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Endophytes can enhance plant stress tolerance by promoting growth and affecting
elemental accumulation, which may be useful in phytoremediation. In earlier studies,
up to 35% elemental selenium (Se0 ) was found in Se hyperaccumulator Astragalus
bisulcatus. Since Se0 can be produced by microbes, the plant Se0 was hypothesized
to be microbe-derived. Here we characterize a fungal endophyte of A. bisulcatus
named A2. It is common in seeds from natural seleniferous habitat containing 1,000–
10,000 mg kg−1 Se. We identified A2 as Alternaria tenuissima via 18S rRNA sequence
analysis and morphological characterization. X-ray microprobe analysis of A. bisulcatus
seeds that did or did not harbor Alternaria, showed that both contained >90%
organic seleno-compounds with C-Se-C configuration, likely methylselenocysteine and
glutamyl-methylselenocysteine. The seed Se was concentrated in the embryo, not
the seed coat. X-ray microprobe analysis of A2 in pure culture showed the fungus
produced Se0 when supplied with selenite, but accumulated mainly organic C-Se-C
compounds when supplied with selenate. A2 was completely resistant to selenate up
to 300 mg L−1, moderately resistant to selenite (50% inhibition at ∼50 mg Se L−1),
but relatively sensitive to methylselenocysteine and to Se extracted from A. bisulcatus
(50% inhibition at 25 mg Se L−1). Four-week old A. bisulcatus seedlings derived from
surface-sterilized seeds containing endophytic Alternaria were up to threefold larger than
seeds obtained from seeds not showing evidence of fungal colonization. When supplied
with Se, the Alternaria-colonized seedlings had lower shoot Se and sulfur levels than
seedlings from uncolonized seeds. In conclusion, A. tenuissima may contribute to the
Se0 observed earlier in A. bisulcatus, and affect host growth and Se accumulation.
A2 is sensitive to the Se levels found in its host’s tissues, but may avoid Se toxicity by
occupying low-Se areas (seed coat, apoplast) and converting plant Se to non-toxic Se0.
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These findings illustrate the potential for hyperaccumulator endophytes to affect plant
properties relevant for phytoremediation. Facultative endophytes may also be applicable
in bioremediation and biofortification, owing to their capacity to turn toxic inorganic
forms of Se into non-toxic or even beneficial, organic forms with anticarcinogenic
properties.

Keywords: hyperaccumulation, selenium, endophyte, Alternaria, Astragalus, x-ray analysis

INTRODUCTION

Selenium is not only toxic at elevated concentrations but also an
essential micronutrient for many organisms including humans.
The gap between Se deficiency and toxicity is narrow, and
both are problems worldwide. Selenium is toxic due to its
similarity to sulfur (S). Selenium readily replaces S in proteins,
interfering with their function (Stadtman, 1990). In the Western
United States, where many soils have elevated Se concentrations,
chronic ingestion of high-Se plants by livestock has been reported
to result in large livestock losses (Rosenfeld and Beath, 1964;
Wilber, 1980).

Selenium serves no known essential function in plants, nor
in fungi (Zhang and Gladyshev, 2009). In some microbes and
fungi, Se is potentially used as a weak electron acceptor under
anaerobic conditions (Heider and Böck, 1993). Selenium can also
be beneficial to plants: it has been reported to increase growth
and antioxidant activity (Hartikainen, 2005). At higher levels,
Se offers plants protection against a wide variety of herbivores
(Hanson et al., 2003; Freeman et al., 2006a).

Plants readily take up and assimilate Se into organic
compounds, due to the similarities of Se and S (Schiavon and
Pilon-Smits, 2017b). Hyperaccumulators can accumulate and
tolerate up to 15,000 mg Se kg−1, and are also unique in that they
preferentially take up Se over S and allocate Se to the reproductive
tissues, i.e., flowers and seeds (Quinn et al., 2011a; Valdez Barillas
et al., 2012; El Mehdawi et al., 2018). Selenium accumulation in
plants can be used for phytoremediation as well as biofortification
(Schiavon and Pilon-Smits, 2017a).

Several hypotheses have been proposed for why plants
hyperaccumulate toxic elements like Se: inadvertent uptake,
drought tolerance, elemental tolerance, allelopathy, and
elemental defense against herbivores and pathogens (Boyd and
Martens, 1992). For Se hyperaccumulators, the evidence for
the elemental defense hypothesis is well supported. Selenium
has been shown to protect plants from a variety of generalist,
Se-sensitive herbivores, for a review see El Mehdawi and Pilon-
Smits (2012). There is also evidence that hyperaccumulators
may deposit Se in the surrounding soil as a form of elemental
allelopathy against Se-sensitive neighboring plants (El Mehdawi
et al., 2011a).

While Se-sensitive ecological partners suffer in their
interactions with Se hyperaccumulators, Se-resistant partners
may exploit the high-Se niche offered by hyperaccumulator
plants. Se-resistant herbivores have been found to feed on
hyperaccumulator seeds and leaves. In some of these herbivores
resistance is based on tolerance and in others it is based

on exclusion (Freeman et al., 2006a, 2010; Valdez Barillas
et al., 2012). Furthermore, Se-tolerant neighboring plants of
hyperaccumulators in the field were shown to benefit from
their proximity to hyperaccumulators: they exhibited enhanced
Se levels, which made them less susceptible to herbivory (El
Mehdawi et al., 2011b). Selenium tolerance in these ecological
partners was often associated with the accumulation of organic
Se (e.g., methylselenocysteine, MeSeCys) in their tissues.
Selenium hyperaccumulators also contain mostly MeSeCys,
which may explain their extreme Se tolerance. MeSeCys cannot
be incorporated into protein, and thus Se toxicity is avoided
(Terry et al., 2000).

Relatively little is known about how Se affects the plant–
microbe interactions of hyperaccumulators. Depending on
whether the associated microbe lives in the rhizoplane (surface
of roots), phyllosphere (surface of leaves), or as endophyte
(inside plant tissues), it may experience different Se levels,
and with that, Se toxicity (Valdez Barillas et al., 2011, 2012). The
microbe’s relationship with the plant may involve pathogenicity,
mutualism, and commensalism. Some microbes may perform
beneficial functions for the hyperaccumulator: stimulating
growth, aiding in nutrient and water acquisition, or fighting
off pathogens. In hyperaccumulators, microbes may also
affect the acquisition, speciation, and accumulation of the
hyperaccumulated element (de Souza et al., 1999; Di Gregorio
et al., 2006; Alford et al., 2010).

There is evidence that Se can protect plants from Se-sensitive
microbial pathogens. In a study with non-hyperaccumulator
Brassica juncea, Se was shown to protect plants from two
Se-sensitive fungal pathogens, Alternaria brassicicola and a
Fusarium oxysporum (Hanson et al., 2003). There is also
evidence for the presence of Se-resistant microbes that live in
association with hyperaccumulators (Wangeline et al., 2011).
A litter decomposition experiment on seleniferous soil revealed
that there were more culturable microbes (colony forming
units per gram) on high-Se leaf litter from hyperaccumulators
than on low-Se litter from related species collected from the
same site (Quinn et al., 2011b). This finding may suggest
that specialist Se-resistant decomposing microbes are present at
seleniferous sites. Furthermore, a Se-resistant Rhizobacterium
apparently lives in association with the hyperaccumulator
Astragalus bisulcatus (Fabaceae), since this species produces high-
Se nodules (Valdez Barillas et al., 2012). This bacterium may
affect plant Se speciation, since the nodules accumulated a
high fraction of elemental Se (Se0) (Valdez Barillas et al., 2012;
Alford et al., 2014). Other endophytic bacteria were found
to colonize this and other hyperaccumulators, which were
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also found to produce elemental Se (Staicu et al., 2015;
Sura-de Jong et al., 2015).

Interestingly, roots of Se hyperaccumulators collected from
the field contained high fractions of Se0 (up to 35%) while
greenhouse-grown counterparts contained exclusively organic
selenocompounds with a C-Se-C configuration (Se attached to
two organic groups, Lindblom et al., 2013a). Based on these
findings it was hypothesized that microbes are responsible for the
production of Se0 observed in hyperaccumulators in their natural
habitat. To test this hypothesis, hyperaccumulator plants were
grown from surface-sterilized seeds and inoculated with several
root-associated fungi shown earlier to be able to produce Se0.
However, no significant effect on plant Se speciation was observed
(Lindblom et al., 2013b, 2014).

In this study we test another hyperaccumulator-associated
fungus that appears to be a seed-transmitted endophyte that
asymptomatically colonizes stems and leaves of A. bisulcatus
in their natural habitat. It was found to emerge regularly
from surface-sterilized seeds of A. bisulcatus, and small spored
Alternaria species could readily be cultured from surface-
sterilized stem and leaf tissue (Valdez Barillas et al., 2012).
This endophytic fungus clearly has a close association with the
hyperaccumulator and thus maximal opportunity to impact plant
Se speciation. In this work we identify this fungal endophyte
using a combination of molecular and morphological characters,
characterize the Se-related properties of the pure isolate (Se
tolerance, Se metabolic properties), and test its impact on plant
Se speciation, Se accumulation, and growth.

MATERIALS AND METHODS

Biological Material
Astragalus bisulcatus seeds were collected in Pineridge Natural
Area, Fort Collins, CO, United States during 2008–2011. The
seeds were stored in coin envelopes inside a silica gel desiccator
at 4◦C until use. For endophyte isolation, the seeds were first
surface-scarified using a scalpel blade and surface-sterilized with
50% bleach for 5 min, then rinsed three times with sterile
water. Seeds were transferred to petri dishes with half strength
water agar and were allowed to germinate at room temperature.
Fungal mycelia growing from the seed were then transferred to
half-strength malt extract agar (0.5 MEA, Difco, Detroit, MI,
United States) via hyphal tipping. Hyphal tipping was repeated
at least two times to ensure the fungal was a pure culture. The
isolate was designated as A2.

Sample Preparation for X-Ray
Microprobe Analyses
Astragalus bisulcatus seeds were surface-sterilized as described
above and germinated on 0.5 strength Murashige and Skoog
(1962) basal salts agar medium containing 30 mg L−1 Na2SeO4.
Two seeds were selected for X-ray microprobe analyses: one that
showed the presence of A2 fungal mycelium and one that did not.
These seeds were frozen at−80◦C until analysis.

Agar plugs (0.5 cm × 0.5 cm) of A2 fungal mycelia were
transferred to liquid malt extract medium containing 30 mg L−1

Na2SeO4 or 30 mg L−1 Na2SeO3. Sections of approximately
3 mm3 of A2 fungus mycelia were washed briefly in 1 mM sulfate
to removed adsorbed Se. Each section was immediately placed
inside a separate 0.5 ml centrifuge plastic tube, frozen in liquid
nitrogen, and stored at−80◦C.

Determination of Fungal Se Tolerance
For the analysis of A2 fungal tolerance to different seleno-
compounds, the fungus was cultivated under continuous
fluorescent light at 22◦C in sealed Petri dishes containing 0.5
strength MEA supplemented with Na2SeO4 or Na2SeO3 at 0,
10, 30, or 300 mg L−1. Fungal tolerance was also tested on
different concentrations of MeSeCys (0, 10, 30, 60, 150 mg
L−1) in 0.5 MEA as well as on extract made from the
flowers of A. bisulcatus added at these same Se concentrations
to 0.5 MEA.

Fungal Identification
The A2 fungus was grown on V-8 juice agar with continuous
light in unsealed plates. Potato carrot agar was used for slide
culture conditions and comparison colony conditions with a
8 h light - 16 h dark cycle in unsealed plates. Morphological
characterization was carried out as described below in the results
section.

For molecular identification of the A2 fungus, DNA
extraction, Polymerase chain reaction (PCR) and sequencing
were done using the ITS 1 and 4 primers (White et al., 1990),
following the protocol by Vincelli and Tisserat (2008).

Analysis of Plant Growth and Se
Accumulation as Influenced by
Endophytic Alternaria
Seeds of A. bisulcatus were first scarified for 10 min with
concentrated sulfuric acid, and then further surface-sterilized
by rinsing for 20 min in 20% bleach, followed by five 10-min
rinses in sterile water. Seeds were then germinated on sterile
filter paper under continuous light at 23◦C in a plant growth
cabinet. Upon germination, seedlings were separated into those
that naturally contained the endophyte and two that did not, and
transferred to culture tubes containing autoclaved potting soil.
Half of the seedlings in each group, (A2-associated and seeds
without A2), were watered with 80 µM selenate in liquid 0.5
MS medium while the other half were given medium without
Se. The culture tubes were sealed with breathable tape and
opened only to add fresh medium. There were ten replicates
per treatment (40 total). The experiment was terminated after
4 weeks. At that point half of the replicates in the control group
had died (i.e., the group without the fungus and without Se
added).

Elemental Analysis
At harvest the plant roots were washed and then dried for
48 h at 45◦C. Samples were digested in nitric acid as described
by Zarcinas et al. (1987). Inductively coupled plasma atomic
emission spectrometry (ICP-AES) was used to determine Se and
S concentrations in the acid digest (Fassel, 1978).
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X-Ray Microprobe Analyses
Elemental distribution and chemical speciation in the tissues
were determined using µ X-ray fluorescence mapping (XRF) and
µ X-ray absorption near-edge structure (XANES) spectroscopy,
respectively, at the Advanced Light Source beamline 10.3.2 of the
Lawrence Berkeley National Lab (Marcus et al., 2004). Frozen
samples were transferred onto a Peltier stage kept at −25◦C
to reduce potential beam radiation damage. µXRF elemental
maps were recorded at 13 keV, using a 15 µm (H) × 6 µm
(V) beam, 15 µm × 15 µm pixel size, 50 ms dwell time
per pixel. The chemical forms of Se in particular areas of
interest were further investigated using Se K-edge XANES, at
the tissue locations indicated in Figures 1, 4. XANES provides
information about the oxidation state and, when compared to
well-characterized Se standard compounds, information about

its chemical speciation (Pickering et al., 1999). XRF maps
and XANES spectra were recorded with a seven element Ge
solid state detector (Canberra, ON, Canada). Spectra were
deadtime corrected, pre-edge background subtracted, and post-
edge normalized using standard procedures (Kelly et al., 2008).
Red amorphous elemental selenium (white line position set
at 12660 eV) was used to calibrate the spectra. Least square
linear combination (LSQ) fitting of Se XANES spectra was
performed in the 12630–12850 eV range, using a library of
standard seleno-compounds. As Se standards a library of 52
compounds was used (Fakra et al., 2018). All data processing
and analyses were performed with a suite of custom LabVIEW
(National Instruments, Austin, TX, United States) programs
available at the beamline. Se valence-state scatter plots of the
sample and standard compounds data were also obtained using

FIGURE 1 | Selenium distribution and speciation in germinating A. bisulcatus seeds. (A,B) are bicolor-coded XRF maps showing the distribution of Se (in red) and
Ca (in green). (A) Seed not containing fungal endophyte A2, (B) seed containing A2. Locations where XANES spectra were collected are indicated by white circles.
The seedlings are oriented with their radicle at the bottom, pointing left (A) or right (B) and the cotyledons toward the top. Selenium is clearly localized in the seed
embryo; the seed coat contains Ca. (C) Average XANES spectrum obtained from five locations for each sample, compared to Se-bearing standards. (D) Se
valence-state scatter plot obtained from XANES spectra of the seed (red dots), seed+endophyte (blue dots) compared to Se standards (black empty squares).
The hexagonal datapoints correspond to the average spectrum for each sample.
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MATLAB, following methods described in details elsewhere
(Fakra et al., 2018).

Statistical Analysis
The software JMP-IN (3.2.6, SAS Institute, Cary, NC) was used
for statistical data analysis. Analysis of variance followed by a
post hoc Tukey Kramer test was used when comparing averages of
Se content and averages of plant biomass among selenium treated
and untreated A. bisulcatus replicates. A student t-test was used
for pairwise comparisons between two means (using an alpha
error = 0.5). It was verified that the assumptions underlying these
tests (normal distribution, equal variance) were met.

RESULTS

X-Ray Microprobe Analysis of Seeds
When seeds of A. bisulcatus were surface-sterilized and
germinated on sterile filter paper, about half of them contained
an endophytic fungus, which was designated A2. Germination
trials typically have shown around 50% infestation by Alternaria
in A. bisulcatus germinated seeds based on visual estimation. To
characterize the distribution and chemical speciation of Se in
A. bisulcatus seeds, XRF and XANES analysis were performed
on non-colonized vs. Alternaria-colonized seeds. Also, a valence
plot was made, for a quick comparison of the fungal Se data with
Se standards of known valence. Regardless of the presence or
absence of fungus, Se was found in the embryo but not detected

TABLE 1 | Astragalus bisulcatus seed Se speciation results obtained from least
squares linear combination fitting (LCF) of the XANES spectra collected at the
spots shown (as white circles) in Figure 1, using 52 standard seleno-compounds.

Seed NSS (xE-4) C-Se-C (%) Fe-Se(IV) (%) Zn selenate
(%)

No endophyte

Spot 1 3.9 92 4 2

Spot 2 3.8 90 5.5 1.5

Spot 3 6.1 89.2 3 5

Spot 4 3.7 95.3 1.4 1.3

Spot 5 4.1 93.4 1.9 2.5

Mean 92.0 3.2 2.5

SEM 1.1 0.7 0.7

With
endophyte

Spot 1 7.7 76 12.6 9

Spot 2 1.8 90 3.3 5.2

Spot 3 6.4 87.7 3.6 5.5

Spot 4 6.25 87 4 6

Spot 5 5.6 93 2 3

Mean 86.7 5.1 5.7

SEM 2.9 1.9 1.0

The best LCF was obtained by minimizing the normalized sumsquares residuals
[NSS = 100 × 6(µexp – µfit)2/6(µexp)2], where µ is the normalized absorbance.
Error on percentages is estimated to be +10%. Replicates represent individual
spectra obtained from different locations in the seeds. SEM: standard error of the
mean. The Fe-Se(IV) corresponds to the standard mandarinoite.

in the seed coat (Figure 1). There was no clear difference in Se
speciation between Alternaria-colonized and uncolonized seeds
(Table 1). Both contained predominantly (86–90%) organic Se
with C-Se-C configuration, that fitted best with the Se standard
γ-glutamyl-methylSeCys but may also include other C-Se-C
compounds like SeMet or methyl-SeCys. In both seeds, there
were small fractions of other selenocompounds that correspond
with Se(IV) and Se(VI) oxidation states (forms of selenite and
selenate, respectively) that fitted best with various metal selenate
standards (Zn, Fe, and Cu selenate, particularly). The micro-XRF
spectra (MCA) that were collected on each Se XANES spot indeed
detected Ca, Fe, Zn, and Cu; at the energy we were exciting the
sample with (13 keV), we were not very sensitive to elements
below Ca (such as K, Cl, and S).

The identity of A2 was initially investigated by DNA
sequencing of the internal transcribed spacer region of ribosomal
genes (ITS 1 and 4) of the small ribosomal subunit. As
shown in Figure 2A, the sequence from A2 showed 100%
sequence similarity with the known plant pathogen Alternaria
tenuissima and 99.6% similarity with Alternaria astragali, a
rhizosphere fungus associated with A. bisulcatus (Wangeline and
Reeves, 2007). Small-spored Alternaria, particularly A. alternata
and A. tenuissima, are difficult to distinguish using solely
molecular techniques (Andrew et al., 2009), so morphological
characteristics were included for identification (Simmons, 2007).
The references were updated accordingly (Simmons, 2007).
To date A. tenuissima is grouped among other small-spored
Alternaria that show no association between host, geographic
origin and phylogenetic lineage, and is considered by some as an
unresolved group associated with Alternaria alternata (Andrew
et al., 2009).

Fungal Isolate A2 Taxonomic Description
The A2 fungal strain was identified as A. tenuissima (Nees and T.
Nees: Fr.) Wiltshire, anamorph (no known teleomorph), with the
following specific morphology.

Colony at 7–8 days, PCA and V-8: colony 5–6 cm diameter.
On PCA is a surface network of interwoven radial hyphae, gray
to buff with little sporulation and no discernible rings. Also
present is a dense mat of reduced aerial hyphae. The reverse is
dark green to black and uniform. The colony on V-8 is similar
to PCA. Mycelium cottony, with an advancing colony edge of
approximately 10 mm. Colony has dark mycelial rings alternating
with dense aerial rings when infrequently present. Mycelia gray,
buff, and medium to dark brown. Mycelia layers upward with
increasing age. The reverse is dark green to black.

Conidiophores (40×) produced on V-8 range on average
between 130–155 µm in length (Figures 2C,D). Juvenile conidia
are ovoid and have no definable beak, while most mature into
a body narrowly ellipsoid with a long beak. The conidiophores
are mostly simple but may have low amounts of branching (1–2),
sometimes proliferating at 1–2 conidiogenous sites. Conidia
chains of 2–6 (8) are produced (most common 4). Older areas
of mycelial growth can have a distinctive rope-like formation,
commonly up to or less commonly surpassing 11 µm wide.

Conidium bodies (100×) are ovoid or long ellipsoid;
commonly with a long beak or less commonly with no distinctive
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FIGURE 2 | Information used to identify A2 fungus. (A) ITS sequence alignment with Alternaria astragali (99%) and Alternaria tenuissima (100%).
(B) Surface-sterilized A. bisulcatus seed with A2 endophyte mycelia emerging from the seed coat. (C) Conidiophores and conidia of A2, and (D) magnified conidia.
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beak. Conidium length, with beak, ranging from 14 to 39 µm
with 2–5 transverse septa, width ranging from 6 to 11 µm with
0–3 longitudinal septa, and beak length from 1.5 to 17 µm.
Noteworthy is that mature conidia have beaks >10 µm, and
continue to divide, becoming septate in both the beak (2–3 cells)
and body gaining additional longitudinal septa. Also noteworthy
that roughly 50% of conidia have zero longitudinal septa. Few
conidium walls are rough or thickened.

Selenium Tolerance of the A. tenuissima
A2 Strain
The Se tolerance of the A2 fungus to different forms and levels of
Se when grown on MEA is shown in Figure 3. The fungus was
most tolerant to selenate: its growth was still 90% of the control
when supplied with 300 mg Se L−1 (Figure 3A). The fungus was
also fairly tolerant to selenite: it showed 50% inhibition around
100 mg Se L−1 (Figure 3B). To test A2 growth as a function
of plant-derived Se, flower material was extracted in water and
added to the growth medium at different dilutions. The Se

concentration in the extract was determined using ICP-AES. The
fungus was significantly inhibited by the plant extract, showing
50% inhibition around 25 mg Se L−1 (Figure 3C). To test whether
this was likely due to the Se, particularly C-Se-C, or (also) to other
growth inhibiting compounds in the flowers, fungal growth was
also determined as a function of MeSeCys concentration. When
pure MeSeCys was added to the medium, the growth of A2 was
50% inhibited around 20 mg Se L−1 (Figure 3D), i.e., A2 growth
was similarly inhibited by pure MeSeCys and by the Se extracted
from A. bisulcatus.

X-Ray Microprobe Analysis of A2
Mycelium Grown on Medium With
Selenate or Selenite
X-ray microprobe analysis was carried out on mycelia of A2
that was grown on fungal growth media spiked with selenate or
selenite. XRF maps and XANES spectra are shown in Figure 4, as
well as a valence plot for a quick comparison of the fungal Se data

FIGURE 3 | Fungus A2 is resistant to selenate, moderately resistant to selenite, but relatively sensitive to organic MeSeCys and hyperaccumulator-derived Se
(= MeSeCys). A2 resistance was measured as growth of the colony per day on varying concentrations of (A) selenate, (B) selenite, (C) extract from the flowers of
Astragalus bisulcatus, and (D) methyl-selenocysteine.
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FIGURE 4 | Selenium distribution and speciation in A2 fungal material (mycelium) collected after growth on MEA medium spiked with selenate or selenite. (A) XRF
Se map of A2 supplied with selenate. (B) XRF Se map of A2 supplied with selenite. Scale bars are 500 microns. (C) Average XANES spectrum obtained from three
locations for each sample (white circles in A,B), compared to Se standards. (D) Se valence-state scatter plot obtained from XANES spectra of A2 supplied with
selenate (in red), A2 supplied with selenite (in blue), compared to Se standards (in black). The hexagonal datapoints correspond to the average spectrum for each
sample.

TABLE 2 | Selenium speciation results obtained from least squares LCF of experimental XANES spectra collected from the locations shown in Figure 4 with standard
seleno-compounds.

A NSS (xE-4) C-Se-C (%) MeSeCys (%) Se(GSH)2 (%) Mg/Cu selenate (%) SeCl4 (%)

A2 selenate

Spot 1 2.2 68 0 7 29 0

Spot 2 5.7 60 0 11 31 0

Spot 3 7.0 74 74 0 22 7

Average 67 25 6 27 2

B∗ NSS (xE-4) Red Se(0) (%) Black Se(0) (%) Gray Se(0) (%) Se(0) total (%) Se(GSH)2 (%)

A2 selenite

Spot 1 2.3 81 0 11 92 8

Spot 2 3.0 30 45 0 75 25

Average 55 23 6 83 17

The best LCF was obtained by minimizing the normalized sumsquares residuals [NSS = 100 × 6(µexp – µfit)2/6(µexp)2], where µ is the normalized absorbance. Error on
percentages is estimated to be +10%. XANES spectra were collected on Alternaria sp. originally isolated from Astragalus bisulcatus seeds, grown on malt extract agar
with 30 mg L−1 sodium selenate (SeO4

2−) or sodium selenite (SeO3
2−). Replicates represent individual spectra obtained from mycelial mass. ∗Spot 3 not reported; too

noisy to fit.
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with Se standards of known valence. The detailed Se speciation
results are listed in Table 2. When the fungus was supplied
with selenite (SeO3

2−), 83% of Se in the mycelia was present as
Se0; the remainder was best matching the seleno-diglutathione
(Se-GSH2) standard. When supplied with selenate (SeO4

2−) the
fungus accumulated a large fraction (67%) of Se as C-Se-C, as well
as a substantial fraction of selenate (27%), and a minor fraction of
Se-GSH2 (6%).

Effect of A. tenuissima (A2) on
A. bisulcatus Growth and Se and S
Accumulation
Seeds with hyphae emerging during germination were separated
from those that did not show hyphae, and the two groups were
cultivated on sterile peat moss for 4 weeks with or without
selenate, the main form of bioavailable Se found in soil. The A2-
containing seedlings had reached a twofold to threefold greater
dry weight compared to uncolonized seedlings (Figures 5A,B).
The addition of Se did not significantly affect A. bisulcatus
growth for either group (Figures 5A,B). The presence of the A2
fungus was also associated with reduced shoot Se and S levels
(Figures 5C,D).

DISCUSSION

Hyperaccumulators of toxic elements are an interesting
potential resource for discovery of microbes with properties
useful in phytoremediation or bioremediation. Like all plants,
Se hyperaccumulators harbor a variety of endophytic and
rhizosphere bacteria and fungi (Wangeline et al., 2011; Sura-de
Jong et al., 2015). While Se hyperaccumulator A. bisulcatus
accumulates Se mainly in organic C-Se-C forms (methyl-
SeCys, especially), up to 30% elemental Se0 was reported
in the roots and stem of mature field-collected plants, as
well as in seedlings germinated from field-collected seeds
(Valdez Barillas et al., 2012; Lindblom et al., 2013a). The A2
fungal strain, identified here as A. tenuissima, may contribute
to this fraction of Se0 in A. bisulcatus. It could be cultured from
about 50% of field-collected, surface-sterilized A. bisulcatus
seeds. In addition, small-spored Alternaria species, of which
A. tenuissima is a member, could be cultured from surface-
sterilized roots and stems of A. bisulcatus. In pure culture
supplied with selenite, the A2 fungus was shown here to be
capable of producing Se0. While A. tenuissima is known as a
potential plant pathogen with a wide host range (Mishra and
Parakash, 1975), there is no evidence from this study that it acts
as a pathogen on A. bisulcatus. Alternaria-containing seedlings
grew better than seedlings not containing this endophyte, so it
actually may be growth-promoting. However, it is possible that
the relationship between A. bisulcatus and A2 depends on the
conditions, particularly the Se level, the overall nutrient supply
and the health status of the plant.

The Se speciation in germinating Alternaria-colonized or
uncolonized A. bisulcatus seeds was similar: 86–90% C-Se-C.
This was likely MeSeCys and glutamyl-MeSeCys, as has been
previously reported for seeds (Nigam and McConnell, 1969);

FIGURE 5 | Effect of the presence of Alternaria endophyte on growth and Se
and S accumulation in its host, Se hyperaccumulator A. bisulcatus. (A) Plant
biomass. (B) Shoot Se concentration, (C) shoot sulfur concentration. Different
letters above bars indicate significant differences (p < 0.05) between
treatment means (n = 10).

MeSeCys has also been found to be the main form of Se in leaves
(Freeman et al., 2006b) and flowers of this species (Valdez Barillas
et al., 2012). In contrast, an earlier study by Valdez Barillas
et al. (2012) found a seed in a late-stage Alternaria infestation
to contain 22% Se0, both in the seed and the mycelium growing
from the seed. These results suggest that this Alternaria can
convert the C-Se-C in the seed to Se0, perhaps as a tolerance
mechanism. Grown in pure culture, A2 produced Se0 when
supplied with selenite. Conversion of more toxic forms of Se
to insoluble, inert Se0 is known to be a tolerance mechanism
for many microbes (Gharieb et al., 1994 and citations therein;
Gadd, 1993; Lovely, 1993). A2 appears to have a different Se
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resistance mechanism for selenate, since it contained a variety
of organic selenocompounds (C-Se-C) when supplied with this
form of Se. The tolerance of A2 to selenate was much higher
than for selenite. Surprisingly, although A2 grew very well on
seeds that contained upward of 1,000 mg Se kg−1 (Galeas et al.,
2007; Quinn et al., 2011a), it was already 50% inhibited by
25 mg kg−1 Se extracted from A. bisulcatus flowers, as well as
by 20 mg kg−1 MeSeCys. A possible explanation for the ability
of A2 to successfully grow on these high-Se plants could be that
A2 occupies areas of the plant where there is relatively less Se,
such as the interface between the seed coat and the seed embryo,
and in the apoplast. As shown here, the seed coat contains very
little Se, and in earlier studies energy dispersive X-ray analysis
of hyperaccumulator leaves revealed that Se is generally stored
in the vacuole in Se hyperaccumulators, and not in the apoplast
(Freeman et al., 2006c, 2010). Thus, A2 may not encounter toxic
Se levels in the living plant, like it does when grown on pure
selenocompounds or homogenized plant extract.

The ITS sequence alignment identification of the fungus
revealed an interesting similarity to another fungal-symbiont of
A. bisulcatus, A. astragali (A3), which was originally isolated
from the rhizoplane of surface-sterilized roots (Wangeline and
Reeves, 2007). An additional Alternaria species, A. seleniiphila
(A1) was isolated from the rhizoplane of hyperaccumulator
Stanleya pinnata (Wangeline and Reeves, 2007). Both A1 and A3
were characterized for Se tolerance and speciation by Lindblom
et al. (2013a). The Se-related characteristics of A2 are somewhat
similar to A1 and A3. All are capable of reducing selenite to Se0

and all are fairly tolerant to selenate. All three also stimulated the
growth of their hyperaccumulator host.

Perhaps related to its effect on Se speciation toward more
insoluble Se0 in roots, the A2-containing A. bisulcatus seedlings
showed significantly lower Se and S levels in their shoots.
In previous studies where hyperaccumulators were inoculated
with the related Alternaria species A1 and A3, there was a
reduction in root-to-shoot translocation (Lindblom et al., 2013b,
2014). The same may be the case for A2; the root biomass
was too small to determine root elemental concentrations.
The possible mechanism for reduced translocation could be
the production of Se0 in the rhizosphere or inside the root
apoplast, trapping Se in a non-soluble and therefore non-
translocatable form. In this context it is interesting to note
that pure A2 cultures produced mainly C-Se-C compounds
from selenate (the form provided in the seedling study), and
elemental Se from selenite. Thus, if the A2 endophyte produced
elemental Se in the root, the plant may have reduced the selenate
to selenite first.

This study helps us understand the ecology of Alternaria fungi
in relation to various hosts. This fungus is best known for its
capacity to colonize different hosts including many domesticated
crop species, where it may or may not act as a pathogen. Zou et al.
(2018), however, report an Alternaria sp. fungal endophyte that
acted as a plant growth promoting fungus. The increases in shoot
and root biomass observed in that study were attributed to a plant
metabolic upregulation induced by the fungal endophyte. In this
non-domesticated Se hyperaccumulator A. tenuissima behaves
asymptomatically similarly to other vertically transmitted fungal
endophytes, perhaps due to the host’s elemental defense (the high
levels of this toxic element may negatively affect pathogens) and
limited access to nutrients by the host’s apoplast. However, it is
apparently capable of colonizing the hyperaccumulator’s tissues
and perpetuating its genetic line by keeping its host alive and
colonizing the seeds. This is another example of Alternaria’s
phenotypic plasticity, showing its ability to colonize a diverse
range of hosts via different mechanisms and under different types
of ecological interactions.
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