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False-spider mites of the genus Brevipalpus are highly polyphagous pests that attack
hundreds of plant species of distinct families worldwide. Besides causing direct damage,
these mites may also act as vectors of many plant viruses that threaten high-value
ornamental plants like orchids and economically important crops such as citrus and
coffee. To better understand the molecular mechanisms behind plant-mite interaction
we used an RNA-Seq approach to assess the global response of Arabidopsis thaliana
(Arabidopsis) plants along the course of the infestation with Brevipalpus yothersi, the
main vector species within the genus. Mite infestation triggered a drastic transcriptome
reprogramming soon at the beginning of the interaction and throughout the time course,
deregulating 1755, 3069 and 2680 genes at 6 hours after infestation (hai), 2 days after
infestation (dai), and 6 dai, respectively. Gene set enrichment analysis revealed a clear
modulation of processes related to the plant immune system. Co-expressed genes
correlated with specific classes of transcription factors regulating defense pathways
and developmental processes. Up-regulation of defensive responses correlated with the
down-regulation of growth-related processes, suggesting the triggering of the growth-
defense crosstalk to optimize plant fitness. Biological processes (BPs) enriched at
all time points were markedly related to defense against herbivores and other biotic
stresses involving the defense hormones salicylic acid (SA) and jasmonic acid (JA).
Levels of both hormones were higher in plants challenged with mites than in the non-
infested ones, supporting the simultaneous induction of genes from both pathways. To
further clarify the functional relevance of the plant hormonal pathways on the interaction,
we evaluated the mite performance on Arabidopsis mutants impaired in SA- or JA-
mediated response. Mite oviposition was lower on mutants defective in SA biosynthesis
(sid2) and signaling (npr1), showing a function for SA pathway in improving the mite
reproduction, an unusual mechanism compared to closely-related spider mites. Here
we provide the first report on the global and dynamic plant transcriptome triggered by
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Brevipalpus feeding, extending our knowledge on plant-mite interaction. Furthermore,
our results suggest that Brevipalpus mites manipulate the plant defensive response to
render the plant more susceptible to their colonization by inducing the SA-mediated
pathway.

Keywords: plant–herbivore interaction, plant hormones, defense pathways, salicylic acid, jasmonic acid, cross-
talk, Tetranychus, RNA-Seq

INTRODUCTION

Plants are frequently threatened by arthropods herbivores from
different feeding guilds causing variable tissue injuries. Chewers
consume a significant amount of plant tissue thus promoting
extensive damage, while sap-suckers and cell-content-feeders
pierce to ingest plant fluids, inflicting minimal physical damage.
To further enhance self-protection against attackers, plants
display receptors that recognize conserved molecules associated
with herbivores (herbivore-associated molecular patterns –
HAMPs) or even self-molecules released after cell damage
inflicted by the attack (damage-associated molecular patterns –
DAMPS) and mount appropriate defense response. Some
adapted herbivores have evolved the ability to counteract plant
defenses by producing effectors that disrupt plant signaling
and induce effector-triggered susceptibility (Hogenhout and Bos,
2011; Ferrari et al., 2013; Pel and Pieterse, 2013). The plant
counterattack involves resistance proteins (R proteins) which
directly bind the effectors, or the plant proteins they modify, and
elicit a second layer of the immune response. The outcome of
induced defenses includes the production of toxins that interfere
with herbivore feeding, growth, reproduction or fecundity and/or
volatile compounds that attract natural enemies of the attacker
(Pieterse et al., 2012).

Upon recognition a cascade of phytohormone-dependent
signals, modulated by the nature of the damage, orchestrates
specific plant defense responses. Generally, arthropods such as
chewing insects that greatly damage the plant tissue integrity
trigger the jasmonic acid (JA) pathway, whilst herbivores causing
minimal tissue disruption, i.e., piercing-sucking arthropods
induce salicylic acid (SA) mediated response (Arimura et al.,
2011). The SA pathway is typically associated with resistance
against biotrophic pathogens and can often antagonize JA-
mediated defenses. Ethylene (ET) and abscisic acid (ABA) also
control plant responses to herbivore through the modulation
of JA signaling branches. ABA regulates the MYC transcription
factor branch (MYC-branch) acting in the defenses against
herbivores, whereas ET regulates the ethylene responsive factor
branch (ERF-branch) to defend against necrotrophic invaders.
The ET- and ABA-regulated branches antagonize each other to
fine tune JA pathway against the specific invader (Pieterse et al.,
2012).

Herbivores can take advantage of the natural cross-talk
between hormonal pathways to circumvent plant defenses.
Bemisia tabaci activates SA responses to suppress effective JA
defenses and improve whitefly performance (Zarate et al., 2007;
Zhang et al., 2013). Likewise, some insect eggs induce high
levels of SA that leads to reduced protein levels of MYC2,

subsequent suppression of JA defenses, and the enhancement
of larvae performance (Bruessow et al., 2010; Schmiesing et al.,
2016). The ERF-MYC branch antagonism is also occasionally
exploited by herbivores. Oral secretions of Pieris rapae activates
the ERF-branch to rewire JA signaling toward the insect
preferred branch (Verhage et al., 2011). Beyond through cross-
talk, other herbivores are capable of directly suppressing several
defense pathways. The mite Tetranychus evansi repress both JA
and SA signaling in tomato, dramatically reducing the levels
of defense compounds (Sarmento et al., 2011; Alba et al.,
2015).

Manipulation of plant defenses by herbivores has been shown
to frequently occur through saliva-contained effectors. Salivary
proteins able to modulate defenses and improve herbivore
performance have been identified in insects (Hogenhout and Bos,
2011) and mites (Villarroel et al., 2016). Moreover, proteins from
arthropod-associated microorganisms such as endosymbiont
bacteria (Casteel et al., 2012; Chung et al., 2013) and viruses
(Casteel et al., 2014; Li et al., 2014) may also be present in
the saliva and modulate plant defenses to promote herbivore
performance.

Current understanding of the mechanisms involved in plant
response to herbivores comes mainly from studies of plant–
insect interactions. Relatively little is known about molecular
responses to other arthropods as mites, most of them focusing
on the two-spotted spider mite T. urticae (Rioja et al.,
2017). False spider mites of the genus Brevipalpus (Acari:
Tenuipalpidae) are economically important phytophagous mites
that attack hundreds of plant species of very distinct families,
including large-scale plantations of high-value crops and several
ornamental plants (Childers et al., 2003; Kitajima et al., 2010).
Besides causing direct damage to some plant species, the
negative impacts of infestation are often exacerbated by their
ability to vector numerous plant-infecting viruses, the so-called
Brevipalpus-transmitted viruses (BTVs) (Kitajima and Alberti,
2014). Brevipalpus yothersi vectors both cileviruses and tentative
dichorhaviruses (Ramos-González et al., 2016; Chabi-Jesus et al.,
2018) being the main vector of citrus leprosis virus C (CiLV-C),
the prevalent virus causing citrus leprosis disease. Chemical
control of B. yothersi mites costs millions of dollars each year in
Brazil, the world leading producer of sweet orange juice, frozen
concentrated orange juice (FCOJ) and not-from-concentrate
orange juice (NFC) (Bastianel et al., 2010). The cosmopolitan
distribution of Brevipalpus spp. poses a major threat to the
worldwide citrus industry and to other crops such as coffee
(Rodrigues and Childers, 2013; Beard et al., 2015). In addition to
their agricultural relevance, Brevipalpus mites are also prominent
because of their unusual biology. Several species of the genus
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are haploid during their entire life cycle, an exclusive feature
amongst higher organisms, and are essentially female due to the
presence of the endosymbiont bacterium Cardinium sp. (Weeks
et al., 2001).

Despite the economic and biological significance, many
aspects of the Brevipalpus mite-plant interaction remain largely
unknown. A previous study showed that plants respond to the
presence of B. yothersi non-viruliferous mites with a ROS burst
and induction of specific genes from SA and JA-dependent
pathways (Arena et al., 2016). Upon infestation with CiLV-C
viruliferous mites, both SA- and JA-responsive genes are reduced,
and mite behavior is affected (Arena et al., 2016). To achieve a
wider understanding of the molecular mechanisms behind plant-
mite interaction, we used an RNA-Seq approach assessing the
global response of Arabidopsis thaliana plants along the course
of the infestation with B. yothersi. Transcriptome analysis was
complemented with the measuring of the SA and JA hormone
levels in plants upon mite feeding. Finally, to further clarify
the functional relevance of hormone-triggered plant defense
on the interaction, we evaluated the B. yothersi oviposition on
Arabidopsis mutants impaired in SA or JA-mediated response.
Current work provides a comprehensive picture of the plant
response to Brevipalpus mite feeding.

RESULTS

Brevipalpus Mites Elicit a Significant
Transcriptome Reprogramming on
Infested Plants
A time-course RNA-Seq experiment was set up to assess
the global response of A. thaliana plants along the course
of infestation with non-viruliferous B. yothersi mites. The
transcriptome of infested plants was compared with that from
non-infested ones (control) at 6 h after infestation (hai), 2 and
6 days after infestation (dai). Overall, 995 million paired-end
reads were obtained by Illumina sequencing, with an average of
41.5 million per library and higher average number of reads in
samples from the infested treatment (Supplementary Table S1
and Figure 1A). Roughly 94% of the reads mapped against the
A. thaliana reference genome, with a 91% average of uniquely
mapped reads (Supplementary Table S1 and Figure 1B).

Biological variability between samples was verified by
principal component analysis (PCA) using the normalized
count data (Figure 1C). Infested and control samples grouped
separately, suggesting a globally distinct expression profile, as
expected. Even though a classification of the first principal
components as treatment or time of infestation was not clear, the
first component (PC1), which accounts for 52% of the variance,
apparently separated the samples by the intensity of stimuli.
Except for two out of four control samples at 6 dai, all control
samples grouped together with those of mite-infested treatments
from 6 hai, whose plants were stimulated by a short period of
mite feeding. Samples from plants challenged by longer mite
feeding period (2 and 6 dai) grouped separately. Hierarchical
clustering of samples within each time point confirmed a clear

separation between mite-infested and non-infested treatments
over the course of the experiment (Figure 1D).

By using the negative binomial-based DESeq2 package and
FDR correction of p-values for multiple comparisons, 5005
differentially expressed genes (DEGs, α ≤ 0.05) were detected
(Supplementary Table S2). Mite infestation deregulated 1755,
3069 and 2680 genes at 6 hai, 2 dai, and 6 dai, respectively
(Figure 1E). At the earliest stage of the interaction (6 hai),
the majority of the DEGs was up-regulated. The number
of down-regulated genes progressively increased during the
interaction reaching its highest rating at 6 dai (Figures 1E,F).
Analysis performed here show an intense modulation of
the plant transcriptome in response to Brevipalpus mite
infestation.

To validate the RNA-Seq data, 10 genes were selected for
Real Time RT-qPCR analysis. Expression of these genes was
assessed in a new experiment with mite-infested and non-infested
Arabidopsis plants at 6 hai, 2 dai, and 6 dai (Supplementary
Figure S1). Altogether, expression profiles of selected genes
obtained by RT-qPCR were consistent with those obtained by
the RNA-Seq, supporting the results described in this work.
Additionally, some of these genes had an expression profile
similar to that revealed by a qPCR-driven analysis during
a comparable experiment previously described (Arena et al.,
2016).

The Plant Immune System Is Modulated
by Brevipalpus Mite Infestation
Gene ontology (GO) enrichment analysis was performed with
all 5005 DEGs to identify the most relevant biological processes
(BPs), molecular functions (MFs) and cellular components
(CC) disturbed during Brevipalpus mite-plant interaction. This
study identified 264 BPs, 83 MFs and 78 CCs that were over-
represented (hypergeometric test, α ≤ 0.001) in the list of DEGs
(Supplementary Table S3). Enriched BPs were further visualized
as a network using the app BinGO from Cytoscape, where color
and size of the nodes identify p-values and number of DEGs from
each category, respectively (Supplementary Figure S2).

The GO network revealed a striking deregulation of
plant defensive responses. BP categories were clustered in
two major groups comprising metabolism and response to
stimuli. BP-metabolism was sub-clustered into two branches
separately harboring the primary and secondary metabolisms.
Secondary metabolism group was represented by processes
related to the biosynthesis and metabolism of “flavonoids,”
“glucosinolates,” “toxins,” and “camalexins,” which are known
to exert anti-herbivory roles and be induced by SA or JA.
Primary metabolism included categories associated to the
metabolism of: (i) “aminoacids” and “proteins,” connected to
processes involved in the control of gene expression (such as
“protein modification,” “phosphorylation,” and “transcription”);
(ii) “organic acid,” whose sub-categories included the “SA
metabolism” and “JA biosynthesis and metabolism”; and
(iii) “carbohydrates,” edged to several photosynthesis-associated
categories and processes related to “cell wall modification” such
as “callose deposition,” a well-known defense against herbivores
(Jander, 2014).
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FIGURE 1 | Overview of Arabidopsis thaliana transcriptome upon infestation by Brevipalpus mites. (A) Number of paired-end reads generated for each library by
Illumina HiSeq sequencing. C, control (non-infested plants); M, mite-infested-plants. Dashed line represents the average of paired-end reads from all 24 libraries.
(B) Proportion of uniquely mapped, multi-mapped and unmapped reads obtained for each library. Reads were mapped in the A. thaliana (TAIR 10) genome using
TopHat2. C, control; M, mite-infected plants. (C) Principal component analysis of normalized count data from all samples. (D) Hierarchical clustering analysis of
normalized count data z-scores exhibited by differentially expressed genes (DEGs) of each sample within each time point. (E) Numbers of up- and down-regulated
DEGs in mite-infested plants in comparison to non-infested control at each time point. DEGs were identified using DESeq2 and defined by log2 fold-change ≥ 0.5
and false discovery rate (FDR)-corrected p-value ≤ 0.05. (F) Volcano-plots of -log10p and log2FC exhibited by each gene in mite-infested plants compared to
non-infested control at each time point. Up- and down-regulated genes are presented in red and green, respectively. FC, fold-change; p, FDR-corrected p-value, hai,
hours after infestation; dai, days after infestation.

Frontiers in Plant Science | www.frontiersin.org 4 August 2018 | Volume 9 | Article 1147

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01147 August 13, 2018 Time: 20:1 # 5

Arena et al. Arabidopsis/Brevipalpus Mite Interaction

Biological processes cluster centralized in “response to
stimulus” was fully represented by processes associated with
defense responses. Nodes from the cluster included response
to “stress,” “abiotic,” and “biotic” stimulus (linked to “defense
response” and to the subcategories of response to “wounding,”
“insects,” and other pathogens). A large “response to hormone”
branch displayed all main hormone-mediated pathways,
including SA and JA, but also abscisic acid (ABA), ethylene (ET),
auxins (IAA), cytokinins (CK) and gibberellins (GA). Other
nodes included in the “response to stimuli” group were “response
to chitin,” commonly triggered in plants colonized by chitin-rich
organisms such as arthropods and fungi (Libault et al., 2007), and
“oxidative stress,” typically induced in plant-biotic interactions
(Arena et al., 2016; Camejo et al., 2016). Several processes related
to defense response were also present in “biological regulation”
nodes, such as “regulation of hormone levels,” “defense response,”
“immune response,” and, “JA pathway.”

Specific and Common Transcriptomic
Changes Occur at Different Time Points
After Brevipalpus Mite Infestation of
Plants
A comparison of the DEGs deregulated across the experiment
revealed both common and specific changes at each time points
(Figure 2A). Few DEGs were common to all time points, whereas
the highest percentage of them were found to be exclusively
modulated at 2 or 6 dai suggesting intense reprogramming steps
of plant transcriptome throughout the course of the Brevipalpus
mite infestation (Figure 2A).

Most of the BPs (84 terms) over-represented during
mite infestation overlap at all time points (Figure 2B and
Supplementary Table S4). These processes included most of
the general terms of plant response to stresses and hormones,
indicating a continuous and lasting reprogramming of the plant
immune system since the beginning of the interaction until at
least 6 dai. Several categories were common between 6 hai and
2 dai (75 terms), and 2 dai and 6 dai (20 terms), but no biological
process was shared between the first and the last evaluated time
points (Figure 2B).

Even though processes related to plant defense responses
were markedly enriched over the time course of the experiment,
time point-specific ontologies were also identified. From all the
over-represented BP categories, 49, 47, and 24 were uniquely
identified at 6 hai, 2 dai, and 6 dai, respectively (Figure 2B and
Supplementary Table S4). Hormone biosynthesis (“salicylic
acid biosynthetic process,” “oxylipin biosynthetic process”),
early signaling (“activation of MAPK activity”), and structural
defenses (“callose deposition,” “cell wall thickening,” and “lignin
biosynthetic process”) were processes exclusively enriched at
6 hai (Figure 2C). At 2 dai, unique categories were related
to the metabolism of defense-related secondary metabolites
(“indole glucosinolate metabolic process,” “pigment,” and
“flavonoid biosynthetic and metabolic process”), photosynthesis
and oxidative stress (“photosynthesis,” “carbon fixation,”
“photosynthetic electron transport,” “response to light intensity,”
“response to oxidative stress”) (Figure 2C). Exclusive ontologies

that came up with the late infestation state (6 dai) were
detoxification processes (“cellular detoxification,” “cellular
response to toxic substance”), and other associated to cell wall
components and structure (“plant-type cell wall organization,”
“cell wall loosening,” and “pectin,” “galacturonan,” “glucan,”
“carbohydrate,” and “polysaccharide” metabolic process)
(Figure 2C).

Brevipalpus Mite Infestation Induces
Plant Defensive Responses and
Represses the Plant Growth-Related
Processes
The vast majority of DEGs detected in more than one time point
were strictly kept up- or down-regulated. Among the 5005 DEGs
identified throughout the analysis, only 201 of them (4%) shift
their expression patterns across the experiment (Supplementary
Table S2). In agreement with this, results of the hierarchical
clustering analysis revealed two major clusters of DEGs, which
mainly encompassed 2762 and 2243 up-regulated and down-
regulated genes, respectively (Figure 3A).

Gene ontology enrichment analysis separately performed
with DEGs within each of the predefined clusters identified
only 31 common categories between the up- and down-
regulated groups (Figure 3B and Supplementary Table S5).
These categories represented higher GO levels and included
general BPs such as “regulation of biological quality,” “response
to stimulus,” “metabolic process,” “signal transduction,” among
others. BPs such as “response to hormones” and “hormone-
mediated signaling pathway” were also shared between the
up- and down-regulated clusters but GO-terms identifying a
particular hormonal pathway were always detected in just one of
the two groups.

The up-regulated cluster was enriched in 264 exclusive
BPs (Figure 3C and Supplementary Table S5). Network
topology was similar to that obtained using all the DEGs
(Supplementary Figure S2), with two major clusters centralized
in metabolic processes and response to stimuli. GO terms
within metabolic process cluster involved several BPs related
to secondary metabolism, whilst response to stimuli cluster
presented terms associated to stress and defense and hormonal
pathways. Over-represented categories were massively typified
by defensive responses. Besides broad immune system-related
terms (e.g., “immune response”), other common categories
displayed by the general network (Supplementary Figure S2)
included responses to hormones, oxidative stress and the
production of secondary metabolites, e.g., glucosinolates,
flavonoids, and camalexin. Only SA, JA, ET, and ABA-mediated
hormonal pathways were represented in the up-regulated
cluster network. Induced GO network also included other
over-represented processes that were unidentified in the general
network (Supplementary Figure S2). Among these are included:
“response to herbivore,” “response to virus,” “multi-organism
process,” “modification of morphology/physiology of other
organism,” “lignin biosynthetic and metabolic process,” “defense
response by callose deposition,” and “phytoalexin biosynthetic
and metabolic process.”
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FIGURE 2 | Transcriptomic changes at different time points after Brevipalpus mite infestation of A. thaliana plants. (A) Venn diagram of DEGs in mite-infested plants
compared to non-infested control at each time point. DEGs were identified using DESeq2 and defined by log2 fold-change ≥ 0.5 and FDR-corrected p-value ≤ 0.05.
(B) Venn diagram of overrepresented BPs of DEGs at each time point. Overrepresented BPs were identified for each time point based on a hypergeometric test with
FDR-adjusted p-values ≤ 0.001. (C) Lists of overrepresented BPs exclusive to each experimental time point (6 hai, 2 dai or 6 dai) and those commons between
them (6 hai × 2 dai × 6 dai). BPs corresponding p-values obtained in the Gene ontology (GO) enrichment analysis are included in the right column of the tables.
Twenty BPs of each list are presented in each table. Complete lists of exclusive and common BPs are available in Supplementary Table S4.
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FIGURE 3 | Continued
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FIGURE 3 | Induced and repressed responses on A. thaliana infested by Brevipalpus mites. (A) Hierarchical clustering analysis of log2 FC exhibited by DEGs on
mite-infested plants compared to non-infested control. DEGs were identified using DESeq2 and defined by log2 fold-change ≥ 0.5 and FDR-corrected
p-value ≤ 0.05. hai, hours after infestation; dai, days after infestation. (B) Venn diagram of overrepresented BPs of DEGs at each cluster composed by up- and
down-regulated genes. Overrepresented BPs were identified for each cluster based on a hypergeometric test with FDR-adjusted p-values ≤ 0.001. (C,D) Networks
of enriched BPs from clusters of up-regulated (C) and down-regulated (D) DEGs, generated using the app BinGO in Cytoscape. Size of the nodes correlates with
the number of DEGs. Color of the nodes reveals p-values of enriched categories. Nodes in gray represent categories that were shared between clusters of up- and
down-regulated genes. Names of some BPs were simplified for clarity; full names are displayed in Supplementary Table S5. ROS, reactive oxygen species; SA,
salicylic acid; JA, jasmonic acid; ET, ethylene; ABA, abscisic acid; IAA, auxin; CK, cytokinin; BR, brassinosteroid.

The down-regulated cluster was enriched in 76 exclusive
BPs, which were predominantly associated with the plant
growth and development (Figure 3D and Supplementary
Table S5). Over-represented terms included broad categories,
for instance “developmental process” and “regulation of
growth,” and also those directly related to plant growth
such as “cytokinetic process,” “cell cycle process,” “mitotic
cytokinesis,” or indirectly related to growth such as
“cell wall organization or biogenesis” and “cytoskeleton
organization”. Among the enriched BPs there were also
processes associated to morphogenesis and development of
specific plant components such as “root morphogenesis,”
“cuticle development,” and “cotyledon development.” The
other major class of over-represented BPs uniquely detected
in the down-regulated cluster comprised photosynthesis-
related processes such as “photosynthesis,” “electron transport
chain,” “carbon fixation,” “photosynthesis, dark and light
reaction,” “light harvesting,” “photosynthetic electron
transport,” and “chlorophyll biosynthetic process.” Finally,
the only hormones represented in the down-regulated cluster
network were the major growth regulators IAA, CK and
brassinosteroids (BR).

Co-expression of Genes Correlates With
Classes of Transcription Factors (TFs)
Involved in SA, JA and Developmental
Processes
Since transcriptional reprogramming is mainly controlled by TFs,
the regulation of the expression dynamics of DEGs by specific
classes of TFs was tested by two different approaches.

First, over-represented TF families were searched based on
up- and down-regulated DEGs that encode TFs (Figure 4A
and Supplementary Table S6). Within the cluster of
up-regulated DEGs, 254 (9.2%) TFs from 30 different
families were identified. From those, 16 over-represented
families were detected (hypergeometric test, α ≤ 0.001).
The largest and most significant of them were the WRKY
(33 genes, p-value = 2.47E-33) and the AP2/ERF (40 genes,
p-value = 8.46E-34), known to act as regulators of SA
pathway and ERF-branch of the JA pathway, respectively.
From the analysis using the cluster of down-regulated DEGs,
141 (6.3%) TFs belonging to 30 families were detected.
Twenty-three of these families were also found in the cluster
of up-regulated DEGs. TFs were evenly distributed among 18
over-represented families (hypergeometric test, α ≤ 0.001),
with lower significance (higher p-values). The largest and most
significantly over-represented families were bHLH (22 genes,

p-value = 3.21E-25), which comprises the regulators of the
MYC-branch of the JA pathway, and C3H family (17 genes,
p-value = 1.46E-17).

Second, TF families that potentially regulate the expression of
the DEGs were searched based on over-represented target genes
within the DEGs (Figure 4B and Supplementary Table S7).
Enriched target genes and their corresponding TFs were
identified by using a TF enrichment tool that takes advantage
of previously identified cis-regulatory elements and regulatory
interactions from literature mining (Jin et al., 2017). As a
result, WRKY was the largest identified family with potential
targets within the up-regulated DEGs. Twenty-one out of its
42 TF members were also induced during Brevipalpus mite-
plant interactions. Targets from WRKY TFs were exclusively
enriched in the up-regulated cluster. The next largest families
with targets within the induced DEGs were MYB, bZIP, and
bHLH, with 29, 26, and 24 TFs, respectively. Targets for MYB,
bZIP, and bHLH, however, were not exclusively enriched in the
analysis of the cluster of up-regulated DEGs. These families
represented by 34, 24, and 14 TFs, respectively, were also
among the largest with potential targets within down-regulated
DEGs. MYC2, the marker TF from the MYC-branch of the
JA pathway, was one of the bHLH TF with targets exclusively
enriched in the down-regulated cluster. Notably, the analysis
of the down-regulated cluster also revealed the TCP family,
which is typically involved in the control of plant development.
This family involved 15 and 4 TFs that potentially regulate
targets within the assortment of repressed and induced DEGs,
respectively.

Overall, the analysis of co-expressed genes with its
corresponding TFs showed a correlation of up- and down-
regulated genes with TFs that regulates SA, JA and developmental
processes. The SA-related WRKY family was the largest one with
target genes exclusively enriched in the up-regulated cluster and
most of its TF members were also up-regulated. The analysis of
enriched TFs settles the involvement of plant hormonal pathways
and developmental processes in the plant response to Brevipalpus
mites, with highlight on the participation of the SA pathway
solely on the up-regulated responses.

Focus on Defense Pathways: SA- and
JA-Mediated Responses Are Induced in
Brevipalpus Mite-Infested Plants
Over-represented genes from GO-terms associated with SA
and JA-dependent responses were thoroughly reviewed to
confirm their induced status. Data from genes included in
the categories “response to SA” and “SA metabolic process,”
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FIGURE 4 | Enriched transcription factors (TFs) and TF targets in clusters of mite-responsive co-expressed genes. (A) Number of DEGs coding for TFs within each
TF family identified in the clusters of up- and down-regulated DEGs. Up- and down-regulated DEGs are presented in red and green, respectively. Levels of
enrichment (−Log10 p, with p: p-value) of each family (hypergeometric test, α ≤ 0.001) are presented by a dashed line with its corresponding values in the secondary
axis. (B) TFs with enriched targets within each cluster of up- and down-regulated DEGs, identified by TF enrichment tool. TFs are grouped according to their families.
Each line identifies one TF. In the first and second row (“Up” and “Down” clusters, respectively), orange lines correspond to TFs with enriched targets within each
cluster. In the third row (“TF DEGs”), red and green lines represent up- and down-regulated differentially expressed genes, respectively, encoding TFs. Gray lines
indicate absence of enriched targets for a given TF- and/or TF not differentially expressed. Families encompassing two or less TFs were grouped in “Others.”

or “response to JA,” “regulation of JA-mediated pathway,” and
“JA metabolic process” were processed by a Hierarchical cluster
analysis.

The SA-dependent pathway was represented by 103 DEGs
(Supplementary Table S8). Eighty-one of these DEGs were
up-regulated in at least one of the experimental time points.
Some of these genes were induced at either early or late
stages of the response, but they were not down-regulated
in any of the other analyzed time points (Figures 5A,B).
Examples of these expression patterns are the genes coding
for the signaling protein for SA activation EDS1 (enhanced
disease susceptibility 5) and the SA-biosynthetic enzyme
ICS1 (isochorismate synthase 1) that were up-regulated at
the beginning of the interaction, whilst the SA-responsive
proteins PR1 (pathogenesis-related protein 1) and GLIP1 were
induced at later time points. Moreover, the expression profile
analysis of some DEGs revealed the quick regulation of some
SA-responsive genes since the initial steps of the plant-mite
interaction. For instances, PR2/BGL2 (pathogenesis-related
protein 2/beta-1,3-glucanase 2) was up-regulated as soon as
6 hai and remained activated at least till 2 dai. Among the

induced genes associated to the SA pathway there were also
several signaling kinases such as the receptor-like kinase (RLK)
CRK9 (cysteine-rich RLK 9), the wall-associated kinases WAK1
and WAKL10, and the L-type lectin receptor kinase LCRK-S.2,
LCRK-IV.1 and LCRK-IX.2. Other up-regulated DEGs from
this cluster were genes encoding the SA biosynthetic enzymes
ICS2 and PAL1 (Phenyl ammonia lyase 1), the transporter of
SA from chloroplast to cytoplasm EDS5 (enhanced disease
susceptibility 5), the regulator of SA responses GRX480
(glutaredoxin 480), the methyl-salicylate (MeSA) esterase
proteins MES7 and MES9 (methyl esterase 7 and 9), the
defense protein PR5, and several TFS from WRKY and MYB
families.

Another small cluster of SA-related genes comprised
a group of 22 DEGs that were mainly down-regulated,
particularly at the two latest time points of the experiment
(Figure 5A). This cluster was largely formed by TFs that
are also responsive to JA. Repressed TFs included members
of the ERF/AP2, MYB and GRAS/DELLA families. Other
repressed genes beyond TFs were UGT1 (UDP-glucose
transferase 1), involved in the callose formation, and the
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FIGURE 5 | Salicylic acid (SA) pathway in the A. thaliana response to Brevipalpus mites. (A) Hierarchical clustering analysis of log2 FC exhibited by DEGs involved in
the SA pathway. hai, hours after infestation; dai, days after infestation. (B) Schematic representation of SA pathway, where a sub-set of DEGs is presented. Colors
identifies log2FC of DEGs at each experimental time point, according to the scale presented in (A). (C) SA levels in infested and systemic leaves of mite-infested
plants, and in non-infested control plants. Hormone levels were quantified by LC-MS/MS at 6 dai. Error bars represent standard errors. Statistically significant
difference at p-value ≤ 0.05 (∗) is indicated. FW, fresh weight. (D) Mite performance in Arabidopsis mutants compromised in the SA pathway. Data represent the
average number of eggs deposited after 4 days of infestation with five Brevipalpus yothersi mites/plant. Error bars represent standard errors. Statistically significant
differences at p-values ≤ 0.01 (∗∗) are indicated. WT, wild type.

genes encoding the GRP23 and GRP5 proteins (glycine-
rich proteins 23 and 5), which are components of the plant
cell wall.

The JA-mediated pathway was composed by 137 DEGs that,
similarly to what was observed in the SA-pathway analysis, were

mainly up-regulated (Supplementary Table S8) (Figures 6A,B).
DEGs were subdivided in three clusters: two larger groups formed
by 60 and 54 highly and mildly up-regulated genes, respectively,
and a small one composed by 23 genes that were mostly down-
regulated (Figure 6A).
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FIGURE 6 | Jasmonic acid (JA) pathway in the A. thaliana response to Brevipalpus mites. (A) Hierarchical clustering analysis of log2 FC exhibited by DEGs involved
in the JA pathway. hai, hours after infestation; dai, days after infestation. (B) Schematic representation of JA pathway showing a sub-set of DEGs. Colors identifies
log2FC of DEGs at each time point, according to the scale presented in (A). (C) JA levels in infested and systemic leaves of mite-infested plants, and in non-infested
control plants. Hormone levels were quantified by LC-MS/MS at 6 dai. Error bars represent standard errors. Statistically significant differences at p-value ≤ 0.05 (∗) is
indicated. FW, fresh weight. (D) Mite performance in Arabidopsis mutants compromised in the JA pathway. Data represent the average number of eggs deposited
after 4 days of infestation with five Brevipalpus yothersi mites/plant. Error bars represent standard errors. WT, wild type.

Highly induced JA-related genes (Supplementary Table S8)
at the beginning of the infestation code for proteins acting
upstream on the JA pathway such as the DAMP receptor
PEPR2 (PEP1 receptor 2) and the JA-biosynthetic and modifying
enzymes AOS (allene oxide synthase), AOC2 and AOC3 (allene
oxide cyclase 2 and 3), LOX2, LOX3, and LOX4 (lipoxygenase

2, 3, and 4), OPCL1 (OPC-8:0 CoA ligase 1) and JMT (JA
carboxyl methyltransferase) (Supplementary Table S8). DEGs
induced at the two first experimental time points also included
terpene synthases (TPS03, TPS04, and TPS10), several JAZ
( jasmonate-zim-domain) proteins (JAZ1, JAZ2, JAZ5, JAZ7,
JAZ8, JAZ9/TIFY7, and JAZ10) and the TFs MYC2 and ERF1.
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Genes with high expression at later time points encode proteins
directly involved in defense such as the marker responsive
protein of the ERF-branch PDF1.2 (plant defensin 1.2),
and proteins involved in the anthocyanin biosynthesis such
as UF3GT (UDP-glucose:flavonoid 3-o-glucosyltransferase).
Other highly up-regulated DEGs included MYB TFs, the
DELLA protein RGL3 that contributes to JA/ET-mediated
defenses, the ERF-branch TFs ERF2 and ORA59 (octadecanoid-
responsive Arabidopsis AP2/ERF59), the responsive gene
THI2.1 (thionin 2.1), and the JA oxidases JOX1 and JOX2
that down-regulate plant immunity by hydroxylation and
inactivation of JA.

Genes from the JA pathway that were mildly induced
(Supplementary Table S8) at the first time points included
those coding for the JA-biosynthetic enzymes ACX1 (acyl-
CoA oxidase 1) and AOC4, the TF WRKY70 that acts on
the SA-JA antagonism, the negative regulators of JA-responsive
genes NINJA (novel interactor of JAZ) and JAZ3, and the
proteins MYB34 and SOT16 (sulfotransferase 16) involved in
the synthesis of glucosinolates. Later in the infestation, the
group of mildly induced genes included those coding for the
proteins MYB75/PAP1 and TT4 that act in the biosynthetic
pathway of anthocyanin, the MYB51 and FMOGS-OX7 proteins
involved in the synthesis of glucosinolates, and the responsive
marker genes of the MYC-branch VSP1 and VSP2 (vegetative
storage proteins 1 and 2), which directly act during the anti-
herbivory defense. Two essential modulator genes of the JA
signaling, i.e., RGLG3 (ring domain ligase 3) and the MYC3
TF were induced at all the assessed time points although at
low expression levels. RGLG3 encodes for a RING-ubiquitin
ligase acting upstream of JA-Ile recognition and MYC3 operates
together with MYC2 coordinating the expression of responsive
genes from the MYC-branch.

The down-regulated JA cluster comprised DEGs that were
mainly repressed at 2 and 6 dai (Supplementary Table S8). Some
of them encode TF commonly acting in the SA-pathway such
as members of the families: ERF (RAP2.6 and DREB26), MYB
(MYBS1, MYB28, MYB29, and MYB16), and GRAS/DELLA
(RGL1 and RGL2). Other repressed genes were those encoding
the BAT5 (bile acid transporter 5) protein and the MYB76
TF, both required for the biosynthesis of glucosinolates, the
DAMP receptor PEPR1, and the JA-repressed protein AGP31
(arabinogalactan protein 31).

SA and JA Levels Increase in
Mite-Infested Plants
Both SA and JA biosynthetic and responsive genes were induced
in Brevipalpus mite-infested plants. To confirm the consistency
of the observed molecular data, the profiles of the SA and JA
hormones were determined in Arabidopsis plants challenged
with Brevipalpus mites. SA (Figure 5C) and JA (Figure 6C)
levels were 1.5- and 2.8-fold higher, respectively, on infested
leaves when compared to the control ones (Student’s t-test,
α ≤ 0.05).

Salicylic acid and JA levels were also verified in systemic leaves
of mite-infested plants. No difference was observed between the

levels of both hormones in systemic and non-infested control
leaves, suggesting a local rather than a systemic response to
Brevipalpus mite infestation.

Brevipalpus Mites Have a Decreased
Performance on Plants Impaired in
SA Responses
Salicylic acid- and JA-mediated pathways were clearly induced
upon Brevipalpus mite infestation. To further explain the
functional relevance of the plant hormonal pathways on the
interaction, the performance of B. yothersi mites was evaluated on
Arabidopsis plants impaired in SA or JA-mediated response. Mite
oviposition was assessed on mutants defective in SA biosynthesis
(salicylic acid induction deficient2, sid2) and signaling (non-
expressor of pathogenesis-related protein1, npr1), and JA signaling
(jasmonate resistant1, jar1 and coronatine-insensitive1, coi1).
Plants were infested with adult female mites and the number of
laid eggs was counted after 6 days.

The number of eggs per plant was 2.4- and 1.5-fold lower on
SA-mutants sid2 and npr1, respectively, when compared to the
mite’s performance in the infested wild-type A. thaliana Col-0
plants used as control (Student’s t-test, α ≤ 0.05) (Figure 5D).
No difference was observed between the number of eggs on
the mutants affected in the JA pathway (jar1 and coi1) and the
wild-type control (Student’s t-test, α ≤ 0.05) (Figure 6D). These
results point to a role of SA-mediated response promoting the
Brevipalpus mite colonization.

DISCUSSION

False-spider mites of the genus Brevipalpus are serious and
cosmopolite phytophagous pests with a unique biology (Weeks
et al., 2001). They directly provoke injuries in some plant species,
but the major consequence of their feeding behavior ensues
from the transmission of several cile- and dichorha- viruses that
infect economically important crops (Kitajima and Alberti, 2014).
Almost 10 species of Brevipalpus mites are known to act as
virus vector, but, among them, mites of the species B. yothersi
stands out due to their involvement in transmission of viruses
causing citrus leprosis, a severe disease that threatens the citrus
industry in the Americas (Beard et al., 2015; Ramos-González
et al., 2016). To disentangle the Brevipalpus-mite interaction,
in the current paper we provide data that extensively describe
the response of Arabidopsis plants during their colonization by
Brevipalpus mites. Changes in the plant transcriptome profile are
complemented with the analysis of the accumulation of defense
hormones and the results are discussed emphasizing the role of
particular plant defense genes during the Brevipalpus infestation
process.

Our results showed that mite infestation clearly triggers the
plant immune system. Processes related to the response to
herbivory and other biotic stresses dominate a large number of
the over-represented GO categories among all DEGs. Most of the
BPs were common between all the time points, although specific
changes were also identified. Plant response during the initial
6 h included the induction of genes involved in the hormone
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biosynthesis and signaling, consistent with an early recognition
of the mite feeding. Transcriptome changes were followed by
the up-regulation of a wide range of genes involved in defense
and synthesis of secondary metabolites at 2 and 6 dai. The
major dissimilarity was between the first and last time points,
which do not share any BPs except the ones that were present
throughout the infestation. GO enrichment analysis revealed
that defense responses were up-regulated and mainly involved
the SA- and JA-mediated pathways. Deeper analysis on SA/JA-
related DEGs and quantification of hormone contents confirmed
that these pathways were distinctly induced upon the infestation
by Brevipalpus mites. On mite-infested plants, genes involved
in the biosynthesis, signaling, and response of the SA and JA
pathways were mostly up-regulated, and SA and JA hormone
levels were increased. In this regard, simultaneous induction
of SA and JA plant response to B. yothersi infestation follows
a similar pattern to those observed during plant colonization
by several spider mites (Kant et al., 2004; Zhurov et al.,
2014; Alba et al., 2015; Rioja et al., 2017). Induced defense-
related processes also included a clear transcriptional response
to oxidative stress. Previous histochemical analysis of infested
tissues revealed the production of ROS upon mite feeding (Arena
et al., 2016). Induction of ROS production and related transcripts
also resembled plant response to spider mite feeding and, in
both cases, the role of ROS signaling remains to be determined
(Agut et al., 2018).

Gene ontology enrichment analysis revealed an extensive
genetic expression adjustment throughout the JA pathway
including the hormonal biosynthesis and metabolism, and
downstream regulation and response. Mite presence induced the
DAMP-receptor PEPR2, suggesting the perception capacity of
damaged tissues by Arabidopsis plants. Although minimal, mite
feeding causes tissue disruption on infested leaves (Arena et al.,
2016). Individual or very few dead cells are observed after mite
feeding activity, probably as consequence of punctures by the
mite stylets. Upon recognition, JA-biosynthetic enzymes such as
AOC, AOSs, and LOXs were up-regulated. Higher JA content
in mite-infested leaves confirmed activity of this biosynthetic
pathway. Downstream of JA production, several signaling
proteins and regulators were induced, including many TFs from
MYB, AP2/ERF, and bHLH families. Downstream responses were
represented by an array of up-regulated transcripts involved
in the production of terpenes, anthocyanin, and glucosinolates.
Since induced JA responses to Brevipalpus mites are similar
to the ones that mediate Arabidopsis response to spider mites
(Zhurov et al., 2014), our results indicate a conservation of mite-
induced JA regulatory mechanisms. Moreover, several negative
regulators of JA response were induced on plants infested by
B. yothersi, including genes encoding NINJA and numerous
JAZ proteins, which interact to repress the TFs that regulates
the expression of JA-responsive genes (Wager and Browse,
2012), and JA oxidases, which down-regulates downstream
responses by hydroxylation and inactivation of JA (Caarls
et al., 2017). In this context, the induced JA pathway might
be attenuated, and consequently, the observed data reflect a
somewhat mitigated rather than a fully-induced JA-mediated
response.

Even though the JA pathway was largely induced upon
mite infestation, distinct activation profiles of JA branches were
observed. First, TFs from the ERF- and MYC-branches were
differentially regulated. AP2/ERF family with TFs that control
the ERF-branch was the largest and most enriched family within
up-regulated DEGs, whilst bHLH family that includes the TFs
that regulates the MYC-branch was the largest and most enriched
one within down-regulated DEGs. Particularly, MYC2 that is
the major regulator of the MYC-branch responsive genes, was
induced, although its target genes were enriched within the
cluster of down-regulated genes. Second, the expression levels
of defensive genes from the ERF-branch were much higher than
that from genes of the MYC-branch. The gene encoding the ERF-
responsive anti-microbial protein PDF1.2 figures among the most
highly up-regulated DEGs (e.g., FC = 94-fold at 2 dai), whilst
those coding for the MYC-responsive anti-herbivory proteins
VSP2 and VSP1 were only mildly or not induced at the same
experimental time points (e.g., FC = 4- and 10-fold, respectively,
at 2 dai). The preferential activation of the ERF-branch over the
MYC-branch was described as an herbivore strategy to induce a
harmless response in expense of a harmful defense (Verhage et al.,
2011; Pieterse et al., 2012). The strongest activation of the ERF-
branch reported here corroborates a previous study proposing
that Brevipalpus mites might mitigate effective defenses by
manipulating the plant resistance mechanisms toward herbivore
preferred JA responses (Arena et al., 2016). However, further
analysis of ERF and MYC mutants are required to clarify the
actual role of each one the JA branches in plant response to
Brevipalpus mites.

Within the induced hormonal pathways in response to
Brevipalpus infestation, the SA-mediated pathway plays a
conspicuous role. On these plants SA levels were elevated,
the vast majority of SA-related genes were up-regulated, and
the SA-related WRKY TFs as well as their target genes were
exclusively over-represented in the cluster of up-regulated genes.
Induction of SA response has been associated with stealthy
arthropods such as piercing-sucking insects (Nguyen et al.,
2016; Patton et al., 2017). Likewise, Brevipalpus mite feeding
behavior causes minimal tissue disruption. During feeding,
mites pierce epidermal cells using interlocked stylets, sometimes
through leaf stomata, and suck out overflowed cell content
(Kitajima and Alberti, 2014). Activation of the SA pathway by
Brevipalpus mites agrees with the common pattern observed for
herbivores causing little overt tissue damage (Arimura et al.,
2011).

Interestingly, an increasing number of evidence indicate that
activation of SA pathway favors herbivore performance rather
than acts as an effective defense against herbivory. For instance,
Bemisia tabaci nymphs performs better in the cpr6 mutants pre-
activated for SA-mediated defenses (Zhang et al., 2013), and SA
exogenous application render Arabidopsis plants more attractive
to thrips (Abe et al., 2012). Using Arabidopsis mutants, we
found that the performance of Brevipalpus mites is compromised
in plants with lower SA content (sid2, mutant for ICS1) and
defective SA signaling (npr1). In comparison with wild-type
plants, the number of laid eggs was 2.4- and 1.5-fold lower on
sid2 and npr1 mutant plants, respectively. Whilst SA levels during
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plant-biotic stresses is mainly produced through ICS1-mediated
isochorismate pathway (Wildermuth et al., 2001), responses
downstream SA accumulation are branched in NPR1-dependent
and -independent genes (Uquillas et al., 2004; Shearer et al.,
2012). The milder phenotype from npr1 in comparison with
sid2 might be related to intact NPR1-independent responses.
Influence of SA response in Brevipalpus mites seems contrary
to its role against spider mites. Even though a few reports
showed no influence of SA against Tetranychus species (Zhurov
et al., 2014), a recent study showed that T. urticae mites
have an increased performance on SA-deficient NahG tomato
plants (Villarroel et al., 2016). Lower oviposition of B. yothersi
mites in either the SA -synthesis or -signaling impaired plants
suggests the manipulation by Brevipalpus mites of the SA
pathway aiming the promotion of host colonization. The positive
influence of the SA pathway over B. yothersi also has implications
for the role of the mite as a vector. We previously reported
that infestation with CiLV-C-carrying B. yothersi induces even
stronger SA response than that reached during non-viruliferous
mites feeding (Arena et al., 2016). Higher up-regulation of
SA pathway in response to viral infection might further
enhance mite colonization and, probably, contribute to the viral
transmission.

Salicylic acid-mediated improvement of herbivore
performance is usually associated with the antagonistic
interactions between the SA and JA signaling pathways
(Bruessow et al., 2010; Thaler et al., 2012; Zhang et al., 2013;
Caarls et al., 2015). Some arthropods induce SA as a strategy
to repress JA effective defenses exploiting the natural cross-talk
between signaling pathways. JA defenses, and specifically the
production of indole glucosinolates, are central to Arabidopsis
defense against Tetranychus species (Rioja et al., 2017). Higher
reproduction rate of Brevipalpus mite due to the induction
of the SA pathway could be associated with the reduction
on the JA pathway, as previously suggested (Arena et al.,
2016). However, our current results show that Brevipalpus
mite oviposition was not increased in Arabidopsis mutants
impaired in JA-responses (jar1 and coi1), therefore, the role
of JA pathway against Brevipalpus mite colonization is not as
obvious as against spider mites, or it does not directly affect
oviposition. Molecularly, our results might suggest that the
induction of SA antagonizes a set of JA responses which are
independent of JAR1 and COI1, or that the SA pathway might
improve mite performance by mechanisms alternative to the
SA–JA crosstalk. It is noteworthy that upon mite infestation
both JAR1 and COI1 genes were not induced (Supplementary
Table S2), consequently, at least at transcriptional level, evidence
of involvement of these two gene in response against Brevipalpus
mite colonization was not revealed. Furthermore, it is possible
that the JA pathway influences other aspects rather than mite
oviposition such as host preference or mite development.
The deeper analysis of other JA mutants and features of mite
behavior will help to disentangle the role of the JA on mite
infestation.

Some arthropod herbivores are capable of manipulating host
responses to circumvent defenses (Stahl et al., 2018). Even
though most of the known examples of defense suppression

by herbivores involves plant–insect interactions, some cases of
suppressive mites have been described (Agut et al., 2018). Defense
counteraction has been shown to occur by secreted proteins,
called effectors, injected into host cells through herbivores’ saliva
to interfere with plant responses (Hogenhout and Bos, 2011).
Effectors from Tetranychus saliva that suppress harmful defenses
and increase spider mite performance were recently described
(Villarroel et al., 2016). Brevipalpus mites likely inject saliva inside
host cells through a tube formed between its interlocked stylets
(Kitajima and Alberti, 2014). The ability of B. yothersi mites
to manage the plant response favoring their own performance
suggests that, similarly as spider mites do, Brevipalpus mites
might also deliver saliva-borne effector proteins into plant cells.
It is noteworthy, however, that mites from Brevipalpus genus
employ such a distinct strategy of modulation of plant responses
compared to closely-related spider mites. Even though feeding
by both Brevipalpus and Tetranychus mites induce SA and JA
pathways simultaneously, the effectiveness of such responses
diverges between the two systems. Whilst JA pathway defend
plants against Tetranychus mites (Zhurov et al., 2014), SA
pathway has been described as neutral or detrimental to spider
mite species (Villarroel et al., 2016). On the contrary, adverse
effect of JA responses to counteract Brevipalpus mite infestation
was not revealed in the present study, but SA pathway has
a positive effect over the colonization of these false-spider
mites, pointing to a unique response within described plant-mite
interactions.

Polyphagous arthropods likely posses a larger collection of
salivary proteins due to their exposure to a wide range of host
plants with distinct morphology and physiology (Vandermoten
et al., 2014). Large groups of proteins families identified in
T. urticae saliva were proposed to facilitate the expansion of
the host range of these highly polyphagous mites (Jonckheere
et al., 2016). Like T. urticae, Brevipalpus mites infest a wide
range of hosts that includes almost a thousand of plant
species in more than a hundred of different families (Childers
et al., 2003). Collectively, our results suggest that Brevipalpus
mites manipulate the plant defensive response to render the
plant more susceptible to the colonization by inducing the
SA-mediated pathway, a mechanism unusual to spider mite
species. Mite’s ability to modulate the plant physiology in
their favor might support the high polyphagous nature of
false-spider mites.

Independent GO enrichment analysis from up- and down-
regulated DEGs revealed not only the up-regulation of defensive
responses, but also the repression of plant growth-related
processes. Defensive responses have been long considered to
impose a cost that results in reduced plant growth and
reproduction (Züst and Agrawal, 2017). Growth-defense trade-
off comes from a reallocation of resources to optimize fitness
when plants are exposed to environmental changes. Upon
herbivory, the plant metabolism is frequently reconfigured.
While the secondary metabolism is enhanced to produce
defenses, the primary metabolism is suppressed. For instance,
induction of JA pathway by Manduca sexta results in down-
regulation of photosynthesis in Nicotiana attenuata (Halitschke
et al., 2011). Plant growth genes repressed during the elicitation
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of defenses comprise, among others, those associated with cell
wall (e.g., expansins), cell division (e.g., cyclins), and DNA
replication and photosynthesis (such as components of the light-
harvesting complex, photosystem subunits, electron transport
chain, chlorophyll biosynthesis, etc.) (Attaran et al., 2014).
On Brevipalpus mite-infested plants, several of those growth-
related genes were down-regulated. Over-represented GO terms
within repressed DEGs included processes associated to the
cell wall, morphogenesis of cell components, cell division, and
photosynthesis.

The plant growth-defense trade-off is modulated through
the interplay between defense hormonal pathways mediated
by SA and JA and the hormones that act as the major plant
growth regulators, i.e., IAA, BR, and GA. Some molecular players
that regulate the trade-off have been identified (Huot et al.,
2014; Lozano-Durán and Zipfel, 2015; Campos et al., 2016;
Züst and Agrawal, 2017). DELLA proteins are key negative
regulators of GA signaling that inactivates growth-promoting
phytochrome-interacting factors (PIFs). Upon GA elicitation,
DELLA proteins are degraded, releasing PIFs and allowing them
to activate expression of growth-promoting genes (Huot et al.,
2014; Züst and Agrawal, 2017). DELLA and JAZ proteins interact,
inhibiting each other actions over the repression of growth
and defense-related genes (Yang et al., 2012). The degradation
of JAZ proteins triggered by JA accumulation releases DELLA
from JAZ binding, thereby strengthens the suppression of
PIFs and plant growth (Yang et al., 2012; Züst and Agrawal,
2017). Likewise, overexpression of the DELLA protein RGL3
reduces GA-mediated growth while increases MYC2-dependent
expression of JA-responsive genes (Wild et al., 2012). Our
results indicate that markers from the molecular mechanism
behind the trade-off, such as RGL3, were induced. The SA- and
JA-dependent defense responses were up-regulated and IAA-,
BR-, and GA-mediated growth processes were downregulated,
suggesting that the growth-defense trade-off occurs during
Arabidopsis-Brevipalpus interaction.

Results obtained here extend our previously proposed model
on the Arabidopsis response to non-viruliferous Brevipalpus
mites (Arena et al., 2016). Beyond the responses focused here,
the large-scale transcriptome we obtained will provide a valuable
resource to further explore unknown molecular components
involved in plant interaction with false-spider mites.

MATERIALS AND METHODS

Plant Material
Wild-type A. thaliana ecotype Columbia (Col-0) was obtained
from the Arabidopsis Biological Resource Center1. Arabidopsis
mutants in the Col-0 background (sid2-1, npr1, and jar1) were
obtained from Georg Jander. The Arabidopsis mutant coi1-
16 was obtained from Kirk Overmyer. Plants were grown in
controlled growth chambers (Conviron, Winnipeg, Canada) at
23 ± 2◦C and a 12 h light/dark photoperiod. Four-week-old
plants were used in the experiments.

1http://www.arabidopsis.org

Mite Rearing
Non-viruliferous mites were initially obtained from citrus
orchards and further confirmed as B. yothersi using phase
contrast microscopy as reported elsewhere (Beard et al., 2015).
Mites were reared onto fruits of ‘Tahiti’ acid lime (Citrus latifolia
Tanaka), a genotype immune to citrus leprosis virus C, as
previously described (Arena et al., 2016). Mites were reared for
several generations and were confirmed as non-viruliferous by
RT-PCR using primers for CiLV-C (Locali et al., 2003) before
their use in the experiments.

RNA-Seq Experiment
A time course experiment was conducted on plants infested
with non-viruliferous mites and on non-infested control plants
at 6 h after infestation (hai), 2 and 6 dai. For each time point,
Arabidopsis Col-0 plants were grouped in sets of 16 individuals
assigned to each treatment (infested and control). Plants from
both treatments were kept at the same growth chamber. Plants
from the infested treatment were challenged with 15 mites
(5 mites per each of 3 rosette leaves), transferred with a small
brush under a stereoscopic microscope. Mites were not caged.
Infested or control leaves were collected at each time-point.
From mite-infested plants, only the leaves where mites were
originally deposited were collected. Leaves from two plants were
pooled, totaling eight biological replicates per treatment per time
point, flash-frozen in liquid N2 and stored at −80◦C until RNA
extraction. Plant RNA was purified using the RNeasy Plant Mini
Kit (Qiagen, Venlo, Netherlands) and treated RNAse-free DNAse
(Qiagen, Venlo, Netherlands) for removal of residual plant
DNA. RNA quality was assessed in Bioanalyzer 2100 (Agilent
technologies, Santa Clara, CA, United States). All samples had
an RNA integrity number (RIN) above eight and were considered
suitable for RNA-Seq. RNA extracts from two samples (100 ng/µL
each) were pooled in a single sample, totaling four replicates
per treatment per time point for library construction and
independent sequencing. cDNA libraries were prepared using
Illumina TruSeq Stranded mRNA Library Prep Kit (Illumina,
San Diego, CA, United States). Sequencing was performed with
HiSeq SBS v4 High Output Kit (Illumina, San Diego, CA,
United States) in an Illumina HiSeq 2500 system (Illumina, San
Diego, CA, United States) and generated 2 × 125 bp paired-
end reads.

Bioinformatics Analysis of RNA-Seq Data
RNA-Seq data were analyzed using R and Bioconductor
according to Anders et al. (2013) with some modifications.
Quality of the sequences was confirmed using ShortRead
(Morgan et al., 2009) and FASTQC. Reads were mapped to
the A. thaliana TAIR10 genome using TopHat2 (Kim et al.,
2013). The number of reads per gene was counted with
HTSeq (Anders et al., 2015) and normalized by size factors
obtained from the negative binomial-based DESeq2 package
(Love et al., 2014). After normalization, clusterization profiles
of the samples were assessed by hierarchical clustering (with
Euclidean distance metric and Ward’s clustering method) and
principal component analysis (PCA). Differentially expressed
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genes (DEGs) between infested and control treatments were
identified at each time point using likelihood ratio tests after
negative binominal fittings using the package DESeq2 (Love
et al., 2014). Genes with False Discovery Rate (FDR)-corrected
p-values ≤ 0.05 and fold-change (log2) threshold of 0.5 were
classified as differentially expressed. To identify mechanisms
potentially involved in the plant response to mite feeding, GO
Enrichment Analysis was performed. A gene set was defined as
all DEGs (unless otherwise noted) and the universe comprised
all genes of the A. thaliana TAIR10 genome expressed in at least
one of the observed conditions. Overrepresented BPs, MFs, and
CCs were identified based on a hypergeometric test with FDR-
adjusted p-values ≤ 0.001. GO networks were generated using the
app BinGO in Cytoscape (Maere et al., 2005).

Identification of Enriched Transcription
Factors
A hierarchical clustering was performed with all DEGs to identify
up- and down- regulated clusters, using Euclidean distance
metric and Ward’s clustering method. Two approaches were used
to identify enriched TFs on each cluster. First, we searched for
genes coding for TFs within DEGs using PlantTFDB database (Jin
et al., 2017). Over-represented TFs on each cluster were identified
using a hypergeometric test (α ≤ 0.001). Second, we searched
for enriched TF targets using the TF enrichment tool, based
on previously identified cis-regulatory elements and regulatory
interactions from literature mining (Jin et al., 2017).

Validation of Gene Expression Data by
RT-qPCR
Another time course experiment was set with plant infested with
non-viruliferous mites and non-infested control plants at 6 hai,
2 and 6 dai. For each time point, Arabidopsis Col-0 plants were
grouped in sets of 16 individuals assigned to each treatment
(infested and control). Plants from the infested treatment were
challenged with 15 mites (5 mites per each of 3 rosette leaves).
Infested or control leaves were collected at each time-point.
Leaves from two plants were pooled, totaling eight biological
replicates per treatment per time point, and flash-frozen in
liquid N2. Plant RNA was purified using the RNeasy Plant
Mini Kit (Qiagen, Venlo, Netherlands) and treated with RNAse-
free DNAse (Qiagen, Venlo, Netherlands). RNA concentration
was assessed using NanoDrop ND-8000 microspectrophotometer
(Thermo Scientific, Waltham, MA, United States) and RNA
quality was verified in 1.2% agarose gels. cDNA were generated
for each RNA sample (500 ng) using RevertAid H Minus First
Strand cDNA Synthesis Kit (Thermo Scientific, Waltham, MA,
United States) as described by the manufacturer. RT-qPCR were
prepared with 6.5 µL of GoTaq qPCR Master Mix (Promega,
Madison, WI, United States), 120 nM of each gene-specific
primer pair and 3 ng of cDNA. Primer sequences are available on
Supplementary Table S9. Reactions were performed in a 7500
Fast Real-Time PCR System (Thermo Scientific, Waltham, MA,
United States) device, using the standard settings. Each sample
was analyzed in triplicate and melting curves were included to
confirm the absence of genomic DNA and unspecific reactions.

Quantification cycle (Cq) values and primer pairs efficiencies
were determined for each individual reaction using Real-time
PCR Miner (Zhao and Fernald, 2005). Gene expression analyses
were performed according the 1Cq model using multiple
reference genes (Hellemans et al., 2007) as previously described
(Arena et al., 2016). Statistical significances between infested
and control samples within each time point were assessed using
Student’s t-test (α ≤ 0.05).

Quantification of Hormone Levels
Four-week-old Arabidopsis Col-0 plants were infested with 10
mites (two leaves with five mites each) or kept without mites.
Infested leaves were collected after 6 days. Leaves from two plants
were pooled together in one sample, totaling six replicates per
treatment. Harvested leaves were weighted, flash frozen in liquid
nitrogen and ground in a paint shaker. The SA and JA contents at
local and systemic leaves of mite-infested plants were compared
with those from the non-infested control as previously described
(Casteel et al., 2015). For analysis, 5 µL of each extract were
analyzed on a triple-quadrupole liquid chromatography-tandem
mass spectrometry system (Agilent 6420A triple-quadrupole with
Infinity II HPLC). Extracts were separated on a Zorbax Extend-
C18 HPLC column (Agilent, 3.5 µm, 150 mm × 3.00 mm)
using 0.1% formic acid in water and 0.1% formic acid in
acetonitrile. Statistical significance was assessed using Student’s
t-test (α ≤ 0.05).

Mite Performance in Arabidopsis
The mite performance was evaluated on Arabidopsis mutants
impaired in SA- (sid2 and npr1) or JA- (jar1 and coi1) mediated
response. Plants were infested with five female adult B. yothersi
mites in a single leaf, caged to prevent escape, and a completely
randomized design was set. After 4 days of infestation, plant
leaves were carefully detached, and the number of mite eggs was
counted. Data from each mutant genotype was compared to the
wild-type plants using Student’s t-test (α < 0.05).

RNA-Seq Raw Data
The RNA-Seq raw data are available at sequence read archive
(SRA) with the ID SRP144249.
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FIGURE S1 | RT-qPCR validation of the RNA-Seq data. Expression profile of
selected Arabidopsis thaliana genes was analyzed in Brevipalpus yothersi
mite-infested plants by RNA-Seq and RT-qPCR. Data are presented as log2

fold-change (FC) values in comparison with non-infested plants (with log2FC set to
zero). Statistically significant differences of mite-infested versus non-infested
control at p-values ≤ 0.01 (∗∗) and ≤ 0.05 (∗) are indicated. hai, hours after
infestation; dai, days after infestation. Note that the gene coding for the
SA-responsive protein PR1 was up-regulated at 2 and 6 dai, following the same
profile obtained by RNA-Seq. The SA-related genes GRX480, WRKY70, and PR2
were also identified as induced by RT-qPCR at the beginning of the interaction,
but statistical significance was not confirmed in the later time points. Expression of
the JA-responsive TFs MYC2 and ORA59 was also validated by RT-qPCR. Even
though MYC2 transcripts were significantly higher at 6 dai by RT-qPCR but not
RNA-Seq, up-regulation of this TF at 6 hai and 2 dai was identified using both
techniques. Likewise, ORA59 gene was up-regulated at 6 hai and 6 dai by both
RNA-Seq and RT-qPCR. RT-qPCR results also confirmed the mild induction of the
MYC-branch responsive gene VSP2 at 2 dai, and the high induction of the
ERF-branch marker gene PDF1.2 at 2 and 6 dai. The growth-related gene EXP3
was down-regulated at 6 hai and 6 dai, while the negative regulator RGL3 was
induced at the same time points, according the RNA-Seq data.

FIGURE S2 | Main biological processes (BPs) affected by Brevipalpus mites in
Arabidopsis thaliana plants. Overrepresented BPs were identified based on a
hypergeometric test with false discovery rate (FDR)-adjusted p-values ≤ 0.001.
Gene ontology (GO) networks were generated using the app BinGO in Cytoscape.
Color and size of the nodes identify the number and p-values of differentially

expressed genes (DEGs) from each category. Names of some BPs were simplified
for clarity; full names are shown on Supplementary Table S3. ROS, reactive
oxygen species; SA, salicylic acid; JA, jasmonic acid; ET, ethylene; ABA, abscisic
acid; IAA, auxin; CK, cytokinin; GA, gibberellic acid.

TABLE S1 | Sequencing and alignment statistics for all Arabidopsis thaliana
samples. hai, hours after infestation; dai, days after infestation.

TABLE S2 | Total differentially expressed genes (DEGs) in A. thaliana plants
infested with Brevipalpus yothersi mites at 6 hours after infestation (hai), 2 days
after infestation (dai) and 6 dai. FC, fold-change; FDR, False Discovery
Rate-corrected p-values. Gene symbols and descriptions were retrieved from
ThaleMine (https://apps.araport.org/thalemine).

TABLE S3 | Enriched Biological processes (BPs), molecular functions (MFs), and
cellular components (CCs) in the set of DEGs of A. thaliana plants infested with
B. yothersi mites. Overrepresented BPs, MFs, and CCs were identified based on a
hypergeometric test with False Discovery Rate (FDR)-adjusted p-values ≤ 0.001.
GO, Gene ontology; FDR, FDR-corrected p-values.

TABLE S4 | Enriched BPs at each time point assessed after the infestation of
A. thaliana plants with B. yothersi mites. Overrepresented BPs were identified
based on a hypergeometric test with FDR-adjusted p-values ≤ 0.001. GO, Gene
ontology; FDR, FDR-corrected p-values; hai, hours after the infestation; dai, days
after the infestation.

TABLE S5 | Enriched BPs at each cluster formed by DEGs that were mainly up- or
down-regulated during the A. thaliana interaction with B. yothersi mites. Clusters
were defined after a hierarchical clustering analysis of all DEGs. Overrepresented
BPs were identified based on a hypergeometric test with FDR-adjusted
p-values ≤ 0.001. GO, Gene ontology; FDR, FDR-corrected p-values.

TABLE S6 | Differentially expressed genes (DEGs) coding for TF at each cluster
formed by DEGs that were mainly up- or down-regulated during the A. thaliana
interaction with B. yothersi mites. Clusters were defined after a hierarchical
clustering analysis of all DEGs.

TABLE S7 | Transcription factors (TFs) with enriched targets within each cluster
formed by DEGs that were mainly up- or down-regulated during the A. thaliana
interaction with B. yothersi mites. TFs with enriched targets were identified by TF
enrichment tool (Jin et al., 2017). Up- and down-regulated clusters were defined
after a hierarchical clustering analysis of all DEGs.

TABLE S8 | Differentially expressed genes (DEGs) involved in salicylic acid (SA)
and jasmonic acid (JA) pathways, identified in A. thaliana plants infested with
B. yothersi mites at 6 hai, 2 dai and 6 dai. FC, fold-change; FDR, False Discovery
Rate-corrected p-values. Gene symbols and descriptions were retrieved from
ThaleMine (https://apps.araport.org/thalemine).

TABLE S9 | Selected genes and corresponding primer pairs of A. thaliana used
for gene expression analyses by RT-qPCR.
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