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Genome-wide association studies (GWAS) have been widely used to dissect the
complex biosynthetic processes of plant metabolome. Most studies have used single-
locus GWAS approaches, such as mixed linear model (MLM), and little is known
about more efficient algorithms to implement multi-locus GWAS. Here, we report a
comprehensive GWAS of 20 free amino acid (FAA) levels in kernels of bread wheat
(Triticum aestivum L.) based on 14,646 SNPs by six multi-locus models (FASTmrEMMA,
FASTmrMLM, ISISEM-BLASSO, mrMLM, pKWmEB, and pLARmEB). Our results
showed that 328 significant quantitative trait nucleotides (QTNs) were identified in total
(38, 8, 92, 45, 117, and 28, respectively, for the above six models). Among them, 66
were repeatedly detected by more than two models, and 155 QTNs appeared only
in one model, indicating the reliability and complementarity of these models. We also
found that the number of significant QTNs for different FAAs varied from 8 to 41,
which revealed the complexity of the genetic regulation of metabolism, and further
demonstrated the necessity of the multi-locus GWAS. Around these significant QTNs,
15 candidate genes were found to be involved in FAA biosynthesis, and one candidate
gene (TraesCS1D01G052500, annotated as tryptophan decarboxylase) was functionally
identified to influence the content of tryptamine in vitro. Our study demonstrated the
power and efficiency of multi-locus GWAS models in crop metabolome research and
provided new insights into understanding FAA biosynthesis in wheat.

Keywords: wheat, free amino acid (FAA), genome-wide association studies, multi-locus models, QTNs

INTRODUCTION

Genome-wide association studies (GWAS) have largely been applied to the genetic dissection of
complex traits in plants. With the landmark GWAS study of 107 phenotypes in Arabidopsis (Atwell
et al., 2010), numerous other studies have been successfully performed, including those addressing
the flowering time and grain yield in rice (Huang et al., 2012; Yang W. et al., 2014), salinity tolerance
in barley (Fan et al., 2016), male inflorescence size in maize (Wu et al., 2016), floret fertility in wheat
(Guo et al., 2017), and the reducing levels of cucurbitacin in cucumber domestication (Shang et al.,
2014). Of these studies, the mixed linear model (MLM) has been adopted most frequently owing
to its effective control of spurious associations (Yu et al., 2006). However, as a single-locus GWAS
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approach, MLM leads to missing some significant loci because
of the conservative Bonferroni correction (0.05/me, where me is
the number of effective markers) and the stringent criterion of
the significance test (Wang et al., 2016). To address this issue,
several multi-locus models have been developed, such as Bayesian
LASSO (Hoggart et al., 2008), ISISEM-BLASSO (Tamba et al.,
2017), pLARmEB (Zhang et al., 2017), and pKWmEB (Ren et al.,
2018). Because of the multi-locus nature, the obvious superiority
of these approaches is that no Bonferroni correction is demanded,
hence, a looser significance criterion can be adopted, and more-
powerful quantitative trait nucleotides (QTNs) can be detected
(Wang et al., 2016).

Plants produce a vast array of metabolites that provide
nutrition and medicine for humans (Saito and Matsuda,
2010; Chae et al., 2014). Unraveling the diversity of the
plant metabolome and its underlying mechanism has attracted
increasing research interest in the past decade (Schwab,
2003; De Luca et al., 2012). Recent research showed that GWAS
coupled with metabolome analysis (mGWAS) exhibited great
potential to dissect the genetic and biochemical bases of
metabolome diversity (Chan et al., 2011; Chen et al., 2014; Wen
et al., 2014). Similar to complex traits such as plant height and
grain weight, which are usually controlled by several loci with
small effects (Huang et al., 2010; Yang W. et al., 2014), the
production of plant metabolites is often controlled by pathways
composed of multiple genes. For instance, levels of primary
metabolites, such as amino acids, fatty acids and saccharides,
tend to be controlled by small effects loci (Angelovici et al.,
2013; Matsuda et al., 2015). Whereas, in contrast to primary
metabolites, the contents of secondary metabolites are always
controlled not only by a few major loci with large effects
but also by additional numerous loci with small effects (Chan
et al., 2010; Riedelsheimer et al., 2012). Although the single-
locus mGWAS models have succeeded in identifying a number
of genetic variants associated with thousands of metabolites,
this methodology ignores the joint effects of multiple genetic
markers on metabolites (Chan et al., 2010; Tamba et al., 2017).
Therefore, multi-locus models are a valuable alternative method
for mGWAS analysis.

Bread wheat or common wheat (Triticum aestivum L.) is
one of the most important crops worldwide and provides
approximately 20% of the energy, protein and dietary fiber
consumed for human (Ling et al., 2013). The improvement
of kernel quality has been a major target in breeding for a
long time (Nelson et al., 2006; Jin et al., 2016). Although the
seed amino acids are mainly present as components of storage
proteins, free amino acids (FAAs) can contribute significantly
to be the contents of limited essential amino acids in wheat
kernels (Angelovici et al., 2013). To improve the amino acid
compositions, both traditional plant breeding techniques and
new biotechnologies can be utilized (Fernie and Schauer, 2009).
Recently, with the rapid development of the next-generation
sequencing technologies, some key genes influencing FAA
concentrations have been identified in rice (Chen et al., 2016),
maize (Deng et al., 2017), and Arabidopsis (Angelovici et al., 2013)
via mGWAS, which showed great potential to accelerate breeding
for balanced AA compositions. However, to our knowledge, no

studies of dissecting genetic associations with FAA levels in wheat
have been reported.

Here, to understand the genetic bases underlying the natural
variation and the biosynthesis of FAAs in wheat kernels, we
detected the levels of 20 FAAs with an LC-MS platform (Chen
et al., 2013) from a highly diverse association panel of 182
accessions. We identified 328 significant QTNs (LOD > 3.0)
with six multi-locus mGWAS models and assigned 15 candidate
genes involved in FAA biosynthesis. As a proof of concept,
we functionally identified TraesCS1D01G052500 in vitro. Our
study proved the efficiency of multi-locus GWAS models
in metabolome research and provided new insights into
understanding of FAA biosynthesis in wheat, which may facilitate
metabolomics-based breeding for quality improvement.

MATERIALS AND METHODS

Plant Material
A highly diverse association panel of 182 Triticum aestivum L.
accessions, including both landraces and elite varieties
(Supplementary Table S1), was described as before (Liu J.
et al., 2017). All accessions were grown at Gaoyi in Hebei
province and Dezhou in Shandong province during the
2016–2017 cropping season. Field trials were conducted
in randomized complete blocks with three replicates at
each location. Each plot contained three 2 m rows spaced
20 cm apart. Field trials followed standard agronomic
wheat management practice. Ten mature seeds were
randomly collected and pooled for metabolic profiling
analysis.

Genotyping
Total genomic DNA was extracted from young leaves for SNP
arrays. The 182 accessions were genotyped using the Illumina
wheat 90 K SNP by Capital Bio Corporation, Beijing, China1.
Accuracy of SNP clustering was validated visually step by step.
Of the 81,587 SNPs, those with minor allele frequencies (MAFs)
< 0.05 and missing data >20% were excluded from further
analysis (Liu J. et al., 2017) to avoid spurious MTAs, finally, a
total of 14,646 SNPs were employed in the association panel
for GWAS analysis (Dong et al., 2016). The physical positions
of SNPs were obtained from the International Wheat Genome
Sequencing Consortium website (IWGSC)2.

Determination of AA Levels
A widely targeted metabolomic platform was applied to quantify
the FAA contents in mature wheat kernel samples as described
previously (Chen et al., 2013). The dried kernels were crushed
using a mixer mill (MM 400, Retsch) for 1.2 min at 29 Hz.
Then, 100 mg powder was weighted and extracted for 8 h at 4◦C
with 1.0 ml 70% aqueous methanol containing 0.1 mg/l lidocaine
(internal standard). Extracts were centrifuged at 10,000 g for
10 min, and filtrated (SCAA-104, 0.22 µm pore size; ANPEL,

1http://www.capitalbiotech.com/
2http://www.wheatgenome.org/
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Shanghai, China3 before LC–MS analysis. The HPLC conditions
as follow: column, shim-pack VP-ODS C18; solvent system,
water with 0.04% acetic acid and acetonitrile with 0.04% acetic
acid; gradient program, 0 min, 100:0 V/V, 20.0 min, 5:95 V/V,
22.0, 5:95 V/V, 22.1, 95:5 V/V, 25.0, 95:5 V/V; flow rate,
0.25 ml min−1; temperature, 40◦C; Injection volume, 5 µl. The
MS parameters as follow: ion spray voltage (IS) 5,500 V; source
temperature 500◦C; ion source gas I (GSI), gas II (GSII), curtain
gas (CUR) were set at 55, 60, and 25.0 psi, respectively, the
collision gas (CAD) was high. A specific set of MRM (multiple
reaction monitoring) transitions were monitored for each FAA
(Supplementary Table S2), each MRM transition was obtained
with a 5 ms pause time and 5 ms Dwell time, data were
processed by Analyst 1.5.1 software, peak areas were integrated
using a IntelliQuan algorithm. Endogenous concentrations of
FAAs were quantified by calculating the peak area in comparison
to standard curves obtained from authenticated standards
(purchased from Sigma-Aldrich). Calibration curves were drawn
by plotting at least four different concentrations of each FAA
standard according to the peak area (Dong et al., 2014).
Finally, to eliminate environmental effects, BLUPs (best linear
unbiased predictor) across two environments were used as the
phenotypic values for all subsequent analyses (Liu J. et al.,
2017).

GWAS Mapping
Free amino acid levels were simultaneously studied with a
single-locus GWAS model (MLM) and six multi-locus GWAS
models. The single-locus model was implemented by FaST-LMM
program (Lippert et al., 2011), while multi-locus models were
implemented by mrMLM (Wang et al., 2016), FASTmrMLM
(Tamba, 2017), FASTmrEMMA (Wen et al., 2017), ISISEM-
BLASSO (Tamba et al., 2017), pLARmEB (Zhang et al., 2017),
and pKWmEB (Ren et al., 2018). The critical threshold for
significantly associated SNPs was set at LOD > 3.0 for the six
multi-locus models, and P = 0.05/14,646 = 3.41 × 10−6 (or
− log10 P − value = 5.5, Bonferroni correction) for MLM.

Statistical Analysis
We used s/ȳ × 100 to calculate the values of coefficient variation
(CV, %) for each FAA, where s and ȳ are the standard deviation
(SD) and the mean of each FAA in the population, respectively.
Spearman’s rank correlation coefficient was used to calculate the
correlation between each pair of FAAs, and statistical significance
was obtained by using Student’s t-test.

In vitro Validation of Candidate Genes
Full-length cDNA of TraesCS1D01G052500 was amplified with
the primer using cDNA from Huaimai20 as a template. Clones
were digested with BamH I/EcoR I and directionally ligated to the
pre-digested pGEX-6p-1 vector. Error-free recombinant proteins
were expressed in BL-21 (DE3) competent cells after induced by
adding 0.1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG)
and growing continually for 12 h at 16◦C. Cells were harvested
and suspended in the lysis buffer [contains 500 mM NaCl, 50 mM

3www.anpel.com.cn/

Tris-HCl (pH 8.0), 10% glycerol, 5 mM β-mercaptoethanol and
1 mM PMSF] and lysed by high pressure. The crude extract
was collected and clarified by centrifugation at 14,000 g for 1 h
at 4◦C, and the supernatant was stored at −80◦C for future
experiments.

The standard in vitro enzyme assay for the role of
TraesCS1D01G052500 (tryptophan as substrate) was performed
in a total volume of 20 µl containing 100 ppm PLP and
50 µM substrate in 50 mM Tris-HCl buffer (pH 8.0). After
incubating at 37◦C for 30 min, the reaction was stopped by
adding 60 µl of methanol. The reaction mixture was then filtered
through a 0.2 µm filter (Millipore) before being used for LC-MS
analysis.

Phylogenetic Analysis of Different Gene
Families
We use the CLUSTALW (version 1.83) program to align the
amino acid sequences and construct the neighbor-joining tree by
MEGA5. Bootstrap values from 1,000 times are indicated at each
node. Bar = 0.1 amino acid substitutions per site.

Enzyme Kinetics
To determine the kinetic difference between
TraesCS1D01G052500 and its homologs in rice (OsTDC1 and
OsTDC3), their activities were measured using 50 ng of purified
protein expressed from E. coli, with 10–1,250 µM different
tryptophan (Sigma) as substrates and a fixed concentration of
50 ppm PLP (Sigma) as co-factor. The kinetic parameters were
calculated using Michaelis–Menten model (SigmaPlot software,
version 14.0). All reactions were run in duplicate and repeated
twice.

RESULTS

Natural Variation of Free Amino Acids in
Wheat Kernel
To assess the phenotypic variation for FAAs in dry, mature
wheat kernels, the absolute levels of 20 FAAs (alanine, arginine,
asparagine, aspartic acid, glutamic acid, histidine, isoleucine,
leucine, lysine, methionine, phenylalanine, proline, serine,
serotonin, threonine, tryptamine, tryptophan, tyramine, tyrosine,
and valine in nmol/mg dry wheat kernels) were quantified
using LC-MS/MS as previously described (Chen et al., 2013).
Visualization of the FAA profiling was performed by hierarchical
cluster analysis (HCA), and accumulation of FAAs displayed
a distinct phenotypic variation according to their abundance
(Figure 1). Aspartic acid, glutamic acid, alanine and serine were
the most highly abundant FAAs, with average concentrations
of 0.37, 0.31, 0.30, 0.30 nmol/mg, respectively, while tyramine,
threonine, and tryptamine were the less abundant, with average
concentrations of 0.005, 0.02, 0.03 nmol/mg, respectively
(Supplementary Table S2). The content of each FAA varied
widely within the association panel, with variation ranging from
a 2.30-fold difference in tyrosine to a 30.36-fold difference in
proline and with the genetic coefficient variation (CV, %) ranging
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FIGURE 1 | Hierarchical cluster analysis (HCA) and the coefficient variation (CV, %) of the levels of FAAs in 182 wheat accessions. Each accession is visualized in a
single column, and each FAA is represented by a single row. Red indicates high level, whereas low FAA contents are shown in green.

TABLE 1 | Summary of significant QTNs identified by different models.

Model FASTmrEMMA FASTmrMLM ISISEM-BLASSO mrMLM pKWmEB pLARmEB MLM

Number of traits with significant QTNs 18 6 20 15 19 11 4

Number of QTNs 38 8 92 45 117 28 4

Average QTNs per trait 2.1 1.3 4.6 3.0 6.2 2.5 1

from 15.9 to 103.2, respectively (Figure 1 and Supplementary
Table S2). The relationships between 20 FAA values were
evaluated by Spearman’s rank correlation, and strong positive
correlations were identified between most of these FAAs, with
the exceptions of tryptamine and tryptophan (Supplementary
Table S3).

Associated Loci Mapped by Different
Models
To dissect the genetic basis of natural variation for FAA levels
in mature wheat kernels, GWAS was performed using seven
different models simultaneously. In total, 328 significant QTNs
were identified by six multi-locus models (FASTmrEMMA,
FASTmrMLM, ISISEM-BLASSO, mrMLM, pKWmEB, and
pLARmEB) at a critical threshold of LOD > 3.0 (Supplementary
Table S4), and the numbers of QTNs for the above six models
were 38, 8, 92, 45, 117, and 28 (Table 1), respectively. Of
these QTNs, 66 were detected by at least two different models;
some QTNs, such as the association between lysine and SNP
BS00003585_51 on chromosome 2B (747,603,047 bp), were
simultaneously mapped by five different models (Supplementary
Table S4). Only four significant SNP-trait associations were
identified by the single-locus model (MLM) (Table 1), and could
be also detected by some multi-locus models. Although 18 FAAs
were found by FASTmrEMMA to be significantly associated with
QTNs, the total number of QTNs is only 38, with an average of 2.1
QTNs per FAA. Comparatively, for the pKWmEB and ISISEM-
BLASSO models, the average QTNs per trait reached 6.2 and
4.6, respectively (Table 1). The phenotypic variation explained

by different loci varied from 0.1% (tyramine in pKWmEB) to
21.4% (aspartic acid in mrMLM), with an average of 5.6%.
We also found that the same QTN shows different effects to
explain the phenotypic variation in different models; for instance,
the association between arginine and SNP BS00022811_51 on
chromosome 7A (709,639,589 bp) with the r2 ranged from
0.1% in FASTmrEMMA to 19.7% in pKWmEB (Supplementary
Table S4).

The number of significant QTNs also varied widely among
different FAAs, ranging from 8 for tryptophan to 41 for
tyramine (Figure 2), indicating the complex genetic regulation
of FAAs. The chromosomal distribution of all identified QTNs
revealed that A genome had the greatest number of significant
associations, while only few QTNs were detected in the D
genome (Figure 2). Since QTNs were not distributed evenly
on the chromosomes (Deng et al., 2017), five QTN hotspots
were observed on chromosomes 2A, 4A, 6A, 7A, and 7B, with
the most obvious one being that more than 18 QTNs can
be detected between 7 FAAs and SNP RAC875_c1022_3059
(located at 595,984,457 bp on chromosome 4A) (Figure 2 and
Supplementary Table S4). The candidate genes underlying these
QTN hotspots could include transcriptional factors, transporters
or some other rate-limiting enzymes of the amino acid metabolic
pathway.

Candidate Genes Underlying QTNs
Notably, the 328 significantly QTNs facilitated the assignment
of candidate genes. To identify them, the flanking sequences
corresponding to the SNP markers significantly associated with
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FIGURE 2 | Chromosomal distribution of QTNs identified in this study. The x-axis indicates genomic locations by chromosomal order, and the significant QTNs are
plotted against genome location. Each row represents one QTN identified by a different model. The red arrows show the QTN hotspots.

TABLE 2 | Summary of 15 candidate genes significantly associated with FAA levels.

Traits Chr Lead SNP
position (bp)

r2 (%)a LOD Candidate geneb Annotation

Glutamic acid 1A 558,490,011 6.9 3.5 TraesCS1A01G390300 Glutamate receptor

Alanine 4A 595,984,457 15.6 5.7 TraesCS4A01G294100 Aminopeptidase

Asparagine 4B 14,124,082 6.1 4.1 TraesCS4B01G020000 Aminopeptidase

Tryptamine 1D 34,621,416 6.7 3.8 TraesCS1D01G052500 Tryptophan decarboxylase

Tyramine 3B 543,718,678 1.9 5.5 TraesCS3B01G340000 Tyrosine decarboxylase

Glutamic acid 5D 31,273,563 10.1 4.2 TraesCS5D01G031800 Amino acid transporter

Isoleucine 7A 660,464,837 15.9 5.7 TraesCS7A01G464900 Amino acid transporter

Tyrosine 2B 689,871,912 8.3 4.5 TraesCS2B01G493000 Amino acid permease

Arginine 7B 105,558,975 4.4 3.9 TraesCS7B01G093200 Amino acid permease

Methionine 3B 408,354,812 14.4 4.3 TraesCS3B01G253600 Amino acid transporter

Valine 4A 593,337,515 9.6 3.6 TraesCS4A01G287900 Peptide transporter

Tyramine 3B 582,466,573 17.0 4.9 TraesCS3B01G369800 Aminotransferase

Lysine 2A 41,237,242 9.2 4.5 TraesCS2A01G088600 Pyruvate decarboxylase

Histidine 2B 26,581,220 16.1 7.3 TraesCS2B01G053600 Pyruvate dehydrogenase

Lysine 2B 747,603,047 9.4 5.8 TraesCS2B01G553300 Shikimate kinase

aThe phenotypic variance explained by the corresponding locus. bA possible biological candidate gene in the locus or the nearest annotated gene to the lead SNP. More
information is listed in Supplementary Table S4.

FAA levels were used in BLASTx search against NCBI database4.
In most cases, the chemical structure combining with the existing
knowledge of the biosynthetic pathway of the amino acids
allowed the tentative assignment of a protein sequence that
is biochemically related to the associated FAAs. Notably, 15
candidate genes involved in FAAs anabolism or catabolism were
identified by mGWAS in this study (Table 2), based on the wheat
reference genome information (see footnote 2).

4http://www.ncbi.nlm.nih.gov/

A significant QTN between the levels of glutamic acid and
the SNP Excalibur_c35310_375 was identified on chromosome
1A; this SNP is located 0.5 Mb away from TraesCS1A01G390300
(encoding a putative glutamate receptor). The high homology
(58% identity at amino acid level) between TraesCS1A01G390300
and the glutamate receptor gene AtGLR3.5 (Teardo et al.,
2015) suggests that TraesCS1A01G390300 is likely the candidate
gene underlying this locus. The SNP RAC875_c1022_3059 was
significantly associated with 7 FAAs (Supplementary Table S4),
which is comprised a hotspot on chromosome 4A as mentioned
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FIGURE 3 | Homologous amino acid sequences of aminopeptidase gene family (A), tyrosine decarboxylase and tryptophan decarboxylase gene families (B), and
amino acid permease, amino acid transporter and peptide transporter gene families (C) from multiple species were collected and aligned. The neighbor-joining trees
were constructed using MEGA software and tested using bootstrap method at replication number of 1000. Phylogenetic analysis of different gene families assigned
in the study. Os, Oryza sativa; At, Arabidopsis thaliana; Pc, Petroselinum crispum; Ps, Papaver somniferum; Cr, Catharanthus roseus; Lb, Lactobacillus brevis; Bc,
Bacillus cereus.

above. The high sequence identity (61% at the amino acid
level) between adjacently located gene TraesCS4A01G294100
(0.4 Mb to SNP RAC875_c1022_3059) and AtAPM1 (Murphy
et al., 2002), an aminopeptidase in Arabidopsis, suggests that
TraesCS4A01G294100 is likely the candidate gene underlying
this QTN. Similarly, TraesCS4B01G020000 (also encoding a
putative aminopeptidase), was assigned as the candidate gene
underlying the content of asparagine. The associations were
further supported by phylogenetic analysis (Figure 3A).

Levels of tryptamine were significantly associated (LOD = 3.8)
with the SNP BS00012936_51 on chromosome 1D that is
1.0 Mb away from TraesCS1D01G052500, which encodes a
protein annotated as tryptophan decarboxylase, suggesting that
TraesCS1D01G052500 catalyzes the key step of tryptamine
biosynthesis. Similarly, TraesCS3B01G340000 (encoding
a putative tyrosine decarboxylase) was assigned as the
candidate gene underlying the levels of tyramine. The high
sequence identities between TraesCS1D01G052500 and OsTDC1
(88% at the amino acid level, Kanjanaphachoat et al., 2012),
TraesCS3B01G340000 and OsTyDC2 (79% at the amino acid
level, Kang et al., 2007) further supported the realness of these
QTNs (Figure 3B).

Six candidate genes putatively annotated as amino acid
transporters (AATs) or amino acid permeases (AAPs)
were identified by mGWAS (Table 2). We investigated the
phylogenetic relationships among the AATs (or AAPs) by
constructing the phylogenetic tree with a neighbor-joining

algorithm based on the amino acid sequences of these candidate
genes and a collection of nine reported genes (Dietrich et al.,
2004; Hirner et al., 2006; Meyer et al., 2006; Lee et al., 2007;
Yang H. et al., 2014; Santiago and Tegeder, 2016). As a result,
characterized AATs (or AAPs) were sorted into four major
clades (Figure 3C). Closer examination of the phylogeny
in clade III reveled that TraesCS5D01G031800 lies next to
AtCAAT2, AtCAAT3, and AtCAAT4, three cationic amino acid
transporters from Arabidopsis (Yang H. et al., 2014), consistent
with the significant QTN between the levels of glutamic acid
(a typical cationic amino acid) and TraesCS5D01G031800 locus
(Figure 3C and Supplementary Table S4). Our analysis also
placed TraesCS2B01G493000 and TraesCS7B01G093200 close
to AtAAP1, AtAAP6, and AtAAP8 (Hirner et al., 2006; Lee
et al., 2007; Santiago and Tegeder, 2016) within clade I, strongly
supporting the annotation of these candidates as AAPs in wheat
(Figure 3C). Moreover, the high sequence identities between
TraesCS3B01G253600 and AtGAT1 (63% at the amino acid level,
Meyer et al., 2006), TraesCS4A01G287900 and AtPTR2 (44%
at the amino acid level, Dietrich et al., 2004) provide further
evidence for these assignments (Figure 3C).

Functional Identification of Candidate
Genes
Although experimental validation of all candidate genes disclosed
by our mGWAS analyses is beyond the scope of a single study, we
nevertheless tried to show that such confirmation is possible. For
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FIGURE 4 | Functional identification of TraesCS1D01G052500 in vitro.
(A) The multi-locus GWAS results for the tryptamine level in different models.
(B) Gene model of TraesCS1D01G052500. The filled gray box represents
coding sequence, and the star represents the associated site. (C) LC-MS/MS
chromatograms of in vitro enzyme assays showing the enzyme activity of
recombinant TraesCS1D01G052500 (Down). Protein extract from E. coli
containing empty vector were used as a negative control (Up). (D) The
proposed pathway of tryptamine biosynthesis in wheat.

this purpose, we further characterized one candidate gene and
provided novel biochemical insight into the FAA biosynthesis in
wheat.

As mention above, the association between
TraesCS1D01G052500 and tryptamine levels suggests that
TraesCS1D01G052500 is the decarboxylase that catalyzes the
biosynthesis of tryptamine (Figures 3B, 4A,B). To characterize
the enzymatic properties of TraesCS1D01G052500, recombinant
protein was expressed with an N-terminal glutathione
S-transferase (GST) tag in E. coli BL-21 and the reaction
product was confirmed by commercial standard with LC-MS
(Figure 4C). An obvious TDC activity showed for tryptophan,
and its activity was not inhibited by tyrosine, indicating a high
level of substrate specificity toward tryptophan (Supplementary
Table S5). We further investigated the enzyme kinetics
of TraesCS1D01G052500 and its rice homologs (OsTDC1
and OsTDC3), all of them displayed similar Kcat values for
tryptophan (Supplementary Table S5), suggesting that the three

proteins have similar TDC activities. Based on these results, we
functionally identified TraesCS1D01G052500 as a decarboxylase
that catalyzes the biosynthesis of tryptamine from tryptophan in
wheat (Figure 4D), which further confirmed the correctness of
our GWAS results and the candidate gene assignment.

DISCUSSION

By coupling with the rapid development of LC-MS strategies,
more accurate contents of metabolites can be obtained, and larger
phenotypic variation can be observed (Chen et al., 2014). In this
study, most of the FAAs varied widely across the association
panel, such as proline with range of 30.4-fold (Supplementary
Table S2), indicating the complexity of the biosynthetic processes
of FAAs (Figure 1). The levels of lysine (an essential amino
acid) have huge phenotypic variation, with a CV (%) of 77.2,
implying the existence of a large number of alleles with high
genetic diversity in the wheat germplasms (Liu Y. et al., 2017).
Thus, identification of the favorable alleles and dissection of the
genetic architecture underlying the levels of FAA is beneficial for
improving the amino acid compositions in the future.

Dissecting the natural variation and the underlying genetic
bases of metabolism is essential for the improvement of
crop nutritional quality (Luo, 2015). Due to recent advances
in both high-throughput metabolic profiling and sequencing
technologies, mGWAS has been employed as a powerful strategy
to reveal the genetic and biochemical basis of crop metabolism
(Riedelsheimer et al., 2012; Wen et al., 2014; Matsuda et al., 2015).
So far, most of these studies have been carried out on maize
and rice. What’s more important, hundreds of significant loci
were identified for various metabolites of nutritional importance,
both of large effects and at high resolution, which facilitated
the identification of the candidate genes (Luo, 2015). Advanced
in developing the genomic toolbox (Jia et al., 2013; Ling et al.,
2013; Avni et al., 2017), Matros et al. (2017) quantified 76
leaf metabolites from 135 winter wheat lines and identified
several significant associations for six metabolic traits based
on 17,372 SNP markers. This confirmed the potential of the
mGWAS approach and provided the opportunity for a further
understanding of metabolic diversity in wheat. In our study,
we also mapped hundreds of QTNs for the levels of 20 FAAs
in a wheat diverse association panel, however, most of them
had very small effects, explaining the phenotypic variation with
an average of 5.6% (Supplementary Table S4). Obviously, the
limitations of mGWAS in wheat relate in part to the large size of
the genome and in part to the limited availability of sets of genetic
markers (Zhou et al., 2018), which leads to great difficulties to
confirm the candidate genes. These constraints could be gradually
complemented by applying new sequencing technologies and
developing additional genomic markers (Liu Y. et al., 2017), and
also, utilizing larger number of accessions and choosing more
comprehensive choices of germplasms can enhance the power of
mGWAS approaches, as demonstrated in rice and maize (Huang
et al., 2012; Riedelsheimer et al., 2012).

As usual, variation of primary metabolites tends to be
controlled by many small-effect loci. To increase the detection
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power of mGWAS, six multi-locus models were applied in this
study. Totally, 328 significant QTNs were identified, however,
only 4 SNP-trait associations were found with the single-locus
model (MLM) at P ≤ 3.41 × 10−6 (Table 1 and Supplementary
Table S3). These results indicated the power of these multi-locus
methods. Furthermore, the common QTNs appeared in different
models confirming the credibility of these multi-locus GWAS
approaches.

Based on these QTNs identified by the six multi-locus
methodologies, candidates that have not been identified
previously can be explored by searching for a protein or protein
cluster that is biochemically related to the associated FAAs
encoded at these loci. As a result, our mGWAS has allowed
the assignment of 15 candidate genes underlying FAA levels
(Table 2). The existing knowledge of plant FAA pathways, the
high sequence identities between them and known functions in
rice and Arabidopsis further confirmed these candidate genes.
Notably, the validation of TraesCS1D01G052500 was detected
only by the pKWmEB model (Figure 4), further demonstrating
the reliability and effectiveness of these multi-locus methods.

CONCLUSION

In this study, a comprehensive GWAS of 20 FAA levels based on
14,646 SNPs in bread wheat was performed by six multi-locus
models. Among 328 significant QTNs, 66 were detected by at
least two models, and 155 QTNs appeared only in one model.
Fifteen candidate genes were assigned to FAA biosynthesis, and

one candidate gene was functionally identified in vitro. This study
proved the power and reliability of multi-locus GWAS models
in plant metabolome research and provided new insights into
understanding FAA biosynthesis in wheat, which may facilitate
metabolomics-based breeding for quality improvement.
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