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Agronomic and quality traits in alfalfa are very important to forage industry. Genomic
prediction (GP) based on genotyping-by-sequencing (GBS) data could shorten the
breeding cycles and accelerate the genetic gains of these complex traits, if they display
moderate to high prediction accuracies. The aim of this study was to investigate the
predictive potentials of these traits in alfalfa. A total of 322 genotypes from 75 alfalfa
accessions were used for GP of the agronomic and quality traits, which were related to
yield and nutrition value, respectively, using BayesA, BayesB, and BayesCπ methods.
Ten-fold cross validation was used to evaluate the accuracy of GP represented by the
correlation between genomic estimated breeding value (GEBV) and estimated breeding
value (EBV). The accuracies ranged from 0.0021 to 0.6485 for different traits. For each
trait, three GP methods displayed similar prediction accuracies. Among 15 quality traits,
mineral element Ca had a moderate and the highest prediction accuracy (0.34). NDF
digestibility after 48 h (NDFD 48 h) and 30 h (NDFD 30 h) and mineral element Mg
had prediction accuracies varying from 0.20 to 0.25. Other traits, for example, fat and
crude protein, showed low prediction accuracies (0.05 to 0.19). Among 10 agronomic
traits, however, some displayed relatively high prediction accuracies. Plant height (PH)
in fall (FH) had the highest prediction accuracy (0.65), followed by flowering date (FD)
and plant regrowth (PR) with accuracies at 0.52 and 0.51, respectively. Leaf to stem
ratio (LS), plant branch (PB), and biomass yield (BY) reached to moderate prediction
accuracies ranging from 0.25 to 0.32. Our results revealed that a few agronomic traits,
such as FH, FD, and PR, had relatively high prediction accuracies, therefore it is feasible
to apply genomic selection (GS) for these traits in alfalfa breeding programs. Because of
the limitations of population size and density of SNP markers, several traits displayed low
accuracies which could be improved by a bigger reference population, higher density of
SNP markers, and more powerful statistic tools.
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INTRODUCTION

Alfalfa (Medicago sativa L) is the first most-important forage
legume in the world, because of its high biomass yield (BY) and
good nutritional quality. To meet the future demand of quantity
and quality, the main objectives in alfalfa breeding programs
are biomass related agronomic traits and nutrition value related
quality traits. Though yield and quality of alfalfa have been
improved by phenotypic selection, the genetic gain are relatively
low compared to other crops, owing to many reasons, such as
low heritability, complex genetic architecture, and high genotype-
environment interaction (Annicchiarico et al., 2015a). Therefore,
it is emergent that new breeding strategies should be introduced
into alfalfa breeding programs to accelerate the genetic gain of
targeted traits and thus to meet the increasing demands of forage
production.

Breeding value (BV), known as genetic merit of an individual
which cannot be measured directly, is always the key issue
in plant breeding programs. However, accurately estimated
breeding value (EBV) is impossible to be achieved in complex
traits by using phenotypic data alone. To improve the accuracy
of prediction, incorporating information of genetic markers,
known as marker-assisted selection (MAS), is an optional
strategy. The superiority of MAS than phenotypic selection is
determined by the percentage of the genetic variance accounted
for by the QTLs associated with the markers (Meuwissen and
Goddard, 1996). Unfortunately, the proportion of variation in
complex traits explained by significant markers is usually very
small (Hayes and Goddard, 2010). Therefore, many markers
in linkage disequilibrium (LD) with QTLs contributed to
targeted traits are needed to realize a relatively high prediction
accuracy.

Due to the decreased cost of high-throughput genotyping
methods, huge amount of genomic information of many non-
model plants has been produced. Utilization of genotypic
information in plant breeding has become a highly prioritized
research area in recent years. Since dense genetic markers
covering whole genome are available in many species, a new
method for estimating breeding value, namely the genomic
selection (GS) or genomic prediction (GP), showed a great
potential for enhancing the accuracy of GP of BV (Meuwissen
et al., 2001). It is assumed that all genes, with either large
or small effects, affecting targeted traits are in LD with some
markers that are distributed across the genome, paving the
way to achieve a high accuracy of genomic estimated breeding
value (GEBV) (Meuwissen, 2007). In a simulation study, the
accuracy could be as high as 0.85 (Meuwissen et al., 2001). But
this is not always the case in the real data. Several studies on
GP have been done in wheat (Lado et al., 2013; Jiang et al.,
2017; Sukumaran et al., 2017), maize (Riedelsheimer et al., 2012;
Crossa et al., 2013; Pace et al., 2015), and other plants (Shu
et al., 2013; Xu et al., 2014; Grenier et al., 2015), revealing
a majority of the prediction accuracies between 0.05 and 0.8,
depending on the traits, statistical methods, and experiment
designs.

As mentioned above, GP can significantly improve the
accuracy of estimation of breeding value. Therefore, it attracts

a great interest of plant breeders worldwide. Traits being
targeted in plant breeding programs are either difficult or costly
to be measured. Additionally, the targeted traits (e.g., yield,
phenology, and adaptation to stress) in plant breeding are
mostly quantitative traits, which are controlled by multiple genes
and generally sensitive to environmental variables. Phenotypic
selection, neglecting the underlying biological processes and the
interactions between genes and environments, cannot make a
significant genetic gain in a short time frame. Considering the
genetic architecture of the quantitative traits, MAS is also not
the best choice. GP, following its assumption, is thus an ideal
tool to be used in the plant breeding programs. Many methods
have been adopted for GP or GS. Bayesian methods and GBLUP,
however, are those being frequently used. Bayesian methods
exhibited more advances than GBLUP in terms of prediction
accuracy following a simulation study (Meuwissen et al., 2001).
No matter which method is used for GP, the density of markers
across the whole genome is a determining factor. Typically, two
types of high throughput genotyping methods of SNP array
and whole-genome re-sequencing can be employed to generate
high quality genotypes of markers. For important crop species,
several SNP Bead chips at different marker densities have been
developed (Ganal et al., 2012). Because of the lack of SNP array,
genotyping by sequencing (GBS) is therefore an alternative to
alfalfa genotyping. In the current study, we investigated the
impact of three Bayes statistical methods on the prediction
accuracies of alfalfa agronomic and quality traits with genotypic
data obtained by GBS.

MATERIALS AND METHODS

Plant Materials and Experimental
Designs
The alfalfa materials used in this study were consisted of 322
genotypes representing 75 tetraploid alfalfa accessions under the
experimental designs as described in Wang et al. (2016).

Phenotypic Data Collection and Analysis
A total of 25 traits (Table 1), including 15 quality and 10
agronomic traits, were measured for all genotypes. All the plants
were harvested at early flowering stage and prepared to measure
the 15 quality traits using a FOSS 5000 scanning monochromator
(FOSS, Denmark). The 15 quality traits included three fiber-
related traits, four digestibility-related traits, and eight nutrition
component traits being measured following the procedures
described in our previous studies (Wang et al., 2016; Jia et al.,
2017). Before harvesting, plant height (PH) of each plot was
measured as nature height on every plant. Plant branch (PB) was
measured as the number of primary branches arising from the
main stem. The number of main stem node (SN) for each plot was
directly counted since the first node on the main stem from every
plant. The first inflorescence position (FP) was measured as the
position of the first inflorescence on the stem. After harvesting,
BY was measured as the fresh weight by clipping all six plants
in each plot at a uniform height of 5 cm. The stems and leaves
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TABLE 1 | Prediction accuracies of 25 traits.

Prediction accuracies

Traits BayesA BayesB BayesCπ

ADF 0.1847 0.1805 0.1824

aNDF 0.1843 0.1942 0.1958

dNDF30 0.2002 0.1933 0.1963

dNDF48 0.2538 0.2545 0.249

ADL 0.0783 0.0756 0.08

IVTDMD30h 0.0907 0.0906 0.0889

IVTDMD48h 0.0994 0.1029 0.1002

CP 0.0528 0.0524 0.0557

RUP 0.0828 0.0909 0.0746

Ash 0.087 0.0836 0.085

Ca 0.337 0.3422 0.3393

K 0.1663 0.1586 0.1572

Mg 0.2184 0.2183 0.2178

P 0.1178 0.1196 0.1203

Fat 0.1148 0.1203 0.1114

BY 0.2418 0.2511 0.2457

DM 0.1285 0.1257 0.1271

FD 0.5153 0.5139 0.5131

FH 0.6485 0.6466 0.6451

FP 0.0639 0.0596 0.0683

LS 0.3214 0.3215 0.3249

PB 0.2589 0.2598 0.2593

PH 0.1587 0.1601 0.1626

PR 0.5105 0.5111 0.5074

SN 0.0045 0.0047 0.0021

Abbreviations of traits are explained in Materials and Methods.

were separated and placed into a nylon net bag, naturally air-
dried, and weighed separately to calculate the leaf to stem ratio
(LS). Meanwhile, dry matter (DM) was defined as the sum of the
weights of stems and leaves. Plant regrowth (PR) was measured
as the PH two weeks after the first harvest. Flowering date (FD)
was calculated by the date of opening of the first flower for the
first two growth cycles. PH in fall (FH) was measured as the PH
21 days after the last harvest. The mean value of all six plants
in each plot represents the trait value of a genotype grown in
that plot. The measurements of all traits were performed on
all genotypes under three consecutive years (2013, 2014, and
2015).

Linear mixed model was fitted to calculate the BLUP value and
EBV for individual trait of each genotype as follows:

yi = µ + gi + ei + εi.

In this equation, yi represents the phenotype of the ith
genotype, µ is the grand mean value of the targeted trait
in all environments, gi is denoted as genetic effect, ei is the
environmental effect, and εi is the random error. The BLUP value
was estimated for individual trait of each genotype based on the
above-mentioned linear model using the lme4 model (Bates et al.,
2011). The EBV of individual genotype was used as response
value in GP equation to estimate marker effect.

DNA Isolation, GBS Library Construction,
Sequencing, and Genotypic SNP Calling
Leaf tissues were collected from all genotypes and DNAs were
extracted using the Qiagen DNeasy 96 Plant kit (Qiagen,
CA, United States). DNA degradation and contamination were
monitored on 1% agarose gels. DNA purity and concentration
were checked using the NanoPhotometer R© spectrophotometer
(IMPLEN, CA, United States) and Qubit R© DNA Assay Kit in
Qubit R© 2.0 Flurometer (Life Technologies, CA, United States),
respectively. DNA was digested by MseI [New England Biolabs
(NEB)] restriction enzyme. The reduced representation libraries
were constructed for individual genotypes according to published
GBS protocol (Elshire et al., 2011) and sequenced using Illumina
HiSeq2000 platform. Raw data were submitted to the NCBI
Sequence Read Archive with a reference number of SRP081825.
The Tassel 3.0 Universal Network Enabled Analysis Kit (UNEAK)
pipeline (Lu et al., 2013) was used for de novo SNP discovery and
genotype calling following Li et al. (2014).

SNP Imputation
After SNP calling, NPUTE was used to impute the GBS data
(Roberts et al., 2007).

Statistical Methods for GP
Three regression methods with different prior assumptions of the
distribution of marker effects were used to estimate SNP effects,
namely the BayesA (Meuwissen et al., 2001), BayesB (Meuwissen
et al., 2001), and BayesCπ (Habier et al., 2011). A ten-fold cross
validation was used to evaluate the accuracy of GP. The data
were randomly split into 10 approximately equal-sized groups.
For each cross validation, nine groups were used as the training
population to estimate parameters and the remaining group
(validation population) was used as the test sample. The linear
model is denoted as follows:

yi = µ+

m∑
j=1

Zijαj + ei

where, yi is the EBV of one trait, µ is the overall mean, m is the
number of markers, Zij is the jth SNP genotype of plant i, αj is
the average effect of allele substitution for SNP j, and ei is the
residual error with an assumed normal distribution N (0,σ2

e).
SNP effects were estimated based on the training population
using this equation. The GEBV for plant i in the validation
population was predicted by summing up SNP effects over all
loci. Predictive accuracy was measured as the correlation between
the EBVs and GEBVs. Random sampling training and validation
sets were repeated 10 times and the mean of correlations was
calculated to measure the GP accuracy. All Bayes programs were
run in BGLR package in R environment.1 The number of Burn-
in was 10000, thin was 20, and the total number of iteration was
30,000. Other priors of parameters were assigned following Perez
and de los Campos (2014).

1http://www.r-project.org
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FIGURE 1 | Predictabilities of 10 agronomic traits (A) and 15 quality traits (B) plotted against three Bayesian methods. Different colors represent different methods.
Abbreviations of traits are explained in Materials and Methods.

RESULTS

Phenotypic Variation
Since our previous works have described the phenotypic
variations of some fiber-related traits (Wang et al., 2016) and
crude protein and mineral elements (Jia et al., 2017), we will not
describe them in this study. Instead, we want to represent the EBV
variations of all traits incorporated in this study. The frequency
distributions of EBVs for all 25 traits were symmetric as shown in
Supplementary Figure S1.

GP Using Three Bayesian Methods
Sequencing of the GBS libraries yielded approximately
184.59 million raw reads and 178.2 million clean reads in
all 322 alfalfa genotypes. After imputation, 44,757 high quality
SNPs were obtained and used for GP. The results of prediction
accuracies of three Bayesian methods are shown in Table 1.
The predictabilities drawn from the ten-fold cross validation
varied across different traits. SN had the lowest predictability
(0.0021) but FH had the highest predictability (0.6485). Some
quality traits such as crude protein (CP), RUP, and ADL
exhibited relatively low prediction accuracies (< 0.1) while the
remaining quality traits such as fat, K, and Ca showed low to
moderate predictabilities (0.11−0.34). Agronomic traits hold

similar patterns except three traits that had relatively high
predictabilities with FH to be the highest (0.65), followed by
FD (0.52), and PR (0.51). Other traits, such as LS, PB, and
BY displayed moderate predictabilities (0.24−0.32). Similar
to BayesA method, BayesB and BayesCπ methods did not
reveal any significant difference from each other in terms of
the predictabilities of all quality and agronomic traits (Table 1
and Figure 1). The predictabilities among the three Bayesian
methods are shown in Figure 1. From the bar-plotting, only
minor differences were observed among the three methods for
all 25 traits, it was therefore hard to determine which method
was the best.

DISCUSSION

Since GS was proposed by Meuwissen et al. (2001), many studies
have been conducted in major crop species (Heffner et al.,
2011a,b; Zhao et al., 2013; Iwata et al., 2015; Spindel et al., 2015)
and farm animals (Fang et al., 2017; Hay and Roberts, 2017; Tan
et al., 2017). The application of GPs to alfalfa BY and forage
quality breeding were also initiated recently (Annicchiarico et al.,
2015b; Li et al., 2015; Biazzi et al., 2017). In alfalfa industry, BY
and forage quality are the key traits for genetic improvement.
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Other than the direct traits such as PH, BY, and DM that can
inflect the BY of alfalfa, some phenology-related agronomic traits
such as FH can also affect the BY. In this study, we therefore
investigated the possibility of GP applied to alfalfa germplasm
resources and GS applied to 10 important agronomic traits and
15 forage quality traits of alfalfa production.

Several methods, such as random regression BLUP, Bayesian
methods and GBLUP, were employed to estimate GP and GS.
Some simulation studies on different species suggested Bayesian
methods to be superior than GBLUP in terms of the prediction
accuracy (Meuwissen et al., 2001; Fernando et al., 2007; Clark
et al., 2010; Zhang et al., 2010; Calus and Veerkamp, 2011).
Compared with other methods, Bayesian methods also possessed
other advantages (Gonzalez-Recio et al., 2010). In this study,
we used the empirical data of 25 traits of 322 genotypes of 75
alfalfa accessions to compare the performance of GP following
three statistical approaches of BayesA, BayesB, and BayesCπ.
The BayesA method is based on the assumption that the prior
distribution of variances of SNPs followed the scaled inverted
chi-square distribution, implicating many SNPs with small effects
and a small proportion of SNPs with moderate effects. BayesB
assumes that many of the SNPs have no effect and the prior
distribution of the variances of SNPs is a mixture of a distribution
with zero variance and an inverse chi-squared distribution
(Meuwissen et al., 2001). BayesCπ, however, treats the prior
probability π that a SNP has zero effect as unknown (Habier
et al., 2011). Figure 1 shows that these three Bayesian methods
demonstrated very similar prediction accuracies across all 25
traits, irrespective of their different assumptions. BayesA, BayesB,
and BayesCπ identified six, five, and four quality traits as well
as three, four, and three agronomic traits having the highest
accuracies, respectively.

Besides the methods of GP discussed above, there are other
factors affecting the prediction accuracies. One of them is
the population composition and structure. Therefore, EBVs
were directly used as the response variable to GP rather than
phenotypes in the study. Since EBVs were corrected for non-
genetic effects, it can be readily captured by SNPs using the Bayes
methods. Methods of imputation for SNP genotypes are also
important (Moghaddar et al., 2015).

Compared to previous studies, there were some differences in
the accuracies of prediction for both agronomic and quality traits.
For example, Biazzi et al. (2017) reported a very low accuracy
(∼0.1) for LS which had nonetheless a moderate value at 0.32
in our study. DM showed a low accuracy (0.13) in our study,
but Annicchiarico et al. (2015b) identified a moderate value of
0.35 in two genetically distinguished alfalfa populations. For BY,
previous study showed moderate to high accuracies (0.21−0.66,
Li et al., 2015) while it had an accuracy at 0.25 in the present
study.

All the 15 quality traits had relatively low prediction accuracies
due probably to their low heritabilities (Wang et al., 2016; Jia
et al., 2017) determined by the genetic complexity of these traits.
Biazzi et al. (2017) detected moderate prediction accuracy values
for stem dNDF and leaf protein content (0.3–0.4) followed by
leaf ADL and dNDF while the remaining traits showed low
to very low accuracies. In our study, the accuracy of dNDF
was almost moderate, similar to that of leaf dNDF but slightly
lower than stem dNDF. These differences may be attributed to
different sizes of reference populations, training populations, and
number of markers. Different statistical models may lead to such
discrepancies. The methods of imputation of SNP genotypes
can also affect the accuracy of prediction (Moghaddar et al.,
2015).

The present study was an attempt to predict alfalfa GEBVs of
25 important traits associated with BY and forage quality using
three Bayesian statistical methods. Overall, they all exhibited
similar predictabilities. Some traits possessed relatively high
prediction accuracies (e.g., FH, FD, and PR with accuracies of
0.65, 0.52, and 0.51, respectively). Therefore, it is feasible to apply
GS on these traits in alfalfa breeding programs. While GS/GP may
be poorly effective for other traits such as ADL, crude protein, and
RUP with low prediction accuracies.
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