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Growing demand for staple crops like rice will need to be achieved predominately
through agricultural intensification and more efficient use of inputs. To meet this demand
it is essential that the genetic diversity within rice is fully utilized. The aus subpopulation
is considered an underappreciated resource within that diversity. A new rice panel, the
Bengal and Assam Aus Panel (BAAP) of 266 aus accessions was generated with ∼2
million informative SNPs obtained using skim sequencing at ∼4× depth. The BAAP
was grown in the field in Bangladesh in the ‘boro’ season under both continuously
flooded and Alternate Wetting and Drying (AWD) irrigation during 2013 and 2014 in
Mymensingh and during 2014 in Madhupur. Heading date, grain mass, straw biomass
and harvest index were measured. The majority (94%) of BAAP accessions flowered
within a relatively small window of 10 days. The AWD irrigation treatment generally
caused an increase in grain mass, but no significant genotype by treatment interactions
were detected for this trait. Shoot biomass was the only trait that showed evidence
of genotype by treatment interaction. The average LD (Linkage Disequilibrium) decay
across the genome was 243 Kbp. Genome wide association mapping revealed 115
quantitative trait loci (QTLs). There was little evidence of QTLs specific to the irrigation
treatment, and only a few QTLs co-localized with known genes. However, some QTLs
were detected across multiple sites and years. These QTLs should be targets for
breeding, and include a region around 2.2 Mbp on chromosome 1, a large region in
the middle of chromosome 7 and two regions on chromosome 11 (∼10 Mbp and ∼29
Mbp). The BAAP appears to be a valuable addition to the growing collection of GWA
mapping populations of rice.
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INTRODUCTION

Rice (Oryza sativa L.) is one of the world’s most important
cereals as it supplies 35–60% of dietary calorie intake for
an estimated three billion people (Fageria, 2007; Global Rice
Science Partnership [GRISP], 2013). With an increasing global
population, demands on staple crops such as rice will intensify
(Mohanty, 2013). Developing new management techniques to
increase rice yield and breeding of rice varieties that yield more
under a range of different environments, including using inputs
more sustainably, is a key target to meet these demands.

Conventional dry season irrigation requires large volumes of
freshwater to maintain high yields in rice. It is estimated that
to produce 1 kg of rice 2,500 L of water is required (Bouman,
2009); therefore, to produce the average yield of a 4.3 t ha−1

in Bangladesh (Global Rice Science Partnership [GRISP], 2013),
a total of 10.75 million liters of water is required per hectare.
To reduce the volume of water needed for irrigation during the
dry season a number of field management techniques have been
developed. One method that is being promoted in Bangladesh
and other countries is Alternate Wetting and Drying (AWD)
(Bouman and Tuong, 2001; Zhang et al., 2009; Lampayan et al.,
2015). AWD is a water management technique in which, after
plants are established, the field is cycled between flooding and
limited field drainage. Once the water table reaches the required
depth below the surface (usually in the range of 15–20 cm below
the soil surface) the field is re-flooded and the next AWD cycle
started. Practitioners of AWD are initially advised not to allow
the water level to drop below 15 cm from the soil surface and to
stop AWD cycling at the initiation of flowering – this is referred
to as “safe-AWD” (Lampayan et al., 2015), but AWD cycling
continuing into flowering is also practiced. AWD has been shown
to reduce water application by up to 25%. The impacts on yield
are variable and are probably related to the degree of soil drying
occurring during the AWD cycles and the growth stage at which
AWD is applied up to (Carrijo et al., 2017). Safe-AWD appears to
have no significant impact, or increase grain yield, whereas more
severe AWD treatments can result in a significant reduction in
grain yield (Carrijo et al., 2017).

Within rice there is wide natural genetic variation of yield
traits (Huang et al., 2010). Traditionally, this variation has been
genetically characterized using bi-allelic mapping populations.
However, with the advancements in whole genome sequencing
the utilization of genome wide association (GWA) mapping
has now become common in rice (for example Huang et al.,
2010; Zhao et al., 2011; Courtois et al., 2013; Norton et al.,
2014; Talukdar et al., 2015; Biscarini et al., 2016; Crowell et al.,
2016; Kadam et al., 2017). The most common approach to
GWA mapping is to utilize a population of diverse accessions
(Zhao et al., 2011). While this approach maximizes the diversity
of the alleles (Zhao et al., 2011), and has the potential to
identify a larger number of quantitative trait loci (QTLs), there
are disadvantages. These include missing rare alleles because
of under representation in the GWA population and poor
performance of accessions in field environments for which
they are not well-adapted (Norton et al., 2014). The latter
is particularly problematic as the impact of treatments may

differ depending on flowering time (like water management
treatments) or if the traits measured are affected by the flowering
time of accessions, such as yield or nutrient uptake/distribution.
To overcome these issues, GWA populations can be developed
utilizing accessions from a geographic or environmentally
defined setting provided that the traits of interest are diverse
and under strong genetic control within a potentially genetically
diverse but restricted population. An example of this approach
is given by Biscarini et al. (2016) where GWAS was conducted
with a focus on temperate japonicas suited to phenotyping in
Italy. The population was subsequently assessed under two water
regimes, being continuously flooded and a cyclic watering based
on a target of −30 kpa soil matric potential (Volante et al., 2017).

Within the global germplasm of rice, the aus accessions are a
recognized subpopulation (Garris et al., 2005; Travis et al., 2015).
Recent sequencing of wild rice relatives suggests that aus evolved
from a distinct population of the annual Oryza nivara found in
Bangladesh, Northern Myanmar, and NE India (Kim et al., 2016).
Kim et al. (2016) state that “the cultivated aus subpopulation
and its wild ancestor represent an underappreciated genetic
resource.” Aus accessions have two attractive features which
might make them particularly suitable for GWA mapping.
First, they are phenotypically diverse containing the donors
of a number of abiotic stress resistance-related traits (Travis
et al., 2015). Second, since they are generally considered to be
photoperiod insensitive (for adaptation to their normal growing
season), many should flower at similar times.

The aim of this study was to develop an aus panel for GWA
mapping and use it to identify novel genomic loci for yield
related traits under continuous flooding (CF) and yield related
loci responding to AWD that can be used for breeding. The
population was developed using cultivars originally collected
from Bangladesh and India. The population was screened for
yield traits in the field in Bangladesh at one location over 2 years,
and one other location in 1 year. The field trial was conducted
using both CF conditions and under AWD. DNA was extracted
and sequenced to provide two million SNPs. A large number of
loci were identified using GWA mapping of yield component
traits, including a number of regions that were stable across
treatments, field sites and years, indicating that they are good
targets for future study and for plant breeding.

MATERIALS AND METHODS

Development of the Population
The population was designed to contain mostly landraces from
the aus subpopulation by selecting those reported in Travis et al.
(2015) based on similarity (so that two similar cultivars were not
included) and flowering time. In addition, 19 of the OryzaSNP set
(McNally et al., 2009) plus some released varieties and breeding
lines from Bangladesh were included. Among the aus cultivars
included were 33 present in the Rice Diversity Panel 1 (Zhao
et al., 2011) including DJ 123 [the reference aus cultivar (Schatz
et al., 2014)] and the well-known cultivars N22, Kasalath, FR 13A.
The cultivars underwent two rounds of single seed descent at the
International Rice Research Institute (IRRI), Philippines. During
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the second round of single seed decent, DNA was extracted
from 298 accessions using Qiagen DNAeasy Plant kits (medium
scale) at IRRI and used to conduct whole genome sequencing.
Sequencing was conducted by The Centre for Genome Analysis,
Norwich, United Kingdom. Twenty DNA samples were pooled
for each sequencing lane to allow sequencing on 15 lanes of an
Illumina HiSeq 2000 generating 100 bp paired end reads. 299
samples in total were analyzed because one genotype, BRRI Dhan
28 was sequenced twice.

SNP Calling
The sequencing reads for the 299 DNA samples were cleaned by
removing adapters and trimming off low quality bases using Trim
Galore!1; with parameters -q 20 –length 36 –retain_unpaired.
The filtered reads were aligned to the IRGSP-1.0 (International
Rice Genome Sequencing Project) reference downloaded from
Ensembl v212 using bwa version 0.7.5a with parameters mem –M
(Li, 2013). Duplicate reads were marked for removal using Picard
Tools version 1.1043. Variants for each cultivar were called using
GATK version 3.3 HaplotypeCaller (DePristo et al., 2011). A list
of known sites for IRGSP-1.0 taken from the 3,000 rice genomes
project core SNPs4 was filtered to include only cultivars in the
Bengal and Assam Aus Panel (BAAP) set using metadata related
to subpopulation (Travis et al., 2015). Variants for all cultivars
were combined using GATK GenotypeGVCFs resulting in a total
of 12,081,601 variants including 10,009,636 bi-allelic SNPs that
were filtered on the basis of minor allele frequency (MAF) > 0.05
and <0.1 “missingness” to create a SNP database of 2,053,863
SNPs. The SNP dataset will be available as a project called “BAAP”
in the autumn 2018 quarterly update of the SNP-Seek database5

(Mansueto et al., 2017) and on the Harvard DataVerse as a
data-set “Genome Wide Association mapping of grain and straw
biomass traits in the rice Bengal and Assam Aus Panel (BAAP)”6.

A SNP Database, Population Structure,
and Linkage Disequilibrium
From the 298 cultivars, only 260 were used to produce an aus-
specific SNP database. Fifteen of the accessions were OryzaSNP
accessions from other subpopulations (eight OryzaSNP
accessions being japonicas and seven indicas), while there were
eight Bangladeshi japonicas and 10 Bangladeshi indicas. In
addition, five aus landraces had sequence depth lower than 1×

and were eliminated, while one had high heterozygosity and was
eliminated (see Supplementary File S1 for details).

Population structure analysis was conducted using
fastSTRUCTURE (Raj et al., 2014) and SNPhylo (Lee et al.,
2014). An examination of the results from fastSTRUCTURE and
the neighbor-joining tree (not shown) suggest there is significant
population structure present with up to five sub-groups in the
BAAP panel and this was taken into account in the GWAS
analysis.

1http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
2ftp://ftp.ensemblgenomes.org/pub/plants/release-21/fasta/oryza_sativa/dna/
3http://broadinstitute.github.io/picard/
4http://oryzasnp-atcg-irri-org.s3-website-ap-southeast-1.amazonaws.com/
5http://snp-seek.irri.org/
6https://doi.org/10.7910/DVN/AUMTIH

Global LD (Linkage Disequilibrium) was calculated as R2

using PLINK (Purcell et al., 2007) with parameters “–r2 dprime –
ld-window-kb 5000 –ld-window 99999 –ld-window-r2 0.” Global
LD decay was defined as the distance at which R2 < 0.2, estimated
by binning LD values for each chromosome.

Field Screening
The population was screened in Bangladesh under both AWD
and continuously flooded (CF) conditions in 2013 and 2014
in Mymensingh, and in 2014 in Madhupur. The full details of
the field screening is given in Norton et al. (2017a,b). Briefly,
for the field screen in 2013 at Mymensingh rice seeds were
sown in a nursery bed on 31st December 2012. The day before
transplanting the seedlings into the experimental plots, the plots
were fertilized with 40 kg ha−1 nitrogen, 20 kg ha−1 phosphorus,
70 kg ha−1 potassium, 15 kg ha−1 sulfur, and 3 kg ha−1 zinc.
A further 40 kg ha−1 nitrogen was supplied during the tillering
stage (26th March), and another 40 kg ha−1 nitrogen at the
flowering stage (6th April). The seedlings were transplanted into
the eight plots (each plot was 5 m × 11.4 m) on the 13th of
February 2013. They were planted as two plants per hill with a
distance of 20 cm between each hill in a row and a 20 cm distance
between each row of 4 m length. At total of 276 and 282 (CF
and AWD, respectively) rice accessions were planted in single
rows, with a check cultivar BRRI Dhan 28 transplanted into each
alternate row. After transplanting the plots were flooded. For the
four CF plots the surface water was kept at a depth of between
2 cm and 5 cm above the soil surface during the vegetative and
reproductive stages (13th April 2013). For the four AWD plots
plastic perforated tubes (pani pipe) were placed across the plots
to monitor the water depth. The aim was to allow water to
drain/percolate naturally from the AWD plots until the average
depth of the water was 15 cm below the soil surface. At that
point the plots were irrigated to bring the water depth to between
2 cm and 5 cm above the soil surface. Both the AWD and CF
plots were kept under the same flooded conditions up until 3rd
March when water was withheld from the AWD plots for the start
of the first AWD cycle. There were four AWD cycles with the
fourth finishing on the 11th April. At this point the rice plants
had started flowering and the AWD plots were kept flooded and
maintained the same as the CF plots.

Once the cultivars had flowered and the grain matured, the
grain and shoots from every cultivar was hand harvested from
the six central hills of each row. The grain was then hand threshed
and weighed to determine the grain mass per six hills (referred to
as grain mass). The shoots were harvested approximately 5 cm
above the soil, dried, and then weighed to determine the shoot
weight per six hills (referred to as straw biomass).

For the field experiment at Mymensingh in 2014 the rice seeds
were sown in a nursery bed on 17th December 2013. The field
site was prepared as described for 2013, with the rice plants
transplanted on 6th February into the eight plots (each plot
was 22.7 m × 11.8 m). A total of 254 and 257 (CF and AWD,
respectively) accessions were planted out at this field site. The
fertilizer regime was as for 2013, with the split application of
nitrogen fertilizer applied on 27th February and 27th March.
The AWD cycles for the four AWD plots started on the 11th
of February with the fourth cycle ending on 10th April. Once
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the fourth cycle had finished, the AWD and CF plots were
maintained under flooded conditions during the flowering stage.
Rice cultivars were harvested as described above.

For the field experiment at Madhupur in 2014 the rice
seeds were sown in a nursery bed at Mymensingh on the 17th
December 2013. The field site was prepared as described above
for the Mymensingh site. The seedlings were transplanted into
the eight plots at Madhupur on the 8th and 9th February. Each
plot was 24 m × 10 m. Plants were planted as two plants per
hill with a distance of 20 cm between each plant in a row and
20 cm distance per row. A total of 271 and 273 (CF and AWD,
respectively) accessions were planted out at this field site. The
fertilizer regime was as for 2013, with the split application of
nitrogen fertilizer applied on 1st March and 30th March. The
AWD cycles for the four AWD plots started on the 3rd March
with the fourth cycle ending on 19th April. Once the fourth cycle
had finished, the AWD and CF plots were maintained under
flooded conditions during the flowering stage. Rice cultivars were
harvested as described above.

In all the field experiments for each treatment a randomized
complete block design was employed with four replicate blocks,
but treatments were separated (see Norton et al., 2017a,b for
full details). Further analyses (GWAS, ANOVA, and correlations)
were only conducted when data was available for at least
three replicates. The exception to this rule was flowering time
which was measured on only one replicate block because
experience informed us that variation between replicates for
flowering time was negligible. For example, measuring flowering
time of 114 members of the Rice Diversity Panel 1 in India
with four replicates revealed genotype explained 99.92% of the
variation (essentially 100% heritability) rendering the need for
replication redundant (Tapash Dasgupta, University of Calcutta,
unpublished data).

Population Structure
Population structure was analyzed using STRUCTURE
(Pritchard et al., 2000; Falush et al., 2003) and STRUCTURE
Harvester (Earl and vonHoldt, 2012) as described by Travis
et al. (2015). The number of distinct population sub-groups
was estimated using the Evanno Delta-K method (Evanno
et al., 2005). Although STRUCTURE is well-suited to analysis
of 326 SNP markers, fastSTRUCTURE (Raj et al., 2014) and
ADMIXTURE (Alexander et al., 2009) implement more efficient
population models better suited to analyze the 2,053,863 SNP
markers obtained in this study. The greater resolution of
2,053,863 SNP markers allowed more population groups to be
identified by fastSTRUCTURE, using marginal likelihood, as
model complexity was increased. The number of population
sub-groups was also identified using ADMIXTURE (Alexander
et al., 2009) using CV (Cross-Validation), as model complexity
was increased. An 80% threshold of group membership was used
to classify cultivars into population sub-groups.

Genome Wide Association Mapping
Genome wide association mapping was performed using PIQUE
(Parallel Identification of QTL’s Using EMMAX7) to pre-process

7https://github.com/tony-travis/PIQUE

genotype and phenotype data for subsequent analysis by
EMMAX (Kang et al., 2010) followed by EMMAX analyses on
each phenotype in parallel (GitHub repo for PIQUE). A mixed
effects model was used to estimate the association between
each SNP and phenotype across all cultivars, whilst accounting
for population structure and cryptic kinship. For the fixed
effects, population structure was included as covariates based
on the first five principal components of PCA of all 2,053,863
BAAP SNPs across cultivars using EIGENSTRAT smartpca (Price
et al., 2006). Random effects were estimated using a kinship
matrix to measure the genetic similarity between individuals
as the proportion of times a given pair of cultivars had
the same genotype across all SNPs (IBS values). Information
about population structure and kinship was incorporated into
GWAS models across all cultivars as both fixed and random
effects. The false discovery rate (FDR) of detected associations
was estimated using the R-language Bioconductor “multtest”
library to calculate Benjamini–Hochberg adjusted probabilities
(Benjamini and Hochberg, 1995). A significance threshold of 10%
FDR was used to identify putative SNP associations (McCouch
et al., 2016).

After GWA, SNPs with −log10(P) < 4 were examined to group
the SNPs into QTL. If two SNPs were closer than the genome
average LD decay value of 250 Kbp, they were considered to
belong to the same locus.

Statistical Analysis
All statistical analyses were performed using the statistical
software Minitab v.17 (State College, PA, United States) and
SigmaPlot v.13 (Systat Software Inc., San Jose, CA, United States)
and the significance of ANOVA main effects and interactions
reported at alpha < 0.05. Assumptions of normality were tested
using the Anderson–Darling test in Minitab. For the plant mass
traits two-way ANOVA was conducted with AWD and CF, and
cultivar and interaction terms as the explanatory variables for
each site. For the 2013 Mymensingh field site there were a
total of 221 genotypes in common across both treatments. At
Mymensingh in 2014 a total of 232 genotypes were common
across both treatments. At Madhupur in 2014 a total of 226
genotypes were common across both treatments. For the plant
mass traits three-way ANOVA was conducted with treatment
(AWD and CF), site and cultivar (common across all sites
n = 191) as the explanatory variables. For the three-way ANOVA
the presence of an interaction between the three explanatory
variables was also determined. For correlation analysis a Pearson’s
correlation was used.

RESULTS

The BAAP – Genome Sequencing, SNP
Database, Linkage Disequilibrium (LD),
and Population Structure
The BAAP population developed in this study (detailed in
Supplementary File S1) was selected from a larger panel of
511 rice cultivars screened by Travis et al. (2015). From the
cultivars screened in that study, a total of 300 were selected for the
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BAAP, including 266 landraces identified as belonging to the aus
subpopulation. The selected aus cultivars flower within a window
of 79–92 days. The 326 SNPs reported in Travis et al. (2015)
were used to avoid selection of very closely related cultivars.
In addition to these aus cultivars, the panel also contains the
OryzaSNP cultivars (McNally et al., 2009) and a number of elite
Bangladeshi cultivars.

A total of 298 cultivars from the BAAP population were
sequenced to coverage depths ranging from 0.42 to 37×, with an
average of 5.5×. To create the SNP database only 266 accessions
from the aus subpopulation were used, which had a sequencing
depth of above 1.40×. Sequence reads were aligned to the
Nipponbare reference and SNPs were then called, imputed in
regions of low coverage and filtered to give a total of 2,053,863
SNPs detected across the BAAP population (an average of 1 SNP
per 210 bp).

The average LD decayed across the entire rice genome
for these cultivars at 243 Kbp, but was not uniform across
chromosomes. The lowest per-chromosome LD decay was
observed on chromosome 9 (157 Kbp) and the largest on
chromosome 5 (499 Kbp) (Figure 1).

Analysis of population structure in 326 SNP markers across
the entire genome of 511 rice cultivars from which the BAAP
was selected revealed four distinct subpopulation groups, these

being an indica group, a japonica group and two aus groups
(Travis et al., 2015). Analysis of the population structure
using the same 326 SNPs for the 266 BAAP subset of the
511 cultivars revealed five distinct populations. The number
of population groups identified by fastSTRUCTURE using all
markers are shown in Supplementary Figure S2. The marginal
likelihood curve begins to plateau at K = 5 population subgroups
(Supplementary Figure S2), consistent with the results obtained
using STRUCTURE on the BAAP for 326 SNPs (Supplementary
Figure S1). Similarly, the number of population groups identified
by ADMIXTURE using CV (Cross-Validation) begins to plateau
at K = 5 population subgroups (Supplementary Figure S3).
Assuming there are five population subgroups, based on the
output of fastSTRUCTURE the 260 cultivars used to make the
SNP database fall into group 1 (21 cultivars including DJ 123),
group 2 (13 cultivars), group 3 (29 cultivars), group 4 (21 cultivars
including FR13A Kasalath and Rayada), group 5 (30 cultivars)
and admix (146 cultivars including BJ1, Black Gora, Dular and
N22) (Supplementary File S1 and Figure 2). Considered of note
is the observation that groups 1, 3, and 5 are predominantly
from Bangladesh (71%, 86%, and 90%, respectively) while groups
2 and 4 are predominantly from India (92% and 76%). Also
considered noteworthy is that of the 21 cultivars which have the
term “boro” in their name, 20 belong to group 3. All 20 are from

FIGURE 1 | LD decay by chromosome. LD plots for each chromosome and the mean LD for all 12 chromosomes. Insert is the distance (Kbp) where LD drops below
r2 of 0.2 for each chromosome.
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FIGURE 2 | Principle components and fastSTRUCTURE analysis of BAAP. (A) Biplot of the first two PCA axis of the 266 aus accessions of the BAAP using
2,053,863 SNPs color coded according to the classification of population groups of Travis et al. (2015) based on 326 SNPs where orange is “aus-1,” green is
“aus-2,” yellow is “aus-admix,” and gray is “admix.” (B) Same PCA biplot color coded according to K = 5 fastSTRUCTURE subgroups where group 1 is red, group 2
is yellow, group 3 is green, group 4 is blue, group 5 is purple, and accessions that do not fall into these groups are gray. (C) Distruct (Rosenberg, 2004) plot of
fastSTRUCTURE subpopulation membership coefficients with K = 5.

Bangladesh. The cultivar Boro Black is in group 4 and is from
India.

The first two axes of the PCA of 2,053.863 SNPs are
shown in Figure 2 and reveal a clear separation of the BAAP
cultivars into different population groups consistent with the
classification previously used by Travis et al. (2015) (Figure 2A)
and that revealed by fastSTRUCTURE (Figure 2B). The five
fastSTRUCTURE groups revealed here map onto those revealed
by Travis et al. (2015) as follows; groups 3 and 4 are Travis aus-1,
groups 2 and 5 are Travis aus-2 while group 1 was aus-admix
in Travis et al. (2015). The Distruct (Rosenberg, 2004) plot of
subpopulation membership coefficients with K = 5 is shown in
Figure 2C.

Field Screening
The panel was screened in Bangladesh at Mymensingh
in 2013 and 2014, as well as Madhupur in 2014, under
both CF (Continuously Flooded) and AWD (Alternate
Wetting and Drying) irrigation. A summary of the
population means for all traits measured is given in
Table 1.

The initial strategy was to have all members of the population
to initiate flowering within a 10-day window. However, when
grown in the field in Bangladesh, the initiation of flowering from
first to last cultivar was longer than this (Table 1), and in the most
extreme scenario (the AWD experiment in year 1), the flowering
initiation window was 34 days (see histogram presented in
Figure 3). Yet, the proportion of cultivars that initiated flowering

5 days either side of the mean for each experiment was between
83.2 and 94.4% of the cultivars.

Overall, grain yield, straw biomass and harvest index was
highest in Mymensingh 2013 and lowest in Mymensingh
2014. There was large variation between cultivars for all traits
measured. Two-way ANOVA conducted for each site separately
revealed strong effects of genotype, generally weaker effects of
AWD treatment and little genotype by treatment interactions
(Table 2). Means of each treatment and the correlations
between treatments for each site are presented in Supplementary
Figures S4 (grain mass), S5 (straw biomass), S6 (harvest index),
and S7 (flowering time). AWD had mostly positive impacts on
plant growth and partition traits. For grain mass, treatment
explained 1.8–11.9% of variation with AWD producing higher
grain mass. There was, however, no genotype by treatment
interaction. The impact of AWD was smaller on straw biomass
(not significant in Madhupur), but there was a genotype by
treatment interaction at two sites explaining approximately 6%
of the variation. The impact of AWD was stronger on harvest
index. Correlations between the same trait under AWD or CF
conditions were generally very strong (and highly significant),
with the correlation coefficient ranging from 0.68 to 0.79 for grain
mass, 0.73 to 0.86 for straw biomass, 0.46 to 0.59 for HI, 0.65–0.76
for FT (Supplementary Figures S4–S7). Correlations performed
on 191 cultivars for grain mass, straw biomass, and harvest index
between years and sites within the same treatment are presented
in Supplementary Figures S8–S10. For grain mass in all cases
the correlations were highly significant (r ranged from 0.485 to
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TABLE 1 | Descriptive statistics of the traits for the genotypes grown under each treatment.

Site Year Trait Treatment Mean SD Min Median Max

Mymensingh 2013 Grain mass (g) AWD 80.8 20.7 25.2 79.7 140.9

CF 60.5 17.6 22.7 59.2 120.2

Straw biomass (g) AWD 111.0 28.0 57.6 106.5 260.5

CF 100.8 24.5 53.3 97.9 199.2

Harvest index AWD 0.421 0.003 0.157 0.432 0.508

CF 0.373 0.003 0.048 0.210 0.477

Flowering time (d) AWD 101.3 3.9 96.0 100.0 130.0

CF 102.9 4.6 96.0 102.0 126.0

2014 Grain mass (g) AWD 46.6 16.1 10.8 44.5 108.0

CF 39.5 17.6 8.0 37.4 112.3

Straw biomass (g) AWD 79.1 27.0 26.0 72.8 167.8

CF 83.6 35.8 18.5 76.0 197.8

Harvest index AWD 0.370 0.053 0.185 0.374 0.518

CF 0.320 0.053 0.132 0.319 0.455

Flowering time (d) AWD 115.8 4.0 107.0 115.0 127.0

CF 116.8 3.7 110.0 117.0 129.0

Madhupur 2014 Grain mass (g) AWD 56.36 18.01 18.0 53.00 127.0

CF 50.28 17.81 14.5 47.63 117.8

Straw biomass (g) AWD 93.66 32.15 42.25 86.00 185.0

CF 92.35 33.02 30.75 83.00 213.8

Harvest index AWD 0.377 0.048 0.177 0.385 0.465

CF 0.352 0.048 0.203 0.354 0.484

Values are average per hill from six central hills within each replicate row of test cultivars (two plants per hill). Only data from the 266 aus cultivars are presented.

0.749; Supplementary Figure S8). When plotting the grain mass
produced for each cultivar against the AWD responsiveness ratio
(ratio of grain mass produced when grown under AWD vs. grain
mass produced when grown under CF), it can be observed that
the cultivars with the highest ratio (i.e., produce a much greater
grain mass under AWD compared to CF) are predominantly the
cultivars that produce less grain mass under CF (Figure 4). There
was, however, no correlation between sites for this responsiveness
to AWD ratio.

An import aspect of understanding how AWD impacts upon
different rice cultivars compared to CF, is to determine if these
responses are variable under different environments irrespective
of treatment (i.e., field sites). A three way ANOVA, which
included field site, revealed genotypes explaining the greatest
proportion of the variation in grain and straw biomass and
harvest index (Table 3) with site explaining the next highest
proportion of the variation and then treatment explaining less
variation. There was evidence of significant field site by treatment
(i.e., the impact that the treatments have is different in different
environments) and field site by genotype (i.e., cultivars respond
differently in different environments) interaction with the latter
explaining 7.6–9.5% of the variation. Only for straw biomass did
this analysis reveal genotype by treatment interaction explaining
2.1% of the variation.

Genome Wide Association Mapping of
Yield-Related Traits
A total of 2,720 SNPs were significantly associated with grain
yield in at least one of the six environments tested. Figure 5

presents the Manhattan plots while Supplementary File S2
provides a summary of every SNP where –log10(P) < 4 with
minor allele frequency and effect size, plus a graph for each
chromosome. A total of 32 loci were notable where there were
either multiple significant SNPs associated with one field in
at least one environment, or SNPs associated with multiple
fields. These loci were located; one on chromosome 5, two on

FIGURE 3 | Flowering time distribution. Frequency distribution of flowering
time in AWD Mymensingh 2013, showing the whole panel (black) and just the
266 aus cultivars (white).
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TABLE 2 | Statistical analysis of traits at each site.

Site Year Trait Grain mass Straw biomass Harvest index

Mymensingh 20131 Treatment 328 ∗∗∗ 65.8 ∗∗∗ 222.2 ∗∗∗

(11.9%) (2.0%) (9.4%)

Genotype 4.27 ∗∗∗ 7.16∗∗∗ 2.89 ∗∗∗

(34.2%) (49.5%) (26.7%)

Treatment × genotype NS NS NS

20142 Treatment 89.66 ∗∗∗ 10.9 ∗∗∗ 208.6 ∗∗∗

(2.6%) (0.3%) (8.4%)

Genotype 7.09 ∗∗∗ 12.9 ∗∗∗ 2.87 ∗∗∗

(49.7%) (64.2%) (26.8%)

Treatment × genotype NS 1.17 ∗ NS

(6.0%)

Madhupur 20143 Treatment 65.22 ∗∗∗ NS 97.16 ∗∗∗

(1.8%) (3.3%)

Genotype 8.95 ∗∗∗ 13.64 ∗∗∗ 5.03 ∗∗∗

(55.0%) (65.6%) (39.5%)

Treatment × genotype NS 1.18 ∗ 1.29 ∗∗

(5.9%) (10.1%)

Values reported are F-values from the ANOVA and the values in brackets is the percentage contribution of the factor to the observed variation. 1At Mymensingh in 2013 a
total of 221 genotypes were common across both treatments. 2At Mymensingh in 2014 a total of 232 genotypes were common across both treatments. 3At Madhupur
in 2014 a total of 226 genotypes were common across both treatments. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

chromosomes 2, 6, 8, 9, and 12, three on chromosomes 1 and
3, four on chromosomes 4 and 7 and five on chromosome
11 (Table 4). Nine of these putative QTLs were detected in
only one environment while 14 were detected in two. Only the
QTL around 2.2 Mbp on chromosome 1 was detected in all six
environments, while the QTLs detected around 3.45 Mbp on
chromosome 3, and in the center of chromosome 7 were detected
in five environments. It must be noted that there are two very
broad QTLs in the center of chromosome 7 spanning 8.76–11.90
Mbp and 12.30–14.61 Mbp that are reported here as two separate
QTLs detected in all environments except Mymensingh year 1
AWD. It may be these represent one very broad QTL.

A total of 8,399 SNPs were associated with straw biomass
in at least one of the six environments tested (Supplementary
Figure S11 and Supplementary File S3), revealing 59 notable loci
where there were multiple significant SNPs associated with the
trait in at least one environment. These loci were located: one on
chromosome 10, two on chromosomes 9, three on chromosomes
2, 5, and 12, four on chromosomes 6 and 8, five on chromosome
1, six on chromosome 3 and ten on both chromosomes 7 and 11
(Supplementary Table S1). Twelve of these QTLs were detected
in only one environment while 19 were detected in two, 11 were
detected in 3, 8 were detected in 4, 7 in 5 leaving 2 QTLs detected
in all six environments. These two ubiquitous QTLs were both
on chromosome 7 around 15 Mbp and 25.6 Mbp. As with yield,
it must be noted that there is a very broad region of QTL activity
from 9.35 to 16.93 Mbp where it is not clear how many QTLs are
present. Four are reported here, but it might be one very wide one.
Eighteen of the straw biomass QTLs detected here overlap with
QTLs for yield. Eight of the loci have been previously reported as
QTLs for straw biomass from Liu et al. (2006), Suji et al. (2012),
and Bhattarai and Subudhi (2018) (full details in Supplementary
Table S1).

A total of 1,853 SNPs were associated with harvest index
in at least one environment (Supplementary Figure S12 and
Supplementary File S4) revealing 35 notable loci. There were
nine loci detected on chromosome 11, four on chromosomes
1 and 9, three on chromosomes 2, 3, 6, and 12, two on
chromosomes 5 and 8, one on chromosome 10 and none on
chromosome 4. No loci were detected in all environments or
even in 5/6 but two were detected in four environments being
around 20.25 on chromosome 9 and 19.5 on chromosome 11.
Four of the harvest index QTLs detected are in the same place
as yield QTLs being at 2.2 Mbp on chromosome 1, 3.85 Mbp on
chromosome 7 and both 20.7 and 22.8 Mbp on chromosome 11
(Supplementary Table S2). Two of the QTLs detected here were
also detected using GWA by Guo et al. (2018), one was detected
as a QTL by Hittalmani et al. (2003), and one co-localizes with
the ABERRANT PANICLE ORGANIZATION 1 (APO1) gene
identified at 27.5 Mb on chromosome 6 by Terao et al. (2010)
(full details in Supplementary Table S2).

Genome Wide Association Mapping of
Flowering Time
Across the genome and over the four experiments where
flowering time was recorded, a total of 3,515 SNPs were
significantly associated with flowering time (Figure 6 and
Supplementary File S5). A total of 26 loci were detected that
either had a number of significant SNPs co-localized from a
single experiment or where SNPs from multiple experiments co-
localize (Table 5). Of the 26 loci highlighted, in 10 instances
significant SNPs were co-localized from two experiments and
in only a single instance were SNPs from three experiments
co-localized.

In addition to the identification of loci across the genome,
the identification of SNPs within LD of known candidate genes
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FIGURE 4 | Responsiveness to AWD. Relationship between grain mass in the
cultivars grown under CF conditions and the ratio of grain mass in the
cultivars grown in AWD:CF at the Mymensingh site year 1 (Top), Mymensingh
year 2 (Middle), and at Madhupur year 2 (Bottom). Points are the mean of
three or four replicates.

involved in flowering time in rice was investigated (Table 6).
A conservative estimate of genome wide LD of 200 Kbp was used.
Unlike the identification of QTLs for flowering time, where only
notable QTLs were reported (Table 5), all significant SNPs were
considered when identifying SNPS that were located near known

TABLE 3 | Three-way ANOVA of the traits for the cultivars common across all
three field sites (n = 191).

Trait

Factor/interaction Grain mass Straw biomass Harvest index

Field site (F) 820.45∗∗∗ 333.53∗∗∗ 261.60∗∗∗

(17.53%) (5.91%) (7.55%)

Treatment (T) 397.00∗∗∗ 6.84∗∗ 490.46∗∗∗

(4.24%) (0.06%) (7.12%)

Genotype (G) 13.49∗∗∗ 28.62∗∗∗ 6.74∗∗∗

(27.51%) (48.29%) (18.71%)

F × T 66.76∗∗∗ 33.60∗∗∗ 22.01∗∗∗

(1.45%) (0.62%) (0.65%)

F × G 1.87∗∗∗ 2.82∗∗∗ 1.38∗∗∗

(7.60%) (9.50%) (7.60%)

T × G NS 1.26∗ NS

(2.14%)

F × T × G NS NS NS

Values reported are F-values from the ANOVA and the values in brackets is
the percentage contribution of the factor to the observed variation. ∗p < 0.05;
∗∗p < 0.01; ∗∗∗p < 0.001.

(200 Kbp) flowering time genes. Significant SNPs were identified
within the estimated LD for a total of 8 previously identified genes
involved in flowering in rice (Table 6), with two of the genes (Hd5
and RCN) having significant SNPs from more than one screen
being within the candidate region.

Combining All QTLs
The fact that 115 loci were detected across all traits highlights
the genetic complexity of the traits under study. In order to
demonstrate a pattern is clearly observed, Table 7 presents a list
of loci that are notable because both grain mass and straw mass
QTLs coincide, while a summary of the all the QTLs detected
for the traits is presented in Figure 7. In order to identify QTLs
based on GWA results, SNPs were considered to be from the
same locus if they were within 250 Kbp of each other. While this
resulted mostly in small regions containing multiple “significant”
SNPs, often for multiple traits, there were nine regions where
this approach produced larger clusters which may reflect the
occurrence of either multiple underlying QTLs or low local LD
decay. These are marked as blue blocks in Figure 7. The two
blocks on chromosome 7 are particularly broad each being several
Mbp, suggesting they cannot represent conventional single QTLs.

Quantitative trait loci considered particularly noteworthy
are (i) around 2.3 Mbp on chromosome 1 yield QTLs were
detected in all environments, and harvest index in two of the
environments, (ii) between 3.0 and 3.5 Mbp on chromosome
3 where yield QTLs were detected in five environments and
biomass in four, (iii) a broad region on chromosome 7 centered
on about 15.0 Mbp where there are QTLs for yield and
biomass for, respectively, five and six environments, (iv) around
26 Mbp on chromosome 7 where there are biomass QTLs
in all environments and yield in three, and (v) around 10.3
on chromosome 11 where there are straw biomass QTLs in
five environments, yield in two and harvest index in two.
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FIGURE 5 | GWAS for grain yield. Manhattan and QQ plots from GWA mapping of grain yield in field experiments under AWD (Alternate Wetting and Drying) and CF
(Continuous Flooding) over year 1 and 2 at sites in Mymensingh (Mn1, Mn2) and year 2 in Madhupur (Md2), Bangladesh. A guide-line in blue is shown at
–log10(0.0001) = 4. Benjamini–Hochberg adjusted probabilities > 0.1 are highlighted in red. The diagonal blue line shown on the QQ plots represents 1:1 agreement
between expected probability, according to a null hypothesis, and the observed probability of SNP association.

There were three loci where there were multiple yield QTLs
which co-localized with flowering time suggesting a role for
the timing of flowering in determining yield: 41 Mbp on
chromosome 1, 22 Mbp on chromosome 6 and 29 Mbp on
chromosome 11. None of these loci are at known flowering time
genes.

DISCUSSION

The BAAP
The objective in creating the BAAP was to produce a population
with little population structure, good adaptation to the target

environment (i.e., was geographically adapted) and having
genetic variation for traits of interest. Structure analysis of
the BAAP population identified a number of subgroups (five
or more) within the aus used in this study. This is in
contrast to previous studies that identified two subgroups within
the aus subpopulation (Travis et al., 2015) and presumably
reflects the greater power to detect structure based on orders
of magnitude more makers. The population structure does
match, however, that detected in Travis et al. (2015) which
can clearly be seen comparing Figure 2A with Figure 2B.
Groups 3 and 4 reported here correspond to aus-1 reported
in Travis et al. (2015) while groups 2 and 5 correspond to
aus-2. Group 3 reported here seems particularly noteworthy since
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TABLE 4 | Notable association detected for yield.

Number of significant SNPs detected

Mn Year 1 Mn Year 2 Md Year 2

Chromosome Position (Mbp) AWD CF AWD CF AWD CF

1 2.17–2.43 1 71 4 4 5 5

1 18.65–18.67 1 1 11

1 41.47–41.86 4

2 20.00–20.19 1 84

2 24.48–24.51 3 12

3 3.46–3.47 3 1 7 3 10

3 5.88–5.90 48

3 15.39–15.43 40 1

4 0.13–0.42 6 3

4 1.89–2.05 2 6

4 19.37–19.51 27 1

4 23.63–24.42 4 425 3

5 2.34–2.45 12 1

6 22.4–23.04 1 8

6 30.84–30.85 8

7 3.85–3.86 34

7 8.76–11.90∗ 2 93 11 14 43

7 12.30–14.61∗ 1 44 2 18 8

7 25.63–25.79 42 44 1

8 4.23–4.87 9

8 11.08 3 2

9 6.94–7.34 688 1

9 14.42 6 1

10 10.16–10.34 248

10 21.97–22.22 4

11 5.25 15

11 10.34–10.38 1 3

11 20.59–20.83 3 19

11 27.70–27.80 1 9

11 28.76–28.99 1 2 4

12 4.76–5.13 1 241 1

12 24.07–24.19 95

∗Two regions on chromosome 7 are very broad, containing a continuum of significant SNPs.

it is predominantly Bangladesh cultivars and contains all but
one of the cultivars with the term “boro” in its name. Since
boro refers to the dry (winter) growing season in Bangladesh
(Travis et al., 2015), this suggests group 3 cultivars have
been selected for suitability to irrigated boro production in
Bangladesh.

The average LD decay within the population was 243 Kbp
which is similar to the approximate 200 Kbp reported for aus
in Zhao et al. (2011). There was more than twofold variation in
average LD decay between chromosomes being below 200 Kbp
for chromosomes 3, 8, 9, 11, and 12 and 400 Kbp or above for
chromosomes 5, 6, and 7.

While this association population has reduced genetic
diversity compared global rice association populations [e.g., the
RDP1 (Zhao et al., 2011)], it has increased genetic diversity with
a single subgroup, and wide phenotypic variation for the traits

measured in this study. The fold range for grain mass ranged from
5.3 to 14.0 across the six experiments, while the fold range for
straw biomass was 3.7 – 10.7 across the experiments (Table 1).
Not only was a high degree of variability in the phenotypes
observed, the contribution of genotype to the observed variation
was high (Tables 2, 3).

One of the aims in the generation of this population
was to have a reduced flowering window. During flowering
initiation and grain filling environmental factors could have
an impact on grain production and grain quality. Therefore
if the window of flowering initiation is limited to short
period, the cultivars are more likely to be undergoing similar
environmental responses during this key developmental stage.
A majority (83.2–94.4%) of the cultivars flowered within a
10-day window. This general coincidence of flowering between
accessions is better than other association populations, for
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FIGURE 6 | GWAS for flowering time. Manhattan plots from GWA mapping flowering time (for details, see Figure 6).

example the RDP1 which displayed a 20-day window for 90%
of the population to flower when grown in Faridpur, Bangladesh
or 40 days when grown in Arkansas, United States (Zhao et al.,
2011).

Impact of AWD
As previously identified in a subset of these cultivars (Norton
et al., 2017a,b), in this study AWD increased grain mass.
For the whole population AWD increased grain mass in
Mymensingh 2013, Mymensingh 2014, and Madhupur 2014 by
32.2%, 18.0%, and 12.1%, respectively (Table 1). The highest
yielding cultivars under AWD were BJ 1 (the cultivar with
the highest yield in both Mymensingh year 1 and Madhupur,
and the third highest yield in Mymensingh year 2), and
Jagle Boro (the cultivar with the highest yield in Mymensingh
year 2 and fifth highest yield in Mymensingh year 2). Other
notable high yielding cultivars under AWD include Kasalath and
Pachodi 427.

A recent meta-analysis on the impacts of AWD on yield has
been conducted (Carrijo et al., 2017), the overall findings being
that AWD caused a reduction in yields, by on average 5.4%.
However, when the AWD treatments were broken down into the
degree of water treatment severity, methods that implemented a
mild AWD (when soil water potential was ≥20 kPa or if field
water level did not drop below 15 cm from the soils surface)

the meta-analysis concluded that there was no negative impacts
on yield (Carrijo et al., 2017). In this study (which by using
the criteria of Carrijo et al. (2017) would be described as a
mild AWD treatment) we observed that grain yield is increased
under mild AWD in agreement with other studies (Yang et al.,
2009, 2017; Zhang et al., 2009; Wang et al., 2014). The reason
for this increase in yield is yet unknown. Novel to this study
is the wide range of cultivars that underwent the same AWD
treatment, however the lack of strong genotype by treatment
interactions for the yield traits revealed by ANOVA suggests that
there is limited breeding potential for adaption to AWD and
that cultivars generally increased in yield when exposed to the
AWD treatment. On the other hand, it is notable that there is
evidence of genotype by treatment interaction for straw biomass
which might merit more study, and it should also be recognized
that the experimental design with only four replicates is not
well suited to detect anything but strong genotype by treatment
interaction.

In contrast to the above, correlation analysis might offer a
different interpretation of the importance of genotype by AWD
interaction. The average increases in grain mass observed in
this study are some of the highest increases in production
reported for AWD. A potential reason for this could be the
genetic background of these cultivars. In many studies the
cultivars selected for field trails are those that are already high
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TABLE 5 | Notable association detected for flowering time in Mymensingh.

Number of significant SNPs detected

Year 1 Year 2

Chromosome Position (Mbp) AWD CF AWD CF

1 1.167–1.683 1729

1 7.848–8.069 458

1 27.894–28.870 79 1

1 32.853–32.921 31

1 41.307–41.318 1 11

3 1.524–1.630 113

3 2.145–2.196 4 6

3 7.911–8.072 24

3 12.732–12.811 9

3 15.757–15.904 19

3 21.738–22.010 40

4 27.788–27.881 105 1

5 0.992–1.026 53 2

5 8.143–8.510 1 90

6 22.064–22.067 3 2

6 25.996–26.061 37

7 6.690–6.718 16

7 24.770–24.789 11

8 5.211–5.229 12

8 19.427–19.616 10 1

9 19.521–19.683 28 4

10 2.900–3.780 84

11 2.393–2.510 32 4

11 28.607–28.866 2 3

12 1.879–2.346 185

12 25.663–25.739 11 1 2

yielding cultivars and therefore potential management methods
to increase yield have limited impact, while in this study the
cultivars selected are not generally high yield cultivars. This
means that the AWD treatment could have caused the cultivars
to get closer to their potential yield. This is supported by the
observation of an increase in grain mass of 9.0% and 9.4%

(Mymensingh 2013 and 2014, respectively) for the high yield
Boro cultivar, BRRI dhan28, grown in the same experiment
(Norton et al., 2017a) compared to the average yield increase
for the population of 32.2% and 18.0% (Mymensingh 2013 and
2014, respectively) when grown under AWD. It was observed
that some of the highest increases in percentage yield (higher
in AWD than CF) were for the cultivars that had some of the
lowest grain yield in CF (Figure 3). The cultivars from the aus
subpopulation of rice are a diverse set of cultivars and have
been shown to have tolerances to a wide range of environmental
scenarios including submergence tolerance (Xu et al., 2006),
phosphorus starvation tolerance (Gamuyao et al., 2012), drought
resistance (Henry et al., 2011), and heat tolerance (Jagadish et al.,
2008). It is possible that they are less well adapted to flooding
than the improved cultivars generally used in the Boro season.
Many of these landraces might be upland cultivars although
this information is not available. Hence, the fact that there is
a substantial increase in grain mass for some cultivars under
AWD, may not be that AWD causes an increase in yield in
these cultivars, but rather that CF causes a reduction in the
cultivars’ yield potential. Thus, there is evidence of cultivar by
genotype interaction, but since this indicates that the highest
yielders in AWD are those that already yield well in CF, the
results still do not suggest breeding for AWD is a priority for
research.

Volante et al. (2017) have used GWA mapping to study a
locally adapted rice panel grown under continuous flooding and
“low water” treatment which was a form of AWD. Differences
between their study and this are in the subpopulation used
(temperate japonica vs. aus), the degree of potential water stress
experience by the plants (−30 kPa at 20 cm soil depth vs. −15 cm
water depth), the number of SNPs available (31 K vs. 2 M),
and the traits measured (multiple physiological, morphological
and yield components vs. yield and biomass). It is important to
note that only flowering time can be directly compared across
experiments and especially that in their study all traits were
negatively affected by the water treatment indicating it was on
the severe side of recommended treatments for AWD. Unlike
the current study, about half of the QTLs detected by Volante
et al. (2017) appeared to be treatment specific. This may reflect

TABLE 6 | Co-localization of significant SNPs with genes and loci believed to be involved in flowering time in rice.

Flowering time gene/loci Trait LOC1 Ch Mbp2 number of SNPs within LD3

OsCRY2a CF year 2 Os02g41550 2 24.92 2

OsMADS50b AWD year 2 Os03g03100 3 1.30 6

OsDof12c AWD year 1 Os03g07360 3 3.74 18

Hd16d AWD year 2 Os03g57940 3 33.00 1

Hd1e CF year 1 Os06g19444 6 11.07 2

Ehd3f AWD year 1 Os08g01420 8 0.27 1

Hd5/DTH8/Ghd8/LHD1/Ds9g AWD year 1 Os08g07740 8 4.33 1

Hd5/DTH8/Ghd8/LHD1/Ds9g CF year 2 Os08g07740 8 4.33 1

RCN1h AWD year 1 Os11g05470 11 2.45 32

RCN1h AWD year 2 Os11g05470 11 2.45 4

1Locus name based on MSU 7.0. 2 Indicates the start of the gene in MSU 7.0. 3LD is estimated to be 200 Kbp for each gene. aHirose et al., 2006; bLee et al., 2004; cLi
et al., 2009; dHori et al., 2013; eYano et al., 2000; fMatsubara et al., 2011; gWei et al., 2010; hNakagawa et al., 2002.
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TABLE 7 | Notable QTLs detected for grain mass and straw biomass that co-localize where A = AWD treatment and C = CF treatment, Mn1 = Mymensingh 2013,
Mn2 = Mymensingh 2013, and Md2 = Madhupur 2014.

Loci Grain mass Straw biomass

Ch Mbp Mn1 Mn2 Md2 Mn1 Mn2 Md2

2 20 A C C A, C A, C

2 24.5 A A A, C A C

3 3.0–3.5 A A, C A, C A, C A, C

4 24 C A, C A A, C

6 22.7 A, C C A, C

7 14.8 C A, C A, C A, C A, C A, C

7 25.7 A, C C A, C A, C A, C

11 10.3 C C C A, C A, C

11 28.8 C A, C C A, C

12 5.0 C A, C C A, C

FIGURE 7 | Summary of loci. Map of all notable loci detected for flowering time and yield-related traits. Each trait has a one or two letter identifier according to the
central legend. Each site is numbered and the number is color coded to reflect the number of SNPs detected in that site. For example, at the very top of
chromosome 1 is indicated B 1,4,5,6 where three numbers are orange and the 4 is red. This means in this locus between 11 and 49 significant SNPs were detected
in Mymensingh year 1 AWD, and both AWD and CF in Madhupur in year 2 while there were more than 50 SNPs detected in Mymensingh year 2 CF, all for straw
biomass. In eight locations there is a blue box indicating the spread of SNPs over a large area making it difficult to discern if it is one broad QTL or multiple close loci.

the relatively harsher water stress applied (in current study there
was no negative impact of AWD). One QTL was detected in
both studies, for days to maturity in Volante et al. (2017) on

chromosome 4 at 27 Mbp detected in low water treatment only
which was detected strongly in the current study under AWD
in year 2 with just 1 SNP detected in the CF for that year.
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It is possible this is a gene affecting flowering under water
stress.

QTLs and Candidate Genes
In this study, a large number of QTLs were detected for all the
measured traits. Of particular interest are the QTLs for grain
mass and straw biomass that are stable, i.e., detected in multiple
experiments and conditions (Figure 7 and Table 7). There are
a total of 10 loci, where grain mass and/or straw biomass QTLS
appear to be co-localized on numerous occasions, many of these
QTLs are detected across years and sites. This indicates that these
are stable QTLs and ideal targets for plant breeding. Some of the
most interesting loci are those at 2.3 Mbp on chromosome 1,
the middle of chromosome 7, and at both 10.3 and 28.8 Mbp on
chromosome 11.

The genetic basis of yield has been reviewed by Liang et al.
(2016b), where they report 39 QTLs either cloned or tagged
which effect yield in rice. Because of the availability of this
review, comparisons with the QTLs detected for the BAAP were
made. Only three loci detected here are within 250 Kbp of these
genes/QTLs, being Gnp4 at 19.6 Mbp on chromosome 4, both
Ghd7 at 9.1 and qSPP7 at 10.0 Mbp on chromosome 7, and
Ghd8 at 4.3 Mbp on chromosome 8. A few loci are within 500
Kbp of genes/QTLs, being D88 at 5.4 Mbp on chromosome 3,
GS5 at 3.4 Mbp on chromosome 5, and both qGL7.2 at 24.6–9
and DEP2 at 25.2 Mbp on chromosome 7. These known genes
only account for a small proportion of the identified QTLs for
grain mass in this study, indicating that there a large number
of novel QTLs detected within this population for grain mass.
A grain yield QTL detected by Liang et al. (2016a) at 22.6 Mbp
on chromosome 6 co-localized with the QTL detected here in
Madhupur 2014.

For traits straw biomass and harvest index, relatively few
reports of QTL mapping, especially using GWAS are available,
and few genes are known. None the less, the co-localization
of a small number of the QTLs detected here with previous
QTLs were found (Supplementary Tables S1, S2). One gene
affecting harvest index, APO1 identified by Terao et al. (2010),
localizes with a weak QTL detected here only in AWD in Mn
year 2.

While the flowering time was deliberately constrained due to
the strategic development of the BAAP, there was still variation
that allowed for successful GWA mapping. Since a number
of the genes that regulate flowering time have been identified,
this trait can be used to assess the effectiveness of the GWA
mapping in this population. The GWA mapping of flowering
time highlighted a large number of loci that control flowering
time. Some of these loci were only detected in a single experiment,
while a number were detected in more than one study and
a single loci was detected in three of the four environments.
As flowering time was measured on only a single replicate
in each environment and there are only two experiments in
which it was measured (Mymensingh year 1 and 2), it is not
possible at this stage to state if any of the loci detected in
the AWD experiments are specific to one treatment. Further
investigation is needed to support this hypothesis. However, there
is some indication that loci could be AWD specific [e.g., see

comparison with Volante et al. (2017) study above at about 27
Mbp on chromosome 4 and an association around 2.5 Mbp on
chromosome 11 which co-localized with RCN, a gene believed
to be involved in flowering in rice (Nakagawa et al., 2002)].
The gene network that regulates flowering in rice has been
studied in detail (Lee and An, 2015) with a number of the
key genes cloned [e.g., Hd1 (Yano et al., 2000), Hd3 (Monna
et al., 2002), and DTH8 (Wei et al., 2010)]. For more examples,
see Lee and An (2015). In this study, eight genomic regions
where significant SNPs (across both treatments and year) were
detected have previously been identified as regions containing
genes known to be involved in flowering time (Table 6). While
a number of associations co-localize with known genes, a large
number of associations do not, and further study of these is
needed to ascertain their function. There are a number of
reasons that might explain why known flowering time genes
were not detected as flowering time QTLs in this population.
Most important, the narrow flowering time window imposed on
the population will mean that the different genotypes are likely
to share similar alleles for the major flowering time genes in
rice.

CONCLUSION

In conclusion, the BAAP population is an excellent tool for the
determination of yield traits, showing a good range of phenotypic
variation and the detection of highly reproducible QTLs. It
should prove valuable for other traits where a narrow window
of flowering is important such as grain quality traits. There are
several QTLs which should be targets for further study due to
the detection of the loci in multiple experiments over years and
sites.
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FIGURE S1 | Evanno plot of Delta-K from STRUCTURE analysis using 326 SNP
markers on the 266 aus accessions of the BAAP.

FIGURE S2 | fastSTRUCTURE analysis on the BAAP using 2,053,863 SNPs.

FIGURE S3 | ADMIXTURE analysis of the BAAP using 2,053,863 SNPs.

FIGURE S4 | Grain mass at Mymensingh in 2013 (a), 2014 (c), and Madhupur
2014 (e). Correlation between AWD and CF at Mymensingh in 2013 (b), 2014 (d),
and Madhupur 2014 (f). Dashed lines in panels (b,d,f) are the regression lines for
the traits. Solid line in panels (b,d,f) are the 1:1 lines. Points are the mean of three
or four replicates.

FIGURE S5 | Straw biomass at Mymensingh in 2013 (a), 2014 (c), and Madhupur
2014 (e). Correlation between AWD and CF at Mymensingh in 2013 (b), 2014 (d),
and Madhupur 2014 (f). Dashed lines in panels (b,d,f) are the regression lines for
the traits. Solid line in panels (b,d,f) are the 1:1 lines. Points are the mean of three
or four replicates.

FIGURE S6 | Harvest index at Mymensingh in 2013 (a), 2014 (c), and Madhupur
2014 (e). Correlation between AWD and CF at Mymensingh in 2013 (b), 2014 (d),
and Madhupur 2014 (f). Dashed lines in panels (b,d,f) are the regression lines for
the traits. Solid line in panels (b,d,f) are the 1:1 lines. Points are the mean of three
or four replicates.

FIGURE S7 | Flowering time index at Mymensingh in 2013 (a), and 2014 (c).
Correlation between AWD and CF at Mymensingh in 2013 (b), and 2014 (d).
Dashed lines in panels (b,d) are the regression lines for the traits. Solid line in
panels (b,d) are the 1:1 lines. Correlation analysis across the different sites for
flowering time across both year under the same treatment [AWD (e) and CF (f)].

Correlation analysis performed on 191 accessions that were represented (n ≥ 3)
at all field sites under both treatments, the solid line in these graphs is the
regression line. All correlation are significant (P < 0.001). Points are the mean of
three or four replicates.

FIGURE S8 | Correlation analysis across the different sites for grain mass.
Correlation analysis performed on 191 accessions that were represented (n ≥ 3)
at all field sites under both treatments. All correlation are significant (P < 0.001).
Points are the mean of three or four replicates.

FIGURE S9 | Correlation analysis across the different sites for straw biomass.
Correlation analysis performed on 191 accessions that were represented (n ≥ 3)
at all field sites under both treatments. All correlation are significant (P < 0.001).
Points are the mean of three or four replicates.

FIGURE S10 | Correlation analysis across the different sites for harvest index.
Correlation analysis performed on 191 accessions that were represented (n ≥ 3)
at all field sites under both treatments. All correlation are significant (P < 0.001).
Points are the mean of three or four replicates.

FIGURE S11 | Manhattan plots from GWAS straw biomass (for details, see
Figure 6).

FIGURE S12 | Manhattan plots from GWAS harvest index (for details, see
Figure 6).

TABLE S1 | Notable association detected for Straw Biomass.

TABLE S2 | Notable association detected for Harvest Index.

FILE S1 | The BAAP accession details, sequence metadata, subgroup attribution,
and phenotype data.

FILE S2 | SNPs associated with grain yield including chromosome graphs.

FILE S3 | SNPs associated with straw biomass including chromosome graphs.

FILE S4 | SNPs associated with harvest index including chromosome graphs.

FILE S5 | SNPs associated with flowering time including chromosome graphs.
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