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Wheat production and sustainability are steadily threatened by pests and pathogens
in both wealthy and developing countries. This review is focused on the wheat curl
mite (WCM), Aceria tosichella, and its relationship with wheat. WCM is a major pest of
wheat and other cereals and a vector of at least four damaging plant viruses (Wheat
streak mosaic virus, High plains wheat mosaic virus, Brome streak mosaic virus, and
Triticum mosaic virus). The WCM–virus pathosystem causes considerable yield losses
worldwide and its severity increases significantly when mixed-virus infections occur.
Chemical control strategies are largely ineffective because WCM occupies secluded
niches on the plant, e.g., leaf sheaths or curled leaves in the whorl. The challenge
of effectively managing this pest–virus complex is exacerbated by the existence of
divergent WCM lineages that differ in host-colonization and virus-transmission abilities.
We highlight research progress in mite ecology and virus epidemiology that affect
management and development of cereal cultivars with WCM- and virus-resistance
genes. We also address the challenge of avoiding both agronomically deleterious side
effects and selection for field populations of WCM that can overcome these resistance
genes. This report integrates the current state of knowledge of WCM–virus-plant
interactions and addresses knowledge gaps regarding the mechanisms driving WCM
infestation, viral epidemics, and plant responses. We discuss the potential application of
molecular methods (e.g., transcriptomics, epigenetics, and whole-genome sequencing)
to understand the chemical and cellular interface between the wheat plant and
WCM–virus complexes.
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INTRODUCTION

Wheat, Triticum aestivum L., is the most abundant source of calories and protein in the human
diet (Braun et al., 2010; Arzani and Ashraf, 2017). It is grown annually on 215 million acres, an
area larger than for any other crop, and remains the most traded on world markets and the most
important crop in the 21st Century (Curtis and Halford, 2014).
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However, wheat production is affected by a number of pests,
including insects, fungi, nematodes, and mites, that can severely
reduce yields and lead to crop failures. One of the most important
global pests of wheat, occurring in North and South America,
Europe, Asia, and Oceania, is the wheat curl mite (WCM),
Aceria tosichella Keifer (Figures 1, 2A) which belongs to the
superfamily Eriophyoidea (Navia et al., 2013). WCM is minute
(about 0.2 mm long) and occupies sheltered niches on the
plant, such as leaf sheaths and rolled and curled leaves, making
its detection difficult, and limiting its exposure to acaricides
(Navia et al., 2013). Moreover, its reproduction by arrhenotokous
parthenogenesis (Miller et al., 2012), short developmental time,
and high thermal tolerance (Kuczyński et al., 2016) enable great
colonization potential.

The greatest economic impact of WCM results from its
ability to transmit at least four damaging plant viruses to
several different cereal crops. In this review we integrate the
current state of knowledge of WCM–virus-plant interactions and
address knowledge gaps regarding the mechanisms driving WCM
infestation, viral epidemics, and plant responses.

WHAT CURL MITE FEEDING AND VIRUS
TRANSMISSION

Almost 90 grass species worldwide have been reported as host
plants for WCM including cereals such as wheat, oats, barley,
pearl millet, corn, and rye, as well as other cultivated (pasture)
and uncultivated grasses (Navia et al., 2013). WCM has very short
chelicerae (ca. 0.02 mm) and can feed only on leaf epidermal
tissues. On wheat they colonize the plant by feeding within the
whorl of a developing leaf on thin-walled epidermal tissue known
as bulliform cells. Feeding on these cells by mites prevents leaves
from unfurling causing leaf curling (Figure 2B) that promotes a
humid environment generally preferred by WCM. WCM feeding
also reduces photosynthetic capacity (Royalty and Perring, 1996).

FIGURE 1 | Scanning electron microscopy (SEM) image of wheat curl mite
(Aceria tosichella) specimens on a wheat leaf.

The WCM has been shown to be the only transmitter
of four distinct viruses to wheat and numerous other grass
hosts (Stenger et al., 2016). These viruses occur across
two virus families and three virus genera. Slykhuis (1955)
first identified WCM as the vector of Wheat streak mosaic
virus (family Potyviridae/genus Tritimovirus; acronym WSMV).
The mite was also shown to transmit High plains wheat
mosaic virus (Fimoviridae/Emaravirus; HPWMoV) (Seifers
et al., 1997). Transmission of Brome streak mosaic virus
(Potyviridae/Tritimovirus; BrSMV) by WCM was verified by
Stephan et al. (2008). Most recently, Seifers et al. (2009)
identified the WCM as the vector of Triticum mosaic virus
(Potyviridae/Poacevirus; TriMV).

Of these viruses, WSMV is the most widely distributed and
studied and it has been identified from every major wheat
growing region around the world (Navia et al., 2013). The greatest
and most consistent impact from WSMV occurs across the Great
Plains of North America with more sporadic impact in other
regions. BrSMV has only been found in Europe and no economic
impact from the virus has been reported (Stephan et al., 2008).

Wheat streak mosaic virus infection of wheat results in a light
and dark green mosaic pattern on the youngest emerged leaves
(Figure 2C; Wegulo et al., 2008). As the plant adds new leaves,
the newest leaves will first show these subtle mosaic symptoms
while older leaves will become progressively more yellow. The
tight curling at the leaf edge resulting from mite feeding is
often apparent. The severity of symptoms and subsequent yield
impact from virus infection in wheat depends on the plant stage
at first infection (Hunger et al., 1992; Wosula et al., 2018).
Plants infected prior to or during tillering will eventually become
severely stunted, discolored, and take on a very prostrate growth
pattern. These severe symptoms indicate that extreme yield loss
will occur.

In the North American Great Plains co-infection of the viruses
is common (Burrows et al., 2009; Byamukama et al., 2013,
2016) and may result in more spotted appearance on leaves but

FIGURE 2 | Wheat curl mite (WCM) and WSMV symptoms: (A) specimens of
WCM on a wheat leaf; (B) leaf curls caused by WCM; and (C) WSMV
symptoms on wheat leaf.

Frontiers in Plant Science | www.frontiersin.org 2 July 2018 | Volume 9 | Article 1098

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01098 July 25, 2018 Time: 16:53 # 3

Skoracka et al. The Interface Between Wheat and the Wheat Curl Mite

distinguishing symptoms of co-infections is not possible. Co-
infection of WSMV and TriMV have been shown to increase
the severity of symptoms and yield impacts (Tatineni et al.,
2010; Byamukama et al., 2012, 2014). HPWMoV is not manually
transmissible and this has limited study of this virus both
independently and in combination with other viruses (Tatineni
et al., 2014; Stenger et al., 2016).

WCM DIVERSITY AND ITS
IMPLICATIONS

Understanding the relationships between WCM, viruses, and
their hosts is challenging since WCM is a cryptic species
complex. It includes multiple lineages that are distinguishable
using mitochondrial (mtDNA COI, 16S) and nuclear (28S rDNA
D2, ITS1–ITS2, and ANT) DNA sequences, differing also in
host preference (Skoracka et al., 2012, 2013; Miller et al., 2013;
Szydło et al., 2015). Some lineages are highly host-specific and
locally distributed, whereas others are generalists with wider
geographic ranges (Skoracka et al., 2014). Two WCM genotypes
associated with wheat are the most polyphagous and widespread,
having been found in the Middle East, Europe, Australia, and
North and South America (Skoracka et al., 2014; Wosula et al.,
2016). They are known as type 1 and type 2 in Australia (Carew
et al., 2009) with corresponding genotypes occurring in North
America (Hein et al., 2012), as well as in Europe and South
America where they are known as MT-8 and MT-1, respectively
(Skoracka et al., 2014). Hereafter this latter nomenclature will be
used.

In North America these two lineages have been shown to
transmit WSMV (Wosula et al., 2016). However, MT-1 had a
higher reproductive capacity in the presence of WSMV and
vectored it more efficiently than MT-8 (Seifers et al., 2002;
Siriwetwiwat, 2006; Oliveira-Hofman et al., 2015). In Australia,
among these two lineages only MT-1 has been observed to
transmit WSMV (Schiffer et al., 2009). MT-1 is also the most
effective vector of HPWMoV and TriMV (Seifers et al., 2002;
McMechan et al., 2014; Wosula et al., 2016). Mixed-virus
infections further confound virus–mite studies, e.g., transmission
by MT-1 was more frequent from WSMV infected source plants
than from those co-infected with TriMV (Oliveira-Hofman et al.,
2015).

MT-8 and MT-1 have been found coexisting in mixed
populations in wheat-producing areas in North America,
Australia, and Europe, where plants from a single wheat
field contained both MT-1 and MT-8 (Siriwetwiwat, 2006;
Schiffer et al., 2009; Hein et al., 2012; Skoracka et al., 2017),
further complicating management of viruses vectored by WCM.
This sympatry combined with differential virus-transmission
accentuates the need for efficient identification methods.

WCM Management
To date, research to manage this mite–virus complex has focused
mainly on the development of classical host plant resistance
(HPR) to both the mite and viruses by introgressing favorable
traits from resistant germplasm into advanced breeding lines

(Whelan and Hart, 1988; Chen et al., 1998; Harvey et al., 2003;
Malik et al., 2003a; Hakizimana et al., 2004; Carrera et al.,
2012; Carver et al., 2016), in addition to cultural practices
such as planting date and summer control of volunteer wheat
plants (McMechan and Hein, 2016). The search for genes
conferring WSMV resistance to wheat began shortly after
the virus was identified in the 1950s (McKinney and Sando,
1951). With few sources of resistance available in wheat, the
search eventually targeted close relatives culminating with the
chromosome translocation of the Wsm1 gene from Thinopyrum
intermedium (Host) Barkworth & D.R. Dewey to the short arm of
chromosome 4D in wheat (Friebe et al., 1991).

Continued efforts resulted in release of the first germplasm:
KS96HW10-3 (Seifers et al., 1995) and first commercial cultivar
‘Mace’ (Graybosch et al., 2009) with the Wsm1 gene. This gene
has demonstrated resistance to both WSMV and TriMV (Friebe
et al., 2009), however, its value has been limited due to linkage
drag that reduces yields (Sharp et al., 2002). Similar issues have
impacted a second gene, Wsm3, transferred into wheat from
T. intermedium but efforts continue to improve its effectiveness
and identify genetic markers (Friebe et al., 2009; Danilova et al.,
2017).

A germplasm line, CO96093-2, was identified by Haley et al.
(2002) as resistant to WSMV, but the gene’s origin was uncertain.
Lu et al. (2011) found this gene to be a new gene (Wsm2) of
wheat origin. Four varieties have thus far been released with
the Wsm2 gene: ‘RonL’ (Seifers et al., 2007), ‘Snowmass’ (Haley
et al., 2011), ‘Clara CL’ (Martin et al., 2014), and ‘Oakley CL’
(Zhang et al., 2015). Studies with both Wsm1 and Wsm2 have
demonstrated that both genes are temperature-sensitive with
high levels of resistance below 20◦C but breaking down as
temperatures approach 25◦C (Seifers et al., 1995, 2007).

Additional sources of WSMV resistance in wheat have
recently been identified and hold promise for incorporation
into commercial wheats (Seifers et al., 2007, 2013), including
increased temperature stable resistance (Fahim et al., 2012a;
Kumssa et al., 2017). Lu et al. (2011) has hypothesized the
presence of a minor gene in wheat that confers partial resistance
or tolerance in some commercial cultivars.

Early efforts to identify resistance to the WCM in wheat
were not successful (Harvey and Livers, 1975), and this led to
efforts to target close wheat relatives for resistance. Thus far, four
WCM-resistance genes have been identified. The earliest of these
genes (Cmc3) was translocated to wheat from rye (Secale cereale
L.) (Martin et al., 1983; Malik et al., 2003a). It was present in
‘TAM 107,’ a commercial release that became widely used in the
1980s and 1990s across the Great Plains (Porter et al., 1987).
However, the extensive use of TAM 107 led to loss of effectiveness
of the gene (Harvey et al., 1995, 1997). A mite-resistance gene
(Cmc1) translocated from Aegilops tauschii (Coss.) Schmal. to
wheat (Thomas and Conner, 1986; Whelan and Thomas, 1989)
has been used to develop breeding material (Cox et al., 1999)
and the recent release of ‘Radiant’ in Canada (Thomas et al.,
2012). A third source of resistance,Thinopyrum ponticum (Podp.)
Barkworth & D.R. Dewey, contributed with gene Cmc2 (Whelan
and Hart, 1988). A second gene originating from A. tauschii
(Cmc4) was found to be independent of Cmc1 (Cox et al., 1999;
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Malik et al., 2003a) and has been used in the breeding release
OK05312 (Carver et al., 2016). Additional resistance genes have
been proposed but not yet isolated from common wheat (Harvey
and Martin, 1992), rye (Cainong et al., 2010), and A. tauschii
(Malik et al., 2003b; Dhakal et al., 2017).

The value of mite-resistance lies in the potential for reduced
virus transmission and spread through the field, as well as in the
reduction of mite buildup in the volunteer wheat that serves as
a bridge host to the following wheat crop (Martin et al., 1984;
Conner et al., 1991; Harvey et al., 2005). However, mite response
to resistance genes has often been variable (Harvey et al., 1999)
and the stability of resistance genes is a concern due to the
apparent adaptation to Cmc3 by mite populations (Harvey et al.,
1995, 1997, 1999). Greater understanding of the variability in
mite genotype responses to resistance genes is needed to evaluate
potential stability of resistance genes. Genetic characterization
of the mites used in resistance studies has become critical
to understanding mite-gene response (Richardson et al., 2014;
Aguirre-Rojas et al., 2017; Dhakal et al., 2017). Future efforts
to pyramid Wsm and Cmc genes may enhance the utility and
stability of these management options.

Molecular tools, such as in situ hybridization and genetic
marker maps have improved the efficiency and precision of
HPR introgression efforts. In addition, RNAi techniques have
been used to produce transgenic wheat lines with resistance
to WSMV (Fahim et al., 2010, 2012b; Cruz et al., 2014) and
TriMV (Shoup Rupp et al., 2016) although no commercial wheat
cultivars with this resistance have been released. With current
advances in DNA sequencing technology, the whole genome
sequences (WGSs) of wheat, WCM, WSMV, HPWMoV, TriMV,
and BrSMV (Gustafson et al., 1987; Seifers et al., 2008; Stewart,
2016; Tatineni et al., 2016; Zimin et al., 2017) are all now available,
presenting the opportunity to study these tripartite host–vector–
virus relationships at the level of genome sequence and gene
expression.

FUTURE DIRECTIONS

Wheat–WCM Interactions
Like many eriophyoid mites that attack grasses, WCM is
vagrant, i.e., inhabiting the leaf surface rather than inducing
galls, and there is very little published information regarding
its direct molecular or physiological interactions with its hosts.
Given the availability of its genome sequence and those of
several of its hosts, such as wheat (Zimin et al., 2017),
maize (Schnable et al., 2009), and barley (Mascher et al.,
2017), WCM is a good candidate to be a model for such
studies in grass-infesting Eriophyoidea. For example, using
available genomic and transcriptomic (Ozsolak and Milos, 2011;
Jänes et al., 2015) resources, it will be possible to determine
whether the ability of polyphagous genotypes (e.g., MT-1,
MT-8) to change from one host to another is genetically or
epigenetically (Laird, 2011) controlled. Similarly, the factors
that determine which plant species are accepted by a host-
specific WCM genotype can be dissected (Gompert et al., 2010;
Narum et al., 2013). Moreover, novel genomic technologies

and high-throughput phenotyping of wheat varieties can
accelerate germplasm improvement (see Mondal et al., 2016 for
examples).

Proteomic analyses of rice leaves from control plants and those
infested with Schizotetranychus oryzae (Acari: Tetranychidae)
revealed a wide range of intracellular physiological changes
induced by this mite although the specific source(s) of induction
(e.g., salivary components) are not known (Buffon et al.,
2016). Similar analyses of WCM on one or more of its
hosts could take advantage of the mite’s and host plants’
genomic resources, as well as recent techniques developed
to characterize the salivary proteins of a tetranychid mite
(Jonckheere et al., 2016), to assess mite–host interactions from
both sides. Effects of individual proteins could be assessed
through knockout genotypes created by the CRISPR-Cas9
mutagenesis (Ran et al., 2013). Complementary studies of
other eriophyoids and mite species from other families that
attack cereal crops would identify similarities and differences
in these interactions that could shed light on prospective
control strategies against multiple mite species, e.g., via RNAi
in the host plant to block production of essential mite
proteins.

WCM–Virus Interactions
Regarding the ability of mites to transmit WSMV, a genotyping-
by-sequencing study (e.g., Narum et al., 2013) incorporating
all known WCM genotypes with variable WSMV transmission
ability and anchored to an annotated WGS of WCM would
identify candidate genomic regions associated with WSMV
transmission variability. This could also be used to explore
the differential transmission of TriMV and HPWMoV by
WCM genotypes. Complementary transcriptomic and epigenetic
studies could further identify the candidate gene(s) involved in
this variability and tease apart genetic and epigenetic factors.

Different strains of WSMV have also been detected that
are differentially transmitted by individual WCM genotypes
(Wosula et al., 2016). Mutations to the helper component
proteinase (HC-Pro) gene of WSMV have been shown to
alter transmission from mite to plant or prevent it altogether
(Stenger et al., 2006; Young et al., 2007) although the precise
physiological mechanism of transmission is unknown. Given
that WSMV is a circulative virus that is transmitted via the
salivary glands of WCM (Paliwal, 1980), the development of
salivary protein characterization techniques (Jonckheere et al.,
2016) may enable association of specific WCM salivary proteins
with successful or unsuccessful WSMV transmission. If other
WCM-transmitted viruses have a persistent circulative type of
relationship with the vector, understanding the mechanisms
(receptors) by which these viruses cross the midgut epithelium
and salivary gland barriers to reach the stylet channel may yield
basic information regarding the traffic of these viruses within the
mite body.

WCM Colonization Potential
The spread of WCM and its associated plant viruses to cereal-
producing regions worldwide is of increasing scientific and
economic importance (Navia et al., 2013). Colonization and
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invasive potential of any organism is inevitably associated with
its dispersal ability and its degree of ecological specialization
(Ehrlich, 1986). WCM disperses passively by air currents (Sabelis
and Bruin, 1996) and wheat-associated lineages are characterized
by low host-specificity (Skoracka et al., 2013). Generalists with
high dispersal ability are typically successful invaders (Wilson
et al., 2009). But relationships between WCM dispersal potential,
degree of host specialization, and colonization success have
never been tested. To do so, it will be necessary to understand
the mechanisms of successful WCM wheat colonization,
including long-established and recent invasions. Research on
the relationship between WCM host specialization and dispersal
ability revealed trade-offs in plant performance between different
host plant species after mite dispersal (Laska et al., 2017). Also
it has been shown that a small number of WCM specimens
landing on wheat plants after aerial dispersal (about 2% of an
initial source population) were able to establish dense colonies
very quickly, indicating great colonization potential (Kiedrowicz
et al., 2017). Understanding how interactions between dispersal
and local adaptation shape WCM distribution is crucial because
predicting spread of potentially invasive organisms, particularly
under current anthropogenic environmental changes, is a

key to managing pest outbreaks and minimizing ecosystem
degradation.
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