectors of generalist mites to target conserved plant
targets. If so, this would allow the mite to manipulate different
hosts using a relatively small set of effectors as compared to the
large number of metabolic resistance-conferring genes that would
be needed to overcome the defenses of all its different hosts.
Specialized mite species may have evolved effectors more specific
for their host and as a consequence they may have lost redundant
effector paralogs.

Despite the convincing genomic, transcriptomic and
proteomic data on mite salivary proteins, the far majority still
awaits functional characterization (as effectors). Four mite
proteins have been identified as plant defense-suppressing
effectors so far; Tu28 and Tu84 from T. urticae and the
orthologous Te28 (66% identical) and Te84 (63% identical),
respectively, from T. evansi (Villarroel et al., 2016; Schimmel
et al., 2017a). As indicated by their numbers, these proteins
represent members from two putative effector families: in
T. urticae family 28 has 10 members (paralogs), whereas T. evansi
has only one; family 84 has two paralogs in both mite species
(Villarroel et al., 2016). Proteins from these families have also
been recovered from the saliva of T. urticae feeding on artificial
diet (Jonckheere et al., 2016). When transiently overexpressed in
Nicotiana benthamiana these effectors suppressed SA-defenses
(Villarroel et al., 2016) as well as JA-defenses (Schimmel et al.,
2017a) and three of the four homologs promoted the fitness of
non-adapted T. urticae (Villarroel et al., 2016). Te28 did not
enhance the performance of T. urticae on N. benthamiana,
probably due to the severe chlorosis that coincided with
Te28 overexpression (Villarroel et al., 2016). In line with this
reasoning, on tomato, Te28 transcript abundance in T. evansi
correlated negatively with the magnitude of JA and SA defenses
in the plant, and positively with mite performance (Schimmel
et al., 2017a). Similar correlations were found for Te84 (Schimmel
et al., 2017a), strongly suggesting that Te28 and Te84 are indeed
used by T. evansi to suppress tomato defenses. The fact that
defense-inducing T. urticae possess gene copies that encode the
functional effectors Tu28 and Tu84 suggests that these mites, too,
can suppress defenses. Expression analysis of the corresponding
effector genes, though, revealed stunning quantitative differences
between T. urticae and T. evansi, especially for effectors of family
84. On tomato, across different -but comparable- infestation
conditions, the relative expression of Tu28 versus Te28 ranged
from similar levels in the two species to Te28 transcripts being
up to six times more abundant in T. evansi than Tu28 transcripts
in non-adapted T. urticae (Schimmel et al., 2017a). Transcripts
of effector 84 were much more abundant in T. evansi regardless
of infestation conditions, i.e., Te84 was roughly 60 to 140
times higher expressed than Tu84 (Schimmel et al., 2017a).
Thus, in addition to differences in the amino acid sequences
between orthologous effectors of non-adapted T. urticae and
specialist T. evansi, there are probably also differences at the
effector abundance level. Something similar was observed for
the spider mite-specific SHOT gene family, which is thought

to encode effector proteins (Jonckheere et al., 2017). The
genome of generalist T. urticae contains 12 SHOT paralogs
while Solanaceae-specialist T. evansi possess only one ortholog
and the Fabaceae-specialist Tetranychus lintearius only two
(Jonckheere et al., 2017). The expression of several T. urticae
SHOT genes appeared strongly host-dependent and remarkably
plastic, as they were both rapidly and massively induced upon
transfer to Fabaceae hosts but were not expressed on plants
from other families (Jonckheere et al., 2016, 2017). Together this
underscores that the ability of mites to suppress plant defenses
via secreted effectors, and possibly to dodge detection by plants,
may be tremendously plastic and cannot simply be inferred from
the absence/presence of (putative) effectors in the mite’s genome.

As indicated before, there is no information yet on the
in planta targets of spider mite effectors but based on our
knowledge of effectors from microbial phytopathogens (Mukhtar
et al., 2011; Wessling et al., 2014; Khan et al., 2018), we speculate
that: (a) a subset of the mite effectors will target and manipulate
conserved plant proteins that function as signaling hubs in
defense and/or development; (b) multiple mite effectors will be
able to interact with the same plant protein, while simultaneously;
(c) individual mite effectors will be able to interact with multiple
plant proteins. Finally, thus far research has been focused on the
identification of mite salivary proteins and their characterization
as effectors, but effectors are not necessarily of proteinaceous
nature. For example, certain bacterial phytopathogens secrete
metabolites that function as plant hormones and exploit the
conserved hormonal crosstalk mechanism of the host to trigger
susceptibility (Zheng et al., 2012; McClerklin et al., 2018). Some
eriophyid mites have been suggested to produce and secrete
functional plant hormones (De Lillo and Monfreda, 2004). There
are no indications that spider mites do so (Grbić et al., 2011). As
another example, fungal phytopathogens (Weiberg et al., 2013)
and parasitic plants (Shahid et al., 2018) can secrete small RNAs
that exploit the host’s RNA interference machinery to silence
defense-associated genes. Whiteflies have been predicted to do
the same, as they also secrete small RNAs into their host (van
Kleeff et al., 2016). The involvement of small RNAs in defense
suppression by mites cannot be excluded. Taken together, the
mite effector repertoire may extend well beyond their salivary
proteins.

To counteract effector-triggered susceptibility, plants have
evolved sensory molecules (receptors) often referred to as
R-genes/proteins that can by-pass the effector’s manipulation.
R-genes usually encode intracellular nucleotide-binding leucine-
rich-repeat (NLR) proteins or cell surface-localized receptor-like
proteins/kinases (RLPs/RLKs) that detect effectors or effector-
activity and subsequently restore PTI plus induce additional
defenses that altogether render the plant resistant again (Cui
et al., 2015; Kourelis and van der Hoorn, 2018; Su et al., 2018).
This R-gene mediated process is referred to as effector-triggered
immunity (ETI) (Figure 2C). Plant genomes typically contain
hundreds of NLR- and RLP/RLK-encoding genes that are fast-
evolving and belong to expanded families (Jacob et al., 2013;
Kourelis and van der Hoorn, 2018; Su et al., 2018). Consequently,
most of these sensory proteins appear to be highly specific,
meaning distinct variants are present in each plant species,
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putatively reflecting the effector repertoire of the biotic attackers
they are commonly confronted with (Jacob et al., 2013; Kourelis
and van der Hoorn, 2018; Su et al., 2018). This implies that
the occurrence of effective R-gene mediated resistance can differ
greatly across genotypes (varieties) within plant species. As
with PTI, ETI has been well established for plants in response
to attacks by microbial phytopathogens, while its involvement
during interactions with herbivores is still being explored. For
instance, only a small fraction of the R-genes that have been
implicated in plant resistance to arthropod herbivores has been
characterized to date, i.e., Mi-1.2 in tomato (Milligan et al., 1998;
Rossi et al., 1998; Vos et al., 1998), Vat in melon (Cucumis
melo) (Dogimont et al., 2014) and several Bph genes in rice
(Oryza sativa) (Du et al., 2009; Tamura et al., 2014; Wang
et al., 2015; Ji H. et al., 2016; Ren et al., 2016; Zhao Y. et al.,
2016; Guo et al., 2018). With respect to mites and ETI, spider
mite feeding was shown to rapidly affect the expression of
large groups of putative RLK-encoding genes in tomato and
Arabidopsis (Martel et al., 2015), suggesting these may play an
important role in the detection of mite feeding, i.e., as (co-
)receptors for DAMPs, HAMPs, or effectors (Couto and Zipfel,
2016; Kourelis and van der Hoorn, 2018). Other than this report,
the involvement of ETI in plant–herbivorous mite interactions
(Figure 2C) remains hypothetical and requires experimental
verification.

The strong selective pressures enforced by such plant receptors
is reflected in the characteristics of effector-encoding genes of
phytophagous organisms: such genes are usually highly abundant
in their genomes, are fast-evolving and belong to expanded
families (Jiang et al., 2008; Raffaele et al., 2010; Zhao et al., 2015).
This appears to be the case for (putative) spider mite effector
genes as well (Jonckheere et al., 2016; Villarroel et al., 2016).
Under pressure of ETI, plant-parasites have evolved various
counter-adaptations to overcome it, including: (a) the acquisition
of sequence mutations in ‘betraying effectors’ that do not interfere
with their function yet attenuate recognition by NLRs; (b) the
loss of ‘betraying effectors’ via gene silencing or gene removal;
(c) the gain of novel effectors that serve as decoys for- or that
mask ‘betraying effectors’ (Aggarwal et al., 2014; Dong et al., 2014;
Huang et al., 2014; Wei et al., 2015; Ji Z. et al., 2016; Zhao C. et al.,
2016; Inoue et al., 2017; Ma et al., 2017; Menardo et al., 2017).
Not surprisingly, plant-feeding organisms deploy distinct sets of
effectors depending on which host species they attack, likely to
deal with the specific defenses they encounter (Yoshida et al.,
2016; Mathers et al., 2017; Rivera-Vega et al., 2017; Lorrain et al.,
2018). The available data for spider mites is consistent with this
hypothesis (Jonckheere et al., 2016, 2017).

ECO-EVOLUTIONARY BACKGROUND
OF PLANT DEFENSE SUPPRESSION BY
MITES

Plants and herbivores are probably regularly engaged in a
co-evolutionary arm’s race. If so, there should be heritable
variation in traits that allow plants to resist herbivores as well
as heritable variation in traits that allow herbivores to cope with

these defenses, for natural selection to act on (Bolnick et al.,
2011; Gloss et al., 2016). For interactions between generalists
and multiple host plants such interactions are predicted to be
more diffuse than for specialists (Futuyma and Agrawal, 2009).
Given the tremendous diversity among the more than 200,000
defensive metabolites/proteins found across the plant kingdom,
it is hypothesized that the larger the host range of a herbivore
is, the smaller is the chance it will evolve metabolic resistance-
conferring traits (Becerra, 1997; Despres et al., 2007; Ali and
Agrawal, 2012). There are two main arguments to support this
hypothesis: (1) Mechanistically, metabolic adaptations to each
individual class of defensive metabolites/proteins encountered
on diverse hosts do not seem feasible or seem too costly.
(2) By changing host species the selective pressure required
to evolve and/or maintain metabolic adaptations to specific
plant defensive compounds will decrease or disappear. Hence,
metabolic resistance-conferring traits are most often found in
specialized herbivores, as these feed from a single or a few
closely related plants and, thus, continuously encounter the same
defensive compounds. By contrast, generalists are hypothesized
to increase their fitness across multiple plant taxa by actively
interfering with conserved defense signaling components (Ali
and Agrawal, 2012; Kant et al., 2015). Concurrently, plant-
produced defensive metabolites/proteins are expected to have
a different impact on generalist versus specialist herbivores.
Whereas generalists are negatively affected at an intermediate
level by any class of defensive compounds, specialists are less
affected by metabolites/proteins produced by the plant species
they have specialized on, but on average suffer more from
those produced by non-host plants (Ali and Agrawal, 2012;
Heckel, 2014). Studies on various plant-insect systems have found
empirical evidence to support these hypotheses (Ali and Agrawal,
2012; Kant et al., 2015), but the available data on plant-mite
interactions does not seem to do this for several reasons.

Firstly, among the mites species that have been found to
suppress plant defenses, only T. urticae is a true generalist,
whereas T. ludeni, T. evansi, and A. lycopersici are all (relatively)
specialized herbivores, i.e., on Solanaceae (Helle and Sabelis,
1985; Lindquist et al., 1996). Additionally, within natural
populations of T. urticae the defense-suppressors do not appear
to be the dominant genotype (Figure 1C) (Kant et al., 2008;
Alba et al., 2015). So far, all sampled populations of T. evansi,
covering both haplotypes, were found to be potent suppressors
of tomato defenses (Sarmento et al., 2011a; Alba et al., 2015),
suggesting that the defense suppression trait is fixed in this
species. These observations apparently contradict the hypothesis
that most defense-suppressing herbivores should be generalists.
It is worth pointing out, though, that defense suppression by
T. ludeni, T. evansi, and A. lycopersici, respectively, has only
been demonstrated on cultivated tomato (Sarmento et al., 2011a;
Glas et al., 2014; Alba et al., 2015; Godinho et al., 2016) and
that, although these mites predominantly infest Solanaceae,
they have been found on plants belonging to other families as
well. Specifically, T. ludeni has been recorded on plants from
as many as 62 other families, T. evansi on plants from 35
other families, and A. lycopersici on one other family, i.e., the
Convolvulaceae (Helle and Sabelis, 1985; Lindquist et al., 1996;
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Migeon et al., 2010). The extent to which T. evansi and T. ludeni
feed from- and reproduce on these non-solanaceous plants is
not known. The identification of these mites on non-solanaceous
hosts might actually be incorrect (i.e., many Tetranychus
spp. are hard to distinguish by eye) or be an incidental
consequence of passive dispersal (i.e., mediated by wind) from
nearby overexploited solanaceous plants (Navajas et al., 2013).
Nonetheless, it would be exciting to find out if these (relatively)
specialized mites are able to also suppress defenses of plants that
do not belong to the Solanaceae.

Secondly, T. urticae mites collected from diverse hosts have
frequently been shown to be able to adapt to novel hosts.
Strangely, most often this adaptation does not seem to go at
the expense of their fitness on the ancestral or other hosts
(Gould, 1979; Agrawal, 2000; Magalhaes et al., 2009; Wybouw
et al., 2015), suggesting T. urticae to be a jack-of-all-trades.
A comparative genome analysis has revealed that T. urticae’s
genome harbors expansions in multiple gene families that have
been implicated in xenobiotic metabolism, while such expansions
were less dramatic, or not found at all, in the genomes of
the specialized mites T. evansi, T. lintearius, and A. lycopersici,
which suggests that metabolic resistance is a prominent trait
underlying T. urticae’s adaptive abilities and enormous host
range (Grbić et al., 2011; Van Leeuwen and Dermauw, 2016).
Accordingly, (experimental evolution) studies that have analyzed
the adaptation mechanism(s) of T. urticae to novel, challenging
host plants have demonstrated large transcriptional plasticity in
the mite’s xenobiotic metabolism machinery (Dermauw et al.,
2013; Zhurov et al., 2014; Wybouw et al., 2015). Very similar
findings have been reported for generalist versus specialist aphids
(Ramsey et al., 2010; Silva et al., 2012; Bansal et al., 2014;
Mathers et al., 2017; Wenger et al., 2017). However, T. urticae’s
adaptation to a novel, challenging host plant was also associated
with the partial attenuation of a set of plant defense-associated
transcriptomic responses, indicative of defense suppression
(Wybouw et al., 2015). Something similar was observed for the
generalist Kanzawa mite, Tetranychus kanzawai, by Ozawa et al.
(2017). This suggests that the plasticity in the mite’s effector
repertoire (Jonckheere et al., 2016, 2017; Schimmel et al., 2017a)
may augment the plasticity in its xenobiotic metabolism to
rapidly overcome the resistances of novel hosts. Such a dual
mechanism has also been suggested for aphids, whose ability
to colonize novel host plants is correlated with transcriptional
plasticity of a conserved set of genes, several of which encode
(putative) host plant-specific effectors (Elzinga et al., 2014;
Thorpe et al., 2016; Eyres et al., 2017; Mathers et al., 2017;
Rodriguez et al., 2017). Collectively, the available data suggest
that mite traits enabling an improved xenobiotic metabolism are
functionally linked, at least partially, with traits related to host
defense manipulation.

Tetranychus urticae appears to harbor distinct intraspecific
variation for traits that cause these mites to induce defenses
as well traits that allow them to suppress or to resist tomato
JA defenses (Kant et al., 2008; Alba et al., 2015). Both
Kant et al. (2008) and Alba et al. (2015) sampled natural
populations of T. urticae from various non-solanaceous host
plants. Subsequently they created near-isogenic lines from

individual mites, which were then submitted to a novel host, i.e.,
WT tomato plants, def-1 and PS, as described earlier. These assays
revealed the existence of three distinct phenotypes (Figure 1C):
(1) Mites that induce defense responses to which they are also
susceptible (i.e., these lower their fitness). This was the most
common phenotype. (2) Mites that induced defense responses
to which they are resistant (i.e., absence/presence of defense did
not affect their fitness). This was a rare phenotype, not found
in all populations. (3) Mites that were susceptible to induced
defenses but nevertheless had a high performance because they
could suppress these defenses. This phenotype was found at
low frequencies in all populations. These results suggest that
especially the defense-suppression traits could be maintained as a
polymorphism by frequency-dependent selection in populations
of T. urticae living on a mosaic of plant environments. This
supports the scenario that defense suppression is a generalist
trait that allows it to behave as a jack-of-all-trades, provided
that the traits that allow mites to suppress defenses are effective
on unrelated hosts. This would be possible if effectors target
proteins or processes conserved across multiple host taxa. Yet,
since suppression of defenses may come at high ecological costs
(Sarmento et al., 2011b; Glas et al., 2014; Alba et al., 2015; Ataide
et al., 2016) it may in time be replaced -via natural selection- by
resistance traits, which not only appear to be more ‘safe’ in an
ecological context, but may also promote fitness stronger than
suppression does (Kant et al., 2008). In this scenario, defense
suppression will allow populations that shift their host plant
frequently to act as jack-of-all-trades but master-of-none. Sub-
populations confined to a single host may gain resistance to that
host at the expense of suppression and become a master-of-some
(i.e., specialized).

Although this scenario predicts that suppression will be
rare among specialist this does not seem to be the case for
mites, as indicated earlier. This justifies the question why the
suppression-traits of mites have not been replaced by resistance-
traits during the course of specialization? We argue that these
species possess buffering traits that can shield suppression-traits
from natural selection imposed by facilitated competitors and/or
natural enemies.

BUFFERING TRAITS THAT ENABLE
MITES TO MITIGATE NEGATIVE SIDE
EFFECTS OF HOST DEFENSE
SUPPRESSION IN NATURAL
COMMUNITIES

Probably the most obvious of such buffering traits of T. evansi
concerns the production of web. As a family characteristic, spider
mites produce silk, which is among others used to construct a
web that shields the mites from unfavorable abiotic conditions
as well as from competitors and predators (Helle and Sabelis,
1985). Silk production quantitatively differs between spider mite
species and T. evansi is known to synthesize extraordinarily large
amounts of it (Helle and Sabelis, 1985). Shortly after colonization
of a new host plant, when the population size is small, only
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local feeding patches are covered with web, but as the population
grows, entire plants get readily encapsulated (Liu et al., 2017).
The particularly dense web of T. evansi effectively hinders
competing herbivorous mites, such as T. urticae (Sarmento
et al., 2011b), as well as predatory mites, like Euseius concordis

(De Moraes and Lima, 1983) (Figure 3A), but there is more to
it than that. Results from another study suggest that T. evansi
may actively increase the exclusion of competitors, as T. evansi
females were found to produce a denser web in response to cues
emanating from nearby T. urticae feeding sites (Sarmento et al.,

FIGURE 3 | Schematic, simplified overview of the buffering traits that may enable Tetranychus evansi mites to mitigate negative side effects of host defense
suppression that can occur when living in natural communities. (A) T. evansi (Te) covers its feeding site with copious amounts of silken web, which shields off
competing Tetranychus urticae (Tu) as well as predatory mites. Moreover, upon perception of T. urticae cues (dashed arrow), T. evansi produces a denser web,
presumably to increase exclusion of its competitor. (B) Multiple species of predatory mites have an extremely poor performance on a T. evansi diet, possibly because
T. evansi mites and their eggs contain one or more host plant-derived toxins that interfere with their predation. (C) Contrary to T. urticae males, T. evansi males prefer
to copulate with heterospecific (i.e., T. urticae) females, this asymmetric mating preference reinforces reproductive interference by T. evansi, which can negatively
impact the population growth of competing T. urticae. Spider mites are haplodiploid organisms and females show a strong first-male sperm precedence.
Heterospecific mating events, therefore, result in (near) male-only offspring (hybrid females are not fertile), whereas conspecific mating events yield strongly
female-biased offspring. (D) Upon perception of cues from nearby T. urticae (dashed arrow), T. evansi mites hyper-suppress jasmonate (JA) and salicylate
(SA)-regulated plant defenses, albeit only at their feeding site, and this is paralleled by an increased oviposition rate for T. evansi, while the invading T. urticae does
not benefit (yet). This rapid overcompensation response likely boosts T. evansi’s competitive population growth. The asterisk denotes that there is currently no
empirical evidence for a causal relationship between the sequestration of toxins by T. evansi and the increased predation risk that may be associated with defense
suppression by these mites.
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2011b) (Figure 3A). The same happened in response to local
T. urticae cues (Sarmento et al., 2011b). Vice versa, T. evansi does
not appear to be hindered by T. urticae’s web, nor does T. urticae
produce a denser web when T. evansi feeds close by (Sarmento
et al., 2011b). Surprisingly, local cues from the predatory mite
P. longipes did not trigger an increased production of web
by T. evansi (Lemos et al., 2010). Different predator-induced
behavioral changes were observed instead: not only did T. evansi
lay fewer eggs, about a third of its eggs were suspended in the
web, whereas nearly all eggs were deposited on the leaf surface
under predator-free conditions (Lemos et al., 2010). Compared
to eggs on the leaf surface, web-suspended eggs were less likely
to be eaten by P. longipes (Lemos et al., 2010), providing a clear
explanation for T. evansi’s altered behavior.

Predation of T. evansi eggs is actually a relatively rare event
in nature, especially outside T. evansi’s native area (Navajas
et al., 2013). For numerous naturally co-occurring as well as
commercially available predatory mites, T. evansi is an unsuitable
prey, meaning that aside from the adverse effects of the silken
web and host-plant trichomes, most predators have an extremely
poor performance on a diet of T. evansi, likely because it is
toxic (De Moraes and Mcmurtry, 1985; Escudero and Ferragut,
2005; Rosa et al., 2005; Ferrero et al., 2014). This toxicity
has been attributed to one or more plant-derived metabolites,
which are probably modified and/or sequestered by T. evansi
and passed on to their eggs as well (Figure 3B) (De Moraes
and McMurtry, 1986; Koller et al., 2007; Ferrero et al., 2014).
Selection for this toxin sequestration has possibly been promoted
by an increased predation risk due to suppression of defenses
as suggested by Ataide et al. (2016). It should be noted that
defense suppression by T. evansi does not necessarily prevent
the attraction of predatory mites, i.e., indirect plant defenses,
despite their interference with the herbivory-induced production
of volatile organic compounds (Sarmento et al., 2011a; Lemos,
2015). Hence, the toxin sequestration may be a buffering
trait.

The third buffering trait of T. evansi concerns the
direct interference with T. urticae’s reproduction due to
asymmetric mating preferences. Even though the two species are
reproductively incompatible, T. evansi males prefer to mate with
T. urticae females instead of with conspecific females, whereas
T. urticae males do preferentially mate with conspecifics (Sato
et al., 2014, 2016). Since spider mites are haplodiploid organisms
and females show a strong first-male sperm precedence (Helle
and Sabelis, 1985), this asymmetric mating preference can
have a strong negative effect on T. urticae’s population growth
when mites from both species co-occur (Sato et al., 2014), a
phenomenon known as reproductive interference (Figure 3C).
That is because although heterospecific mating events do
not affect the total number of eggs laid, females produce
predominantly male offspring upon mating with a heterospecific
male, as opposed to strongly female-biased offspring when
fertilized by a conspecific (Sato et al., 2014; Clemente et al.,
2016). The few hybrid females derived from interspecific mating
events between T. urticae and T. evansi are not fertile (Clemente
et al., 2016). Reproductive interference has also been observed
between T. urticae and T. ludeni (Clemente et al., 2017), but it

is not known which effects this has on the population growth of
both species.

The fourth buffering trait of T. evansi involves plasticity in
its reproductive performance -possibly resulting from plasticity
in the magnitude of suppression- in response to the presence of
competitors (Figure 3D). Analogous to the competitor-induced
increased web production, T. evansi females on a well-established
feeding site were found to suppress plant defenses stronger, albeit
only locally, when T. urticae was introduced to adjacent leaf
tissue (Schimmel et al., 2017a). This local hyper-suppression
coincided with the increased expression of effector-encoding
genes in T. evansi (Te28 and Te84) and, moreover, was paralleled
by an increased production of eggs by T. evansi -but not by
the invading T. urticae (Schimmel et al., 2017a). Also Orsucci
et al. (2017) found evidence for an increase in T. evansi’s
reproductive performance when T. urticae was present on the
same tomato leaf. In the opposite experimental situation, no
significant changes were detected in the plant’s defense responses,
nor did T. urticae females produce more eggs upon introduction
of T. evansi to adjacent leaf tissue (Schimmel et al., 2017a). This
competitor-induced, plant-mediated overcompensation response
of T. evansi therefore likely promotes its competitive population
growth on tomato.

The discovery and characterization of T. evansi’s buffering
traits has raised numerous questions, in particular whether
similar traits can be found in other defense-suppressing mites
(or insects)? For A. lycopersici the answer is a partial no,
because this species does not produce web at all. However,
this mite is extremely small and resides exclusively within the
trichome forest on tomato stems and leaves, which is neither
accessible for T. urticae nor for predatory mites. This may
represent a behavioral trait that buffers facilitating competitors
or natural enemies. Interestingly, after a few days of feeding
by A. lycopersici glandular- and non-glandular trichomes on
tomato deteriorate and this exposes the mite to its natural
enemies, such as the predatory mite Amblydromalus limonicus.
On such plants the russet mites were observed to rapidly move
toward plant parts with intact trichomes (Van Houten et al.,
2013).

Taken together, although natural selection may act against
defense suppression under pressure of competition and predation
this trait may also escape selection when shielded by buffering
traits. These buffering traits may allow defense suppressors to
remain suppressors, i.e., to counteract the evolution of resistance,
during periods of specialization by enabling them to maintain the
monopoly on their feeding site and to exclude natural enemies.

CONCLUSIONS AND PERSPECTIVES

So why do herbivorous mites suppress plant defenses?

(1) Not all herbivorous mites seem to suppress plant defenses
but those that do obviously benefit from suppression as it
increases their performance under laboratory conditions.

(2) Under natural conditions the benefits of suppression are
less obvious since the ecological risks (costs) that come with
suppression can be considerable.
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(3) Suppression of defenses by herbivores is facilitated by
secreted salivary effector proteins that manipulate plant
processes to turn their host into a better food source.

(4) In our view the ability to suppress defenses facilitates a
generalist life style and for these generalists -that move
across environments with variable ecological risks- the
advantage of being able to colonize multiple hosts may, on
average, outweigh the costs.

(5) Existence of intraspecific variation suggests suppression-
traits of generalist herbivores that live on a mosaic of plant
environments to be maintained by frequency-dependent
selection.

(6) We predict the effectors of generalists to target elements
(e.g., proteins) of plant processes (e.g., defense pathways),
that are conserved across their multiple hosts and thereby
facilitate their multiple-host life style. This in contrast
to xenobiotic resistance that will usually only facilitate a
herbivore’s compatibility with a limited set of (related)
plant hosts.

(7) Evidence suggests that upon colonization of a novel host
by the generalist T. urticae the ability to suppress defenses
rapidly emerges possibly due to plasticity and/or selection.

(8) We predict that in generalists confined to a host
for extended periods of time the suppression trait
will be replaced by resistance traits, because these
traits are ecologically more safe and, according to the
data available, may promote mite performance more
strongly.

(9) We argue that the existence of specialists that suppress
defenses rather than resist them may represent ‘accidents’
facilitated by buffering traits that shield suppression
from natural selection. We predict these specialists to
possess a smaller set of effectors/effector paralogs than
generalists do and these to more often target less

conserved (i.e., more host-specific) plant proteins or
processes.

(10) We speculate that under the umbrella of the buffering
traits, the suppression traits of specialists may still erode
because of physiological costs and/or drift, yet at a
relatively slow pace.

(11) Finally, we argue that defense suppression traits and
their buffering traits can be, but not necessarily are,
co-adaptations.
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