
fpls-09-01251 August 24, 2018 Time: 10:31 # 1

ORIGINAL RESEARCH
published: 27 August 2018

doi: 10.3389/fpls.2018.01251

Edited by:
Sergio Roiloa,

University of A Coruña, Spain

Reviewed by:
Eric Von Wettberg,

University of Vermont, United States
Conchita Alonso,

Estación Biológica de Doñana (EBD),
Spain

*Correspondence:
Sonia E. Sultan

sesultan@wesleyan.edu

Specialty section:
This article was submitted to

Evolutionary and Population Genetics,
a section of the journal

Frontiers in Plant Science

Received: 19 June 2018
Accepted: 06 August 2018
Published: 27 August 2018

Citation:
Baker BH, Berg LJ and Sultan SE

(2018) Context-Dependent
Developmental Effects of Parental

Shade Versus Sun Are Mediated by
DNA Methylation.

Front. Plant Sci. 9:1251.
doi: 10.3389/fpls.2018.01251

Context-Dependent Developmental
Effects of Parental Shade Versus Sun
Are Mediated by DNA Methylation
Brennan H. Baker, Lars J. Berg and Sonia E. Sultan*

Biology Department, Wesleyan University, Middletown, CT, United States

Parental environment influences progeny development in numerous plant and animal
systems. Such inherited environmental effects may alter offspring phenotypes in a
consistent way, for instance when resource-deprived parents produce low quality
offspring due to reduced maternal provisioning. However, because development of
individual organisms is guided by both inherited and immediate environmental cues,
parental conditions may have different effects depending on progeny environment. Such
context-dependent transgenerational plasticity suggests a mechanism of environmental
inheritance that can precisely interact with immediate response pathways, such as
epigenetic modification. We show that parental light environment (shade versus sun)
resulted in context-dependent effects on seedling development in a common annual
plant, and that these effects were mediated by DNA methylation. We grew replicate
parents of five highly inbred Polygonum persicaria genotypes in glasshouse shade
versus sun and, in a fully factorial design, measured ecologically important traits of
their isogenic seedling offspring in both environments. Compared to the offspring
of sun-grown parents, the offspring of shade-grown parents produced leaves with
greater mean and specific leaf area, and had higher total leaf area and biomass.
These shade-adaptive effects of parental shade were pronounced and highly significant
for seedlings growing in shade, but slight and generally non-significant for seedlings
growing in sun. Based on both regression and covariate analysis, inherited effects
of parental shade were not mediated by changes to seed provisioning. To test for a
role of DNA methylation, we exposed replicate offspring of isogenic shaded and fully
insolated parents to either the demethylating agent zebularine or to control conditions
during germination, then raised them in simulated growth chamber shade. Partial
demethylation of progeny DNA had no phenotypic effect on offspring of shaded parents,
but caused offspring of sun-grown parents to develop as if their parents had been
shaded, with larger leaves and greater total canopy area and biomass. These results
contribute to the increasing body of evidence that DNA methylation can mediate
transgenerational environmental effects, and show that such effects may contribute to
nuanced developmental interactions between parental and immediate environments.

Keywords: ecological epigenetics, DNA methylation, non-genetic inheritance, maternal effects, phenotypic
plasticity, transgenerational plasticity, shade tolerance, seed provisioning
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INTRODUCTION

A fundamental question in understanding phenotypic variation
is how organisms integrate environmental cues with inherited
biological information to guide development. This information
includes more than genes alone, because organisms also
inherit environmentally induced developmental factors from
their parents, such as altered provisioning of resources to
the embryo and epigenetic modifications of genetic material
(reviewed by Roach and Wulff, 1987; Herman and Sultan, 2011;
Bonduriansky et al., 2012; English et al., 2015). A great deal
remains to be determined about both the nature of these inherited
developmental effects and their transmission mechanisms.

Initial studies showed that, depending on the plant
species, environmentally stressed maternal individuals may
either increase or decrease the quantity of nutritive tissues
allocated to developing seeds (Haig and Westoby, 1988;
Schmitt et al., 1992; Sultan, 1996; Donohue and Schmitt, 1998;
Fenner and Thompson, 2005). Such alterations in the amount
of provisioning are expected to result in consistently expressed
effects on development. For instance, increased provisioning
may cause a “silver spoon” effect, endowing progeny with overall
growth benefits regardless of their environmental conditions
(Grafen, 1988; Uller et al., 2013). In other cases, however, the
effects of parental environment on offspring phenotype differ
depending on the conditions that offspring themselves encounter
(e.g., Miller et al., 2012; Salinas and Munch, 2012). Such context-
dependent effects suggest a more targeted form of inherited
information, such as epigenetic modifications to specific DNA
sites or cytoplasmically transmitted signaling molecules, that
can alter gene expression pathways (Jablonka and Raz, 2009;
Danchin et al., 2011; Feil and Fraga, 2012; e.g., Scoville et al.,
2011) and hence modulate the phenotypic responses of progeny
to their own environments (Gapp et al., 2014).

As noted, studies of parental environmental effects on progeny
phenotypes have focused largely on the amount of maternal
provisioning, which can be easily estimated in most plants by
weighing individual seed units or early germinants (Wulff and
Bazzaz, 1992; Sultan, 1996; Zas et al., 2013). While changes
to cytoplasmic factors are more difficult to test, methods for
studying certain epigenetic modifications – in particular DNA
methylation – are now well established (Bossdorf et al., 2008;
Verhoeven et al., 2016; Richards et al., 2017). In both plants and
animals, the addition or removal of methyl groups from cytosine
nucleotides at specific loci may be induced by environmental
conditions and the altered DNA subsequently transmitted to
offspring (e.g., Verhoeven et al., 2010; Dowen et al., 2012;
Pastor et al., 2013; Yu et al., 2013; Zheng et al., 2013; Skinner,
2014). Because such DNA methylation state changes can alter
patterns of gene activity (reviewed by Law and Jacobsen, 2010;
He et al., 2011; Jones, 2012; Schubeler, 2015), they may result
in substantial phenotypic consequences (e.g., Zhang et al.,
2013; Cortijo et al., 2014; Akkerman et al., 2016; Herman
and Sultan, 2016). The role of DNA methylation in mediating
inherited environmental effects can be tested by using chemical
methyltransferase inhibitors such as 5-azacytidine (Jones, 1985)
or zebularine (Cheng et al., 2003) to experimentally reduce

methylation (e.g., Bossdorf et al., 2010; Boyko et al., 2010; Herrera
et al., 2012; Verhoeven and van Gurp, 2012; Alvarado et al., 2015;
Akkerman et al., 2016; Herman and Sultan, 2016). Zebularine
causes transient, genome-wide demethylation at levels that can
be dosage-regulated (Baubec et al., 2009). It is thus preferable
to 5-azacytidine, which has broadly toxic effects and can be
biased to specific loci (Cheng et al., 2003; Ghoshal and Bai, 2007;
Hagemann et al., 2011).

We investigated inherited developmental effects of shade, a
key environmental variable. Because understory shade versus
sun is an ecologically critical aspect of plant habitats (Valladares
et al., 2016 and references therein), developmental responses of
individuals to these alternative environments are an exceptionally
well-studied aspect of plasticity both within and across
generations (Schlichting and Smith, 2002; Schmitt et al., 2003;
Valladares and Niinemets, 2008; Sultan, 2010; Fitter and Hay,
2012; Marin et al., 2018). Plant plasticity to understory shade
is distinct from the well-studied adaptive “shade avoidance”
syndrome, which is a suite of phenotypic adjustments in response
to neighbor shade characterized by reduced branching, slower
leaf development, and greater stem and petiole elongation
(Dudley and Schmitt, 1996; Smith and Whitelam, 1997). Unlike
the shade cast by a neighbor’s shoot, understory shade cannot be
easily evaded via plastic avoidance responses such as extending
petioles to reposition leaves. Instead, plants generally respond to
understory shade by altering phenotypes in ways that maximize
light interception under reduced photon flux density, for instance
by allocating proportionally more biomass to leaf tissue and
producing broader, thinner leaves (Sultan and Bazzaz, 1993;
Evans and Poorter, 2001; Navas and Garnier, 2002; Niinemets
et al., 2003; Herr-Turoff and Zedler, 2007; Valladares and
Niinemets, 2008; Matesanz et al., 2012; Marin et al., 2018).

In addition to these immediate phenotypic adjustments,
individual plants may also respond to shaded versus open
conditions by modifying their offspring in ways that affect
seedling development (e.g., Schmitt et al., 1992; Sultan, 1996;
Galloway and Etterson, 2007). As with most cases of inherited
environmental effects or transgenerational plasticity (Herman
and Sultan, 2011; Salinas et al., 2013; Akkerman et al., 2016;
Bell and Stein, 2017), the transmission mechanisms for effects of
parental shade versus sun remain unclear (McIntyre and Strauss,
2014). Shade habitats are often characterized by specialist taxa
with constitutively large seeds, which provide their seedlings
with sufficient initial energy reserves to quickly produce a
large shoot that affords tolerance of understory conditions
(Leishman and Westoby, 1994; Fenner and Thompson, 2005;
Leck et al., 2008; Muller-Landau, 2010). If transgenerational
effects of shade were based on a similar provisioning mechanism,
then, in taxa that inhabit diverse light conditions, shaded
parent individuals would be predicted to plastically increase the
amount of seed nutritive tissue. Such provisioning effects would
likely be consistently expressed, enhancing growth of seedling
offspring regardless of their environmental conditions (Haig
and Westoby, 1988). However, in several studies, the effects of
parental light environment on such functional progeny traits as
leaf size and specific area were found to be expressed differently
depending on offspring conditions (Galloway and Etterson, 2009;
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McIntyre and Strauss, 2014), pointing to inherited developmental
modifications that more precisely alter progeny development. To
date, however, tests have not been conducted in any plant system
to determine whether DNA methylation or other epigenetic
modifications play a role in mediating the inherited effects of
parental shade versus sun.

Here we present the results of a glasshouse experiment
testing for inherited effects of parental shade versus sun on
progeny developing in alternative (sun and shade) conditions,
together with experimental data on the roles of provisioning and
DNA methylation in mediating these effects. Our experimental
material consisted of naturally evolved (field-based) genotypes
of the well-studied plasticity model system Polygonum persicaria,
a colonizing annual of diverse temperate habitats. Because this
species occurs in open, moderately shaded, and patchy light
environments (Sultan et al., 1998), variation in parental light
conditions may represent an important source of phenotypic
variation among and within natural populations. We addressed
the following questions: (i) How does parental shade versus sun
influence offspring development with respect to ecologically
important leaf traits and total seedling growth? (ii) Does parental
light environment differently affect seedling development
occurring in shade versus in sun? and (iii) Do seed provisioning
and/or DNA methylation play a role in mediating inherited
effects of shade versus sun on progeny phenotypes?

MATERIALS AND METHODS

Study System
Polygonum persicaria is a common herbaceous species
introduced from Eurasia to North America by European
settlers (Mitchell and Dean, 1978; Staniforth and Cavers,
1979). Experimental genotypes were sampled from three
ecologically distinct introduced-range populations: an open,
moist pasture (full sun; MHF population, Northfield, MA,
United States), a shaded horse paddock (moderate canopy
shade; TP population, Dover, MA, United States), and an
organic farm (full sun with neighbor shade; NAT population,
Natick, MA, United States, site details in Sultan et al., 1998).
Field-collected achenes (1-seeded propagules) were inbred under
uniform favorable glasshouse conditions for four generations to
produce highly inbred (selfed full-sib) genetic lines (hereafter
“genotypes”). Because P. persicaria has a mixed breeding system
with a high degree of natural self-fertilization (Mulligan and
Findlay, 1970), such intensively inbred lines can be generated
for field-collected genotypes without inbreeding depression
(Herman and Sultan, 2016). This allows for a fully factorial
design in which replicate plants of each inbred genotype
are grown in contrasting parental environments, to produce
genetically uniform offspring that differ only in parental
environment (Sultan, 1996; Herman et al., 2012; Herman and
Sultan, 2016).

Parental Generation
Fifth-generation inbred achenes of five genotypes (2 MHF, 2
TP, and 1 NAT; see above) were stratified in distilled water

at 4◦C for 7 weeks, sown into flats of moist vermiculite, and
randomly positioned on a glasshouse bench (6/1/12). At the first
true leaf stage (4–6 days after emergence; 6/13/12), seedlings
of each genotype were individually transplanted into 1 L clay
pots filled with a 1:1:1 mix of sterilized topsoil:horticultural
sand:fritted clay (TurfaceTM, Profile Products, Buffalo Grove,
IL, United States) pre-moistened with 250 mL water. Five days
after transplant, two replicate seedlings of each genotype were
randomly assigned to one of two parental glasshouse treatments.
In the Parental Sun treatment, plants received 100% of incident
light (c. 1300 µmol m−2 s−1 midday photosynthetically active
radiation or PAR; Baker, unpublished data), with a Red:Far Red
spectral ratio of c. 1.0 (as measured with an SKR R:FR meter;
Skye Instruments, Llandrindod Wells, United Kingdom). The
Parental Shade treatment consisted of a metal frame covered by
80% neutral-density shade cloth (PAK Unlimited Inc., Cornelia,
GA United States) overlaid with strips of green plastic filter
(#138, Lee Filters, Burbank, CA United States), providing plants
with c. 260 µmol m−2 s−1 midday PAR and a R:FR ratio of c.
0.7, which agrees with measured R: FR ratios under the mixed
canopy shade under which annual Polygonums occur (Griffith
and Sultan, 2005). To simulate natural understory, equidistant
holes 3.5 cm in diameter were cut in the shade cloth so that
each Parental Shade plant received a daily 15 min sunfleck
(Matesanz et al., 2014). Parental plants in both treatments were
kept at field capacity moisture and grown for 9 weeks, with bench
positions re-randomized weekly. Self-fertilized, full-sib achenes
produced by the 10 experimental parents (5 genotypes × 2
parental treatments) were harvested, air dried, and stored at 4◦C.

Offspring Development
Fifty – eighty achenes from each experimental parent were
stratified and germinated as described in the section “Parental
Generation.” Individual seedlings were transplanted at the first
true leaf stage (5/29/15 – 6/1/15) into 200 mL clay pots
of 1:1:1 topsoil:sand:fritted clay mix (see section “Parental
Generation”). Ten replicate offspring of each experimental
parent were randomly assigned to Offspring Sun and Offspring
Shade treatments (identical to Parental Sun and Parental Shade
treatments; details above), for a total experimental sample of
N = 200 seedlings (5 genotypes × 2 parental treatments × 2
offspring treatments × 10 replicate seedlings per offspring
treatment). Seedlings received 75% sun and were well-watered for
1 day to ensure recovery from transplant shock before they were
randomly positioned within treatments and kept at field capacity
moisture throughout the experiment.

For each seedling, stem elongation (cm from base to apex)
was measured after 6, 12, and 19 days in treatment and leaf
number was counted after 8, 14, and 19 days in treatment.
Individual offspring were harvested on day 20 (6/18/15–6/21/15).
For each seedling, the two most recent fully expanded leaves were
scanned on a LI-3100 leaf area meter (LICOR Inc., Lincoln, NE,
United States), oven-dried (at 100◦C for 1 h and then at 65◦C for
≥48 h), and weighed to estimate specific leaf area (SLA: cm2 leaf
surface area per g leaf tissue) and mean single-leaf area (cm2).
Remaining leaves were separated from stems, and these tissues
were oven-dried (at 100◦C for 1 h and then at 65◦C for ≥48 h)
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and weighed. Total leaf area for each seedling was estimated by
multiplying its SLA by its total leaf biomass (including the mass
of the two leaves sampled for SLA). Root systems were manually
washed, dried at 65◦C for ≥48 h, and weighed. Total biomass
(g) was calculated as [total leaf biomass + stem biomass + root
biomass], and % biomass allocation to each tissue was calculated
as [total leaf, stem, or root biomass/total biomass × 100%]. The
final sample lacked 14 seedlings due to insufficient germination or
abnormal development; in addition 1 seedling was missing data
for root mass, 1 seedling was missing data for total leaf area, and 3
outliers were excluded from the analysis (likely due to treatment
error): final sample sizes were N = 185 for number of true leaves
and stem elongation, and N = 184 for all other traits.

Demethylation Experiment
Twenty-four – forty-eight achenes from each experimental
parent (genotype × parental treatment combination, see section
“Study System”) were individually weighed on a Cahn C-33
microbalance (Cahn Instruments, Cerritos, CA, United States)
and stratified in distilled water at 4◦C for 5 weeks. The quantity of
seed provisioning (mg) for each seedling was estimated as initial
air-dried achene mass minus air-dried pericarp mass (retrieved
after germination).

Chemical demethylation was imposed during germination.
Achenes were sown in Petri plates (9/14/16) on solidified 0.8%
agar containing either 0 or 45 µM zebularine (hereafter Control
and Demethylation germination treatments, respectively). This
dose of zebularine had no adverse developmental effects on
P. persicaria seedlings in a prior study (Herman and Sultan,
2016), and is similar to a dosage used by Baubec et al. (2009)
that reduced global 5-methyldeoxycytidine levels by 15–18% in
Medicago truncatula and Arabidopsis thaliana. Petri plates were
positioned randomly on a glasshouse bench and re-randomized
daily. Each seedling was transplanted 6 days after germinating
so that all plants in the Demethylation germination treatment
received the same dose of zebularine.

Eight replicate Control and Demethylation seedling offspring
of each experimental parent were transplanted (9/23/16–10/4/16)
into individual 200 mL clay pots as described in the section
“Parental Generation” and placed in a randomized complete
block design in an E-7 dual Conviron growth chamber
(Controlled Environments Ltd., Winnipeg, MB, Canada) at a
25◦C:18◦C, 14:10 h day:night cycle. To simulate a uniform
understory treatment, the growth chamber was modified with
a metal internal frame covered by 30% neutral-density shade
cloth (PAK Unlimited Inc., Cornelia, GA United States) lined
with green plastic filter (see section “Parental Generation”) with
regularly spaced 1 cm circulation holes; experimental seedlings
received c. 220 µmol m−2 s−1 PAR (Baker, unpublished data).
Seedlings were kept at field capacity moisture and re-randomized
weekly within blocks. The total experimental sample was N = 160
seedlings (5 genotypes × 2 parental treatments × 2 germination
treatments× 8 replicate offspring per germination treatment).

Seedlings were grown for 25 days before being harvested
(10/18/16–10/29/16). At harvest, an overhead photograph was
taken of the entire canopy of each seedling and digitized
(EasyLeafAreaV2 software; Easlon and Bloom, 2014) to estimate

canopy area, a functional trait that accounts for leaf overlap. As
described in the section “Offspring Development,” a subsample
of two leaves was used to estimate mean single leaf area before
plant tissues were oven dried and weighed to calculate total
biomass. Eight seedlings were removed from the final sample due
to experimental error or abnormal growth, resulting in a final
sample size of N = 152.

Data Analysis
All statistical analyses were performed with JMP Pro 13 (SAS
Institute, Cary, NC, United States) and graphing was performed
with R version 3.3.3 (R Core Team, 2017).

Offspring Development
Analysis of Variance (ANOVA) with type III sums of squares
was used to analyze the (fixed) effects on each offspring trait of
parental treatment (PT, Parental Shade vs. Parental Sun), offspring
treatment (OT, Offspring Shade vs. Offspring Sun), genotype,
and all two-way and three-way interactions (see Herman et al.,
2012 for a similar analysis). Genotype was treated as a fixed
effect because the genotypes in this study do not represent a
random sample of the species’ genetic diversity; rather, the sample
was drawn from specific populations in order to encompass the
full range of P. persicaria light habitats (Sultan et al., 1998, see
Herman et al., 2012 for a previous analysis of this genotype
sample). To resolve the specific phenotypic effects of parental
treatment and genotype within each offspring treatment, separate
ANOVAs were performed analyzing the effects of parental
treatment, genotype, and their interaction on seedling phenotype
in each offspring treatment. In the full analysis, total biomass
was Box-Cox transformed to meet ANOVA assumptions, but
transformation was not required for the total biomass ANOVA
within each offspring treatment, or for any other trait. For each
trait, the mean percent change due to Parental Shade compared
with Parental Sun (pooled across genotypes) was calculated in
each offspring treatment using the equation: 100% × (trait
meanparentalshade–trait meanparentalsun)/trait meanparentalsun.

MANOVA was used to test the effects of parental treatment
(Parental Shade vs. Parental Sun), offspring treatment (Offspring
Shade vs. Offspring Sun), genotype, and all two-way and
three-way interactions on % biomass allocation to roots,
leaves, and stems. To investigate the significant PT × OT
interaction effects, separate ANOVA were performed in each
offspring treatment analyzing the effects of parental treatment,
genotype, and their interaction on % stem, % leaf, and % root
allocation. Multivariate repeated-measures ANOVA (Scheiner
and Gurevitch, 2001) was used to analyze main and interaction
effects of PT, OT, and genotype on stem elongation and leaf
number over time. Following a significant sphericity chi-square
test, multivariate Wilks’ Lambda was used to assess significance
(Cole and Grizzle, 1966).

Demethylation Experiment
ANOVA was used to analyze the (fixed) effects on seedling
traits of parental treatment (PT, Parental Shade vs. Parental
Sun), germination treatment (GT, Control vs. Demethylation),
genotype, all two-way and three-way interactions, and spatial
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block. To resolve the distinct effects of Demethylation on
offspring of shade and of sun parents, separate ANOVA were
performed testing the effects of germination treatment, genotype,
and their interaction on seedling phenotype in each parental
treatment group. For each trait, the mean percent change
(pooled across genotypes) due to Demethylation vs. Control
germination treatments was calculated in each parental treatment
group using the equation: 100 × (trait meanDemethylation–trait
meanControl)/trait meanControl. Student’s t-test was used to test
the effect of parental treatment on seed provisioning. For the full
model, seed provisioning was also tested as a covariate for total
biomass but was excluded from the final ANOVA due to non-
significance (p = 0.1673). The effect of seed provisioning on total
biomass was also tested by regression, both for the full sample
and within each Parental Treatment × Germination Treatment
group.

RESULTS

Parental Shade Had Strong,
Treatment-Specific Effects on Offspring
Traits
All seedlings grown in Offspring Shade had higher SLA, but
lower total biomass, total leaf area, and mean single-leaf area
compared to seedlings grown in Offspring Sun (Figure 1 and
Table 1, offspring treatment p < 0.0001 for all four traits). On
average, seedling offspring of Parental Shade plants had greater
mean values for these four growth traits than offspring of Parental
Sun plants (Figure 1 and Table 1, effect of parental treatment,
p ≤ 0.0152 for all traits). For all four traits, these average effects
of Parental Shade versus Parental Sun were greater in magnitude
than those of genotype (cf. F-values, Table 1). However, for total
biomass, mean single-leaf area, and SLA, the effect of Parental
Shade varied significantly depending on the offspring growth
treatment (Table 1, PT × OT interaction effects p ≤ 0.0452). In
the Offspring Sun treatment, Parental Shade resulted in small,
non-significant increases in all four traits compared to Parental
Sun (Figures 1A–D). For seedlings growing in shade, effects of
Parental Shade compared with Parental Sun were dramatic: in the
Offspring Shade treatment, progeny of Shade parents produced
44% more total biomass, 60% greater total leaf area, 51% greater
mean single-leaf area, and 13% higher SLA than progeny of Sun
parents (Figure 1; effect of parental treatment from ANOVA
within Offspring Shade treatment p ≤ 0.0001, 0.0001, 0.0001,
and 0.0188, respectively). These parent-environment effects on
total biomass, mean single-leaf area, and total leaf area were
greater than the largest genotype effects (across treatments) for
these traits (parental treatment and genotype effect F-values
within Offspring Shade, respectively = 29.9 vs. 5.9 for total
biomass; 21.0 vs. 5.8 for single leaf area; 5.7 vs. 1.9 for SLA;
and 25.8 vs. 5.6 for total leaf area). For instance, the largest
genotype effect on total leaf area was a 36% difference between
MHF1 and TP2, compared to the 60% greater total leaf area
conferred by Parental Shade on average, across genotypes. The
genotype × parental treatment interaction effect was significant

for total leaf area and mean single-leaf area (Table 1, p = 0.0292
and 0.0536, respectively), and the genotype × offspring treatment
interaction effect was significant or marginally significant for all
traits (Table 1, 0.0283 ≤ p ≤ 0.0879). The three-way interaction
(OT× PT× Gen) was non-significant for all four growth traits.

With respect to tissue allocation, all seedlings grown in
Offspring Shade allocated more biomass to leaf and stem tissues,
and less biomass to root tissues, than seedlings in Offspring
Sun (Figure 2; effect of offspring treatment based on MANOVA
Wilks’ Lambda p < 0.0001). The parental treatment effect on
biomass allocation varied with offspring treatment (PT × OT
interaction effect, Wilks’ Lambda p ≤ 0.0055): Parental Shade
resulted in increased biomass allocation to leaf tissue and lower
allocation to stem tissue for progeny growing in Offspring
Shade, but did not change leaf allocation, and increased stem
allocation, for progeny growing in sun (based on ANOVA for
each trait within treatments, Figures 2A,B). Effects of parental
treatment on root allocation within each offspring treatment
were non-significant (Figure 2C). As a result of these progeny
treatment-specific effects, the main effect of parental treatment
on proportional biomass allocation was non-significant (effect of
parental treatment, Wilks’ Lambda p = 0.8647).

Progeny of Parental Shade plants produced more leaves
than progeny of Parental Sun plants in both Offspring Sun and
Offspring Shade treatments, an effect that increased over time
(Figure 3A; effect of parental treatment × time, multivariate
repeated-measures ANOVA Wilks’ Lambda p = 0.0136),
especially for progeny growing in shade (3-way interaction of
parental treatment × offspring treatment × time, Wilks’ Lambda
p = 0.0218; Figure 3A). The positive but less pronounced effect
of Parental Shade on stem elongation also increased over time
in both seedling environments (Figure 3B, effect of parental
treatment × time based on multivariate repeated-measures
ANOVA, Wilks’ Lambda p = 0.0003).

Partial DNA Demethylation Caused
Progeny of Sun Plants to Develop
Similarly to Shade Progeny
As expected, the effects of Parental Shade on control-germinated
seedlings grown in growth chamber shade in the Demethylation
experiment were consistent with parental effects on seedling
development in the Offspring Shade glasshouse treatment
(described above), where transgenerational effects of parental
environment were most strongly expressed: control progeny of
Parental Shade plants produced greater total biomass, canopy
area, and mean single-leaf area than offspring of Sun parents.
The phenotypic impact of Parental Shade versus Sun was
substantially altered by partial demethylation with zebularine
(Figures 4A–C); for all three traits, the demethylation treatment
had different effects on Sun and Shade progeny (Table 2,
PT × GT interaction effects; these contrasting effects explain
the lack of significant PT and GT main effects). For seedling
progeny of Shade parents, demethylation slightly (and non-
significantly) reduced biomass, canopy area, and leaf size (5–9%
mean trait reductions; Figures 4A–C). However, demethylation
significantly and substantially altered phenotypic expression
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FIGURE 1 | Means ± SE shown (N = 184) for (A) total biomass, (B) total leaf area, (C) mean single leaf area, and (D) SLA for offspring of Parental Shade (dashed
green line) and Parental Sun (solid yellow line) plants that were grown either in Offspring Shade or Offspring Sun treatments. Results of significant tests for the effect
of parental shade versus sun in each offspring treatment are shown, based on separate within-treatment ANOVAs (†p < 0.10, ∗p < 0.05, ∗∗∗p < 0.001, n.s.
p > 0.1, see section “Materials and Methods” for details).

TABLE 1 | Results of significance tests for effects of shade versus sun parental treatment (PT), shade versus sun offspring treatment (OT), and genotype (Gen) on
seedling traits based on a three-way ANOVA (N = 184; details in Materials and Methods).

Source of
variation

Total biomass (mg)
R2

adj = 0.92
Total leaf area (cm2)

R2
adj = 0.58

Mean single leaf area (cm2)
R2

adj = 0.42
SLA (g/cm2) R2

adj = 0.83

F p-value F p-value F p-value F p-value

Parental treatment 24.0282 <0.0001∗∗∗ 11.1616 0.0010∗∗ 13.3534 0.0003∗∗∗ 6.0195 0.0152∗

Offspring treatment 2177.4669 <0.0001∗∗∗ 222.6994 <0.0001∗∗∗ 87.7163 <0.0001∗∗∗ 867.184 <0.0001∗∗∗

Genotype 3.705 0.0065∗∗ 3.3402 0.0117∗ 6.3299 <0.0001∗∗∗ 1.9913 0.0982†

PT × OT 4.0714 0.0452∗ 0.3937 0.5312 4.9554 0.0274∗ 5.4526 0.0208∗

Gen × PT 1.5589 0.1877 2.7662 0.0292∗ 2.3824 0.0536† 0.67 0.6137

Gen × OT 2.5469 0.0414∗ 3.5605 0.0082∗∗ 2.7876 0.0283∗ 2.0638 0.0879†

Significant p-values are shown in bold (†p <0.10, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001). The three-way interaction (offspring treatment × parental treatment × genotype)
was non-significant for all traits but was included in the model.
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FIGURE 2 | Means ± SE shown (N = 184) for (A) % leaf, (B) % stem, and (C)
% root biomass allocation for offspring of Parental Shade (dashed green line)
and Parental Sun (solid yellow line) plants that were grown either in Offspring
Shade or Offspring Sun treatments. Results of significant tests for the effect of
parental shade versus sun in each offspring treatment are shown, based on
separate within-treatment ANOVAs (†p < 0.10, ∗p < 0.05, n.s. p > 0.1, see
section “Materials and Methods” for details).

in progeny of Sun parents, resulting in seedlings with 25%
greater total biomass, 22% increased canopy area, and 13%
larger leaves than Control-germinated sun-plant progeny (effect
of Control vs. Demethylation germination treatment within
Parental Sun treatment, p = 0.0042 for total biomass, p = 0.0448
for canopy area, and p = 0.0091 for mean single-leaf area,
based on separate ANOVA within each parental treatment). As

a result, demethylated progeny of Sun parents (Figures 4A–
C, red triangles in Parental Sun Treatment) developed very
similarly to Control progeny of Shade parents (Figures 4A–C,
black squares in Parental Shade Treatment). Although genotypes
differed significantly on average for all traits (main effect of
genotype, Table 2), 2- and 3-way interaction effects of genotype
with parental treatment and germination treatment were non-
significant.

Seed Provisioning Did Not Mediate the
Growth Effects of Parental Shade vs.
Parental Sun
Achenes produced by Shade parent plants had 12% lower
seed provisioning on average than achenes of Sun parents
(Student’s t-test for effect of Parental Shade vs. Parental Sun
p = 0.0002; N = 152). Despite this lower seed provisioning,
Parental Shade offspring produced greater total biomass and
larger leaves than Parental Sun offspring (see previous section).
Based on a regression analysis, there was no significant (positive
or negative) relationship between seed provisioning and seedling
total biomass (Figure 5, R2

adj = 0.0154, p = 0.0687, N = 152).
Linear regressions calculated separately for each of the 4 parental
treatments × germination treatment seedling groups were also
non-significant (R2

adj ≤ 0.07 in all cases, p > 0.05 in all cases)
and explained c. 7% of the variation or less within each group.

DISCUSSION

Parental Shade Resulted in Specific
Alterations to Offspring Phenotypes That
Were Functionally Appropriate for
Growth in Shade
In isogenic seedlings differing only in parental environment,
parental shade versus sun caused specific developmental
modifications to offspring: increased allocation to leaf tissues,
more rapid shoot development (stem elongation and leaf
production), and larger, thinner leaves, resulting in greater total
leaf area and seedling biomass. Earlier work on P. persicaria
also showed specific, but somewhat different, developmental
effects of parental shade immediately after germination: after
96 h of growth in a common controlled environment, seedling
offspring of shaded parents had produced similar biomass but
30% shorter roots than offspring of full-sun parents, indicating
increased proportional allocation to shoot growth during initial
development (Sultan, 1996). These data add developmental
insights to transgenerational field studies showing that parental
light conditions may influence seedling growth and survival in
herbaceous species (Galloway and Etterson, 2007; McIntyre and
Strauss, 2014).

Increases to light acquisition traits such as leaf biomass
allocation, leaf size, and SLA are well known immediate
plastic responses to understory shade (Bradshaw, 1965; Bazzaz,
1996; Fitter and Hay, 2012; Sultan, 2015). These allocational,
morphological, and structural adjustments are well known
to offset the negative growth effects of reduced photon
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FIGURE 3 | Means ± SE shown (N = 185) for (A) leaf production and (B) stem elongation over 3 weeks growth for offspring of Parental Shade (dashed green line)
and Parental Sun (solid yellow line) plants that were grown either in Offspring Shade or Offspring Sun treatments.

flux density by increasing photosynthetic surface area (Sultan
and Bazzaz, 1993; Evans and Poorter, 2001; Navas and
Garnier, 2002; Niinemets et al., 2003; Herr-Turoff and Zedler,
2007; Marin et al., 2018; additional references in Valladares and
Niinemets, 2008). To our knowledge, the data we report here
show for the first time that similar adjustments to these
key functional traits can also occur as a result of inherited
effects of shade experienced by parent plants. In a growing
number of plant and animal studies, parent individuals in
stressful conditions have been found to produce offspring
with specific phenotypic alterations that provide functional
adaptation if progeny encounter those same stresses (adaptive
transgenerational plasticity; e.g., predation, Agrawal et al., 1999,
light-limited field microsite, Galloway and Etterson, 2007,
drought stress, Sultan et al., 2009, simulated leaf herbivory,
Scoville et al., 2011, elevated water temperature, Salinas and
Munch, 2012, high dissolved CO2 concentration, Miller et al.,
2012; additional examples and references in Mousseau and
Fox, 1998; Herman and Sultan, 2011; Salinas et al., 2013).
A subsequent experimental study of these P. persicaria genotypes
confirmed that, for progeny that were grown to maturity in

either extreme understory or neighbor shade, inherited effects of
parental shade were associated with significantly higher lifetime
fitness (total reproductive output) compared with parental sun
(Baker et al., unpublished).

Developmental Effects of Parental Shade
Versus Sun Varied Depending on
Offspring Environment
Although these developmental modifications were qualitatively
similar across sun and shade offspring treatments, their degree
of expression varied significantly: inherited effects of parental
shade versus sun on trait expression were far more pronounced
in seedling offspring that were themselves growing in shade.
Such context-dependent expression of parental environment
effects has been documented in a number of plant and animal
taxa (e.g., Schmitt et al., 1992; Galloway, 1995; Hereford and
Moriuchi, 2005; Miller et al., 2012; Leverett et al., 2016). In
Sheepshead minnow fish (Cyprinodon variegatus), for example,
the effects of parental temperature treatment were expressed
differently depending on the temperature experienced by juvenile
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FIGURE 4 | Means ± SE shown (N = 152) for (A) total biomass, (B) mean
single leaf area, and (C) canopy area for offspring of Parental Shade and
Parental Sun plants that were exposed to either 0 µM (Control, solid black
lines) or 45 µM zebularine (Demethylation, dashed red lines) during
germination. Results of significant tests for the effect of Control versus
Demethylation in each parental treatment group are shown, based on
separate within-treatment ANOVAs (∗p < 0.05, ∗∗p < 0.01, n.s. p > 0.1, see
section “Materials and Methods” for details).

offspring (Salinas and Munch, 2012). In plants, such context-
specific expression of inherited environmental influences are
widespread; the effects of parental drought (Sultan et al.,
2009; González et al., 2017), shade (Galloway and Etterson, 2009;
McIntyre and Strauss, 2014), nutrient availability (Latzel et al.,
2010, 2014), CO2 concentration (Lau et al., 2008), salinity (Van
Zandt and Mopper, 2004; Vu et al., 2015; Groot et al., 2016;
Moriuchi et al., 2016), and temperature (Whittle et al., 2009;
Zhang et al., 2012) have all been shown to be expressed differently
in alternative offspring environments.

Context-dependent parental effects are captured statistically
by significant parent environment × offspring environment
interaction terms as sources of phenotypic variation. Such
complex patterns of expression arise from the various ways
that within- and trans-generational environmental influences are
integrated by developing organisms (Leimar and McNamara,
2015; Sultan, 2015; Auge et al., 2017). In some cases, favorable
immediate conditions in offspring environments may mask or
overcome negative transgenerational effects of parental stress.
For instance, parental nutrient stress in Plantago lanceolata
resulted in delayed flowering for progeny in nutrient-poor soil,
but this negative developmental effect was not observed when
progeny were grown in nutrient-rich soil (Latzel et al., 2014).
Conversely, resource-limited progeny environments can mask
positive parental effects on growth: for instance, parental sun
resulted in higher fitness than parental shade when Claytonia
perfoliata offspring were grown in full-sun, but not when
progeny developed in shade, where reproductive output was low
regardless of parental light conditions (McIntyre and Strauss,
2014).

In the present case, the more pronounced expression
of parental shade effects in offspring that were developing
in shade indicates an adaptively integrated response to a
particular combination of like inherited factors and immediate
cues. Similarly, drought-stressed P. persicaria parents produced
offspring with an enhanced root extension rate that was further
increased when these progeny developed in dry rather than
moist soil (Sultan et al., 2009). Investigating the possible
selective evolution of this kind of integrated response system
is a considerable challenge that researchers are just beginning
to approach (Herman et al., 2014; Leimar and McNamara,
2015; McNamara et al., 2016; Sultan, 2016). Such investigations
require further information about environmental correlation
patterns across generations (Marshall and Uller, 2007; Uller,
2008; Herman et al., 2014), and about other potential sources
of variation in the distribution and impact of transgenerational
effects, such as differential expression among the progeny
of a given parent. For instance, species with complex shoot
or inflorescence architectures may evolve position-dependent
parental effects on offspring phenotypes. In the closely related
annual P. hydropiper, which produces achenes at both the
axial base and the tip of its flowering spikes, parental shade
resulted in shade-adaptive seedling development (faster leaf
production and stem extension as well as greater total biomass)
in terminal achenes but not in those produced in axillary
positions (Lundgren and Sultan, 2005). Such position-dependent
expression of parental effects may either provide bet-hedging for

Frontiers in Plant Science | www.frontiersin.org 9 August 2018 | Volume 9 | Article 1251

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01251 August 24, 2018 Time: 10:31 # 10

Baker et al. Developmental Effects of Parental Shade

TABLE 2 | Results of significance tests for effects of shade versus sun parental treatment (PT), control versus demethylation germination treatment (GT), and genotype
on seedling traits based on a three-way ANOVA (N = 152; details in Materials and Methods).

Source of variation Total biomass (mg) R2
adj = 0.74 Mean single leaf area (cm2) R2

adj = 0.76 Canopy area (cm2) R2
adj = 0.76

F p-value F p-value F p-value

Parental treatment 3.1868 0.0767† 0.00865 0.9261 1.4398 0.2325

Germination treatment 5.0495 0.0264∗ 1.31143 0.2543 3.2114 0.0756†

PT × GT 3.9503 0.0490∗ 3.19571 0.0763† 4.8668 0.0292∗

Genotype 53.439 <0.0001∗∗∗ 83.934 <0.0001∗∗∗ 81.1713 <0.0001∗∗∗

Significant p-values are shown in bold (†p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001). All interactions with genotype were non-significant (but were included in the model).

uncertain progeny conditions, or allow for alternative phenotypes
when progeny are likely to have different dispersal distances
from the maternal plant and hence different probabilities of
encountering similar microsites (see Donohue and Schmitt,
1998).

Inherited Developmental Effects of
Parental Shade Versus Sun Were Not
Mediated by Seed Provisioning
Depending on the species, parent plants in light-limited
environments may either increase (Jenner, 1979; Peet and
Kramer, 1980) or decrease (Schmitt et al., 1992) the mass
of individual seeds, a direct proxy for the amount of
endosperm or other nutritive tissues provided to offspring
that is often strongly and positively correlated with seedling
growth (Roach and Wulff, 1987; Haig and Westoby, 1988,
i.e., “silver spoon” sensu Grafen, 1988; Uller et al., 2013).
In the present study, the progeny of shaded P. persicaria
parents had slightly lower seed mass on average (after removing
the outer pericarp), yet this reduced provisioning was not
associated with lower seedling biomass as would be expected
in a simple “silver spoon” model for transgenerational effects.

FIGURE 5 | Total biomass of each (day 20) seedling as a function of its initial
seed provisioning (R2

adj = 0.0154 n.s., N = 152; details in section “Materials
and Methods”).

Instead, contrary to expectation, the offspring of shaded
parents produced greater total biomass on average than
offspring of full-sun parents, and significantly so for offspring
growing in shade. Seed provisioning explained only a very
small proportion of variation in seedling biomass, and we
found no significant relationship between provisioning and
biomass either overall, or within each parent environment-
offspring treatment group. Similarly, in an earlier study of
P. persicaria, isogenic parent plants that were drought-stressed
rather than amply watered produced progeny with very
different seedling phenotypes, yet seed provisioning (which
was similar for both sets of progeny) had no significant
effect on variation in either developmental traits or biomass
(Herman and Sultan, 2016).

Changes to seed size induced by stressful parental conditions
(e.g., Stanton, 1984; Marshall, 1986) have generally been
considered the primary mechanism of transgenerational effects
on seedling development (Roach and Wulff, 1987; Donohue
and Schmitt, 1998; Fenner and Thompson, 2005; while they are
not seedling traits per se, effects on dormancy and germination
have also been intensively studied. However, these result largely
from direct changes to maternal [seed coat and fruit] tissues;
Penfield and MacGregor, 2017). Results for Polygonum suggest
that this view be re-examined, since quantity of seed provisions
alone may be a less robust predictor of offspring phenotypes
than previously believed. To confirm this predictive relationship
and infer causation, genetically uniform mother plants must
be grown in contrasting conditions and their seeds weighed
individually, so that the effect of any resulting seed mass
differences on growth traits can be tested using covariate
analysis (e.g., Agrawal, 2002; Hereford and Moriuchi, 2005;
Herman et al., 2012). When researchers have taken this rigorous
approach, results have not always confirmed a major role for
provisioning in mediating inherited environmental effects. Using
this approach to test transgenerational effects of parental nutrient
conditions, for instance, seed provisioning was found to account
for most (Stratton, 1989), some (Wulff, 1986; Schmid and
Dolt, 1994; Hereford and Moriuchi, 2005; Zas et al., 2013),
or none (Wulff and Bazzaz, 1992) of the resulting variation
in progeny phenotypes for herbaceous taxa. A second well-
studied case is elevated parental CO2 concentration, which
is well known to result in both increased seed size and
progeny growth modifications (Jablonski et al., 2002). A rigorous
study by Lau et al. (2008) found that, although maternal
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CO2 concentration strongly affected offspring traits in three
different species, there was no evidence that these effects
were mediated by seed mass. As in studies of both parental
shade versus sun and parental drought versus moist soil in
Polygonum, the lack of provisioning effects in these cases,
despite substantial changes to progeny development, points to an
alternative mechanism for mediating inherited effects of parental
environment.

The quantity of seed provisioning is only one of several
possible factors whereby parental environment may influence
progeny phenotypes. Indeed, recent studies of transgenerational
effects have revealed a surprisingly diverse set of biological
inheritance mechanisms (Day and Bonduriansky, 2011; English
et al., 2015). For instance, along with changes to the
quantity of seed provisioning, parental stresses may induce
modifications to the quality or composition of seed constituents,
including changes in protein content (Parrish and Bazzaz, 1985;
Donohue, 2009), hormone concentration (Jha et al., 2010), and
stored seed transcripts (Vu et al., 2015). Such changes to
inherited signaling molecules may result in specific alterations
of progeny development and environmental response pathways,
providing a plausible mechanism for adaptively integrated
transgenerational effects. Although we found no evidence that
changes in seed mass mediate the effects of parental shade
versus sun on Polygonum offspring, additional studies are
needed to determine whether changes to seed constituents
involved in regulatory pathways might play a role in this
system. Note that changes in the quantity and compositional
quality of seed provisioning need not be mutually exclusive;
progeny development may be influenced by several types of
environmentally induced heritable factors acting cumulatively or
interactively (Herman and Sultan, 2011).

DNA Methylation Changes Play a Role in
Mediating the Parental Effects of Shade
Versus Sun
Transgenerational effects on progeny may also be mediated
by environmentally induced, heritable epigenetic modifications
such as changes to methylation state, histone modifications,
or non-coding RNAs (Jablonka and Raz, 2009; Sultan, 2015).
Because these modifications affect gene activity and hence
developmental pathways, they are plausible mediators of context-
dependent expression of parental effects. Although other modes
of epigenetic transmission may be involved as well (Bonduriansky
and Day, 2009; Akkerman et al., 2016), DNA methylation is
increasingly viewed as a likely transmission mechanism for
transgenerational effects of parental conditions (Kappeler and
Meaney, 2010; Herman et al., 2014; Colicchio et al., 2015). In
plants, changes in DNA methylation states are known to mediate
the effects of several types of environmental stress on progeny
phenotypes, e.g., salinity (Boyko et al., 2010), nitrogen deficiency
(Kou et al., 2011), drought (Alsdurf et al., 2015; Herman and
Sultan, 2016), and herbivory (Akkerman et al., 2016) (additional
examples in Bossdorf et al., 2008; Bonduriansky and Day, 2009;
Verhoeven et al., 2010, 2016; Herman and Sultan, 2011; Holeski
et al., 2012; Richards et al., 2017).

Our experimental demethylation test confirmed that DNA
methylation states are involved in mediating transgenerational
effects of parental shade versus sun in Polygonum. However, the
direction of the mediating state change was unexpected. In the
few other available studies, chemical demethylation removed the
adaptive effects of parental stresses on progeny development,
including salt stress in Arabidopsis thaliana (Boyko et al., 2010),
drought in P. persicaria (Herman and Sultan, 2016), and
simulated herbivory in Mimulus guttatus (Akkerman et al., 2016).
In these cases, parental stress apparently leads to stress-adapted
progeny via induced addition of methyl groups, such that
knocking down methylation levels removes the adaptive effect.
In this case, by contrast, shade-adaptive progeny phenotypes
evidently result from a removal of methyl groups that is induced
by parental shade: chemically demethylated progeny of sun-
grown parents developed the same shade-adaptive features as
the progeny of shaded parents, but when progeny of shaded
Polygonum parents were demethylated, their development was
unaltered. To our knowledge, these are the first experimental
data showing that adaptive developmental effects of parental
stress on progeny can be affected by demethylation rather than
addition of methyl groups. These results for parental shade,
together with those of Herman and Sultan (2016) for parental
drought, show that, even within a given system – here, the
same genotypes within a species – adaptive developmental
effects of parental stresses on progeny may be established by
either methylation or demethylation [i.e., since methylation
generally reduces transcriptional activity (Jones, 2012) by
either down- or up-regulating relevant components of response
pathways].

While these results confirm a role for DNA methylation
change in the inheritance of parental shade effects, further
molecular work is needed to determine precisely how these effects
are transmitted to progeny. Unlike in mammals, where DNA
methylation is mostly reset during embryogenesis, methylation
states are meiotically stable in plants (Kakutani et al., 1999; Becker
et al., 2011; Schmitz et al., 2011). Accordingly, it is possible
that shade-induced methylation state changes at loci involved in
plastic shade responses may be maintained through meiosis and
directly transmitted to offspring. Alternatively, DNA methylation
patterns may be reconstructed during embryogenesis (Bouyer
et al., 2017) or in developing progeny (Vu et al., 2015) by
inherited regulatory molecules (such as hormones, proteins,
or non-coding RNAs) that can direct DNA methylation and
demethylation (Bonduriansky and Day, 2009; Mahfouz, 2010;
Boyko and Kovalchuk, 2011; Zhang and Zhu, 2011; Holeski
et al., 2012; Duncan et al., 2014; Matzke et al., 2015). It
is also not known whether shade-induced methylation state
changes are targeted to specific loci. In this study, genome-wide
partial demethylation by zebularine mimicked the parental effects
of understory shade on progeny phenotypes, suggesting that
parental shade effects may be mediated by similarly non-specific
demethylation. Such genome-wide demethylation may result
from the loss of methylation marks across cell division (Duncan
et al., 2014), for instance due to a shortage of available methyl
groups or to reduced activity of DNA methyltransferases (Zhang
and Zhu, 2012), perhaps initiated by a metabolic feedback.
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Although data are not available with respect to shade,
other environmental conditions are known to alter these
epigenetic regulators (e.g., in Arabidopsis, Dowen et al.,
2012; reviewed by Meyer, 2015). Alternatively, shade may
induce targeted methylation changes, if certain DNA
loci are more sensitive than others to changed levels
of methyltransferases or signaling molecules. Methylation
changes may also interact with changes in the amount
or quality of seed provisions (Herman and Sultan, 2011).
Assessing the precise roles and relative impact of these
inheritance mechanisms is a substantial experimental challenge
(Donohue, 2009).

Although it is well established that both biotic and
abiotic stresses may induce DNA methylation changes at
specific loci (Kovar et al., 1997; Chinnusamy and Zhu, 2009;
Dowen et al., 2012) and that these changes may be inherited
by descendent generations (Verhoeven et al., 2010; Kou
et al., 2011; Zheng et al., 2013), few if any published cases
document that these inherited epigenetic changes actually
result in tolerance to the inducing stress (Meyer, 2015).
Conversely, some studies convincingly link specific epigenetic
state changes to adaptive effects, but without demonstrating
their stress-induction or heritable transmission (e.g., Xie
et al., 2015). Resolving the entire causal pathway, from
stress induction, to precise epigenetic changes and their
transmission, to phenotypic effects and functional consequences,
is a demanding task indeed. More broadly, understanding
the mechanisms, dynamics, and adaptive importance of
transgenerational effects in plant populations will require
not only improved genomic tools for epigenetic studies in
non-model species (Richards et al., 2017), but collaborative
investigations that draw on molecular, developmental, and
ecological expertise.
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