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TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING CELL FACTORS (T),
members of a plant-specific gene family, play significant roles during plant growth and
development, as well as in response to environmental stress. However, knowledge
about this family in moso bamboo (Phyllostachys edulis) is limited. Therefore, in
this study, the first genome-wide identification, classification, characterization, and
expression pattern analysis of the TCP transcription factor family in moso bamboo
was performed. Sixteen TCP members were identified from the moso bamboo genome
using a BLASTP algorithm-based method and verified using the Pfam database. Based
on a multiple-sequence alignment, the members were divided into two subfamilies,
and members of the same family shared highly conserved motif structures. Subcellular
localization and transactivation activity analyses of four selected genes revealed that
they were nuclear localized and had self-activation activities. Additionally, the expression
levels of several PeTCP members were significantly upregulated under abscisic acid,
methyl jasmonate, and salicylic acid treatments, indicating that they play crucial plant
hormone transduction roles in the processes of plant growth and development, as well
as in responses to environmental stresses. Thus, the current study provides previously
lacking information on the TCP family in moso bamboo and reveals the potential
functions of this gene family in growth and development.

Keywords: moso bamboo (Phyllostachys edulis), TCP transcription factors, expression patterns, subcellular
localization, transcription activity

INTRODUCTION

Plants encounter a variety of environmental stresses during their growth and development;
therefore, they possess various protective systems at the whole-plant, tissue, cellular, subcellular,
genetic, and molecular levels (Sheshadri et al., 2016). Stress-inducible genes are the
major molecular factors involved in environmental stress responses and increased tolerance
(Yamaguchishinozaki and Shinozaki, 2005). These genes have generally been divided into two
categories, one involved directly in stress tolerance and the other in signal transduction and
transcriptional regulation. Transcription factors (TFs) are important groups of regulatory genes
(Wu et al., 2015). A series of TFs that are involved in governing developmental responses to the
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environment have been identified and reported in plants, such
as MYB (salt and drought tolerance) (Zhang et al., 2012; Cui
et al., 2013), ERF (ethylene responsive factors) (Lata et al., 2014),
WRKY (regulation of stress response) (He et al., 2012; Yan et al.,
2014; Cai et al., 2017), HD-Zip (drought and salt tolerance)
(Zhao et al., 2011, 2014), and bZIP (pathogen defense regulation)
(Sheshadri et al., 2016). In addition, a previous study reported
that TCP TFs directly translate environmental signals to cope
with environmental stresses during plant growth (Danisman,
2016).

TCPs, a family of plant-specific TFs (Martíntrillo and Cubas,
2010), were named based on the first three identified members,
maize teosinte branched1 (TB1), Antirrhinum cycloidea (CYC),
and rice PCF proteins (PCFs) (Doebley et al., 1997; Kosugi
and Ohashi, 1997; Cubas et al., 1999; Luo et al., 1999). The
TCPs contain a distinguished domain with a non-canonical
basic helix–loop–helix structure based on a sequence alignment
analysis of TCP proteins, namely TCP domain (Doebley et al.,
1997; Kosugi and Ohashi, 1997; Cubas et al., 1999; Luo et al.,
1999). Interestingly, most of the members of the ECE clade
contain a conserved R domain that might be involved in protein–
protein interactions (Cubas et al., 1999), while some members
of the CIN clade independently acquired an R domain (Cubas,
2002).

At present, many functional analyses of TCPs have been
reported in various plant developmental processes. For example,
TCPs play essential roles during the morphogenetic period in
plants. TB1 and TB1-like proteins from maize, rice, sorghum,
and Arabidopsis repress the development of axillary branches
(Hubbard et al., 2002; Takeda et al., 2003; Kebrom et al., 2006;
Aguilar-Martínez et al., 2007; Finlayson, 2007). In Arabidopsis,
some members are involved in leaf development. For example,
TCP14 and TCP15 interact with the ubiquitin receptors DA1,
DAR1, and DAR2, which regulate internode length and leaf
shape by repressing endoreduplication (Peng et al., 2015).
Five members (TCP2, TCP3, TCP4, TCP10, and TCP24)
have been implicated in the regulation of leaf morphogenesis
(Schommer et al., 2008). Additionally, AtTCP20, acting upstream
of AtTCP9, controls leaf development through the jasmonate
signaling pathway. GhCYC2, a TCP member in chrysanthemum,
regulates the development of petals (Broholm et al., 2008).
In Pisum sativum, two CYC-like TCP proteins control floral
zygomorphy (Wang et al., 2008). In cotton, TCPs play positive
roles in fiber elongation (Hao et al., 2012). In addition, TCP
proteins might play important roles during the generative
growth phase, such as in the development and maturation
of fruits (Parapunova et al., 2014). TCPs not only contribute
to plant morphogenetics, they also mediate the regulation of
rhythms. For instance, TCP proteins can regulate the circadian
clock in Arabidopsis thaliana (Giraud et al., 2010) through
binding to the TGGGC(C/T) elements. Furthermore, TCP TFs
contribute to plant resistance to diverse abiotic stresses. For
example, OsPCF5 is involved in drought- and salinity-stress
tolerance, and OsPCF6 takes part in cold-stress tolerance in rice
(Wang et al., 2014). OsTCP15 plays a part in the mesocotyl
elongation response to darkness in rice (Hu et al., 2014).
TCP20 can interact with NLP6&7 and support root meristem

growth under N starvation conditions in Arabidopsis thaliana
(Guan et al., 2017). OsPCF2 activates OsNHX1 expression and
enhances its salt tolerance (Almeida et al., 2016). Furthermore,
OsPCF6 and OsTCP21, identified as target genes of Osa-
miR319b, are involved in cold-stress tolerance (Wang et al.,
2014).

Moso bamboo with high ecological, cultural, and economic
values is faced with various environmental stresses in the
course of its growth and development. This requires moso
bamboo to respond and resist adverse conditions in a timely
manner. Genomic studies in bamboo, including genome-wide
full-length cDNA sequencing (Peng et al., 2010), chloroplast
genome sequencing (Zhang et al., 2011), identification of
syntenic genes between bamboo and other grasses (Gui et al.,
2010), phylogenetic analysis of Bambusoideae subspecies
(Sungkaew et al., 2009), and the construction of the draft
genome sequence of moso bamboo, laid the foundation for
researching and improving stress resistance at the genetic
level. So far, various gene families having potential resistance
functions in moso bamboo have been analyzed, such as
the WRKY TF family (Li et al., 2017; Wu M. et al., 2017),
homeodomain leucine zipper subfamily (Chen et al., 2017),
and AP2/ERF TF family (Wu et al., 2015). The study of TCP
TFs remains enigmatic, even though they play significant
roles in plant development and growth as well as in stress
resistance. In the present study, we searched the moso bamboo
genome to identify the genes encoding TCP TFs (PeTCPs).
In total, 16 PeTCPs were identified from the moso bamboo
genome. The characteristics of these genes, including structure,
phylogenetic relationship, promoter elements, evolution
divergence, subcellular localization, transactivation activity, and
expression patterns, were subsequently identified.

MATERIALS AND METHODS

Identification of TCP Genes
To obtain comprehensive and non-redundant moso bamboo
proteins containing the TCP domain, a BLASTP algorithm-
based search provided by the BambooGDB database1 was
first performed using the seed sequences of reported rice
TCP proteins (Yao et al., 2007; Mondragónpalomino and
Trontin, 2011; Dhaka et al., 2017). The default parameters
were adopted, and the cutoff value was set to 0.01. The
obtained putative TCP proteins were subsequently removed
manually and further verified using the Pfam2 database (Finn
et al., 2006, 2010). Detailed information on each putative TCP
protein, coding sequences (CDSs), and amino acid lengths, as
well as physicochemical parameters, were obtained from the
BambooGDB database. Subcellular localizations of PeTCPs were
predicted using ProtComp 9.0. Gene IDs of rice, Brachypodium
distachyon, Arabidopsis thaliana, poplar, and Sorghum were
obtained from earlier reports (Yao et al., 2007; Francis et al.,
2016; Ma et al., 2016) and their sequences were downloaded

1https://trace.ncbi.nlm.nih.gov/Traces/sra/?study=ERP001341
2http://pfam.sanger.ac.uk/search
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from TIGR3, BioMart4, TAIR5, and Phytozome6 databases,
respectively.

Phylogenetic and Multiple Sequence
Alignment Analysis
To study the phylogenetic relationships of TCP genes among
different species, Clustal X 2.0 (Larkin et al., 2007) was used to
perform multiple sequence alignments, and MEGA 6.0 (Tamura
et al., 2013) was subsequently used to construct a phylogenetic
tree based on the multiple alignment results by using the
neighbor-joining method (parameters: 1,000 bootstraps).

Gene Structure and Conserved Motif
Analyses
To investigate the exon/intron structures of the TCP genes, the
Gene Structure Display Server was used with the corresponding
CDSs and genomic DNA sequences on default parameter
settings. The online tool MEME7 was used to identify and
analyze the conserved motifs of TCP proteins (parameter setting:
maximum number of motifs, 10; maximum width, 100).

Synonymous (Ka) to Non-synonymous (Ks) Mutation
Ratio Analyses Among Moso Bamboo, Rice, Maize,
and Brachypodium distachyon
Ka and Ks were computed using DnaSP 5 software (Librado and
Rozas, 2009) based on the pairwise alignment of homologous
pairs between moso bamboo and other grass species using MEGA
6.0. The divergence time (T) was calculated using the formula
T = Ks/2λ (λ = 6.5× 10−9) (Peng et al., 2013).

Putative Promoter cis-Acting Element Analysis
The 2,000-bp upstream sequences of the PeTCP gene sequences
were submitted to PlantCARE (Lescot et al., 2002)8 to predict
putative promoter cis-acting elements.

Plant Material Growth Conditions and Stress
Treatments
Three-month-old seedlings were germinated and grown in an
artificial growth chamber (planted in a flowerpot with a diameter
of approximately 20 cm) with a 16-h light/8-h dark cycle at
22◦C. These seeds had been collected in the Tianmu Mountain
National Nature Reserve in Zhejiang Province, China. To analyze
the tissue expression patterns of TCP genes, samples of six tissues,
including mature leaves, young leaves, stems, shoots, rhizomes,
and roots, were collected. To investigate the expression patterns
of TCP genes under stress-related plant hormone treatments,
seedlings were sprayed with 0.1 mM abscisic acid (ABA),
0.1 mM methyl jasmonate (Me-JA), or 1 mM salicylic acid (SA)
treatments. Additionally, control samples were similarly sprayed
with distilled water. For each stress treatment, all of the samples

3http://rice.plantbiology.msu.edu/
4http://www.biomart.org/
5http://www.arabidopsis.org/
6https://phytozome.jgi.doe.gov/pz/portal.html
7http://meme.sdsc.edu/meme/intro.html
8http://www.physics.csbsju.edu/stats/

were collected at six time points (0, 1, 3, 6, 12, and 24 h). All
plant samples were immediately stored in a −80◦C freezer after
collection for RNA extraction. Three repeated trials and three
biological replicates were performed for each sample.

Transactivation Activity Analysis in Yeast
The pGBKT7 vector (Clontech, Palo Alto, CA, United States)
was used to study the transcriptional activity levels of four
PeTCP proteins in yeast. The full-length PeTCPs open reading
frames were PCR amplified and independently cloned into the
pGBKT7 vector (Clontech; containing the GAL4 DNA-binding
domain) using the gene-specific primers listed in Supplementary
Table S5. Subsequently, pGBKT7-PeTCP recombinant vectors,
the positive control pGBKT7-53+pGADT7-T, and the negative
control pGBKT7 empty plasmids were used to transform the
yeast strain using the lithium acetate method. The transformed
strains were further serially cultured on various SD selective
media, including SD/-Trp and SD/-Trp/-His/-Ade/X-α-Gal, and
incubated at 30◦C for 3–5 days.

qRT-PCR Analysis
The qRT-PCR experiment was used to explore the expression
levels of TCP members in different tissues or developmental
stages, and under abiotic stress and plant hormone treatments.
Total RNA was extracted from the plant samples using TRIzol
and cetrimonium bromide methods and was then reverse
transcribed into cDNA using a PrimeScriptTM RT Reagent Kit
(TaKaRa, Dalian, China). Gene-specific primers were designed
using Primer Express 3.0, and tonoplast intrinsic protein 41
(TIP41) was used as an internal control (Fan et al., 2013).
TransStart R© Tip Green qPCR Super Mix (TransGen Biotech,
Beijing, China) was used in the qRT-PCR master mix and the
program was run as specified in the instructions.

Statistical Analysis
Statistical significance was determined using a paired Student’s
t-test9. The mean ± standard deviations from the mean (SD) of
at least three replicates are presented, and significant differences
relative to controls are indicated at ∗p < 0.05 and ∗∗p < 0.01.

RESULTS

Identification and Characterization of
TCP TFs
Prospective TCP members from the moso bamboo genome were
obtained from BambooGDB using a BLASTP algorithm-based
search with seed sequences from reported rice TCP proteins.
A total of 16 TCPs, named PeTCP1–16 based on their physical
locations on the scaffold (Table 1), were subsequently identified
after confirming the presence of the conserved TCP DNA-
binding domain (PF03634) using the Pfam database and deleting
redundant sequences manually based on the results of a sequence
alignment performed using Clustal X. The detailed characteristics
of the PeTCPs, consisting of gene name, accession number,

9http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
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TABLE 1 | Detailed information about TCP genes in moso bamboo genome.

Protein

Name Gene ID Location CDS (bp) Size (aa) MW(kDa) pI Subcellular localization

PeTCP1 PH01000001G3420 2225231–2227702(−) 597 198 21.02 10.76 Nuclear

PeTCP2 PH01000018G1460 906436–909312(+) 1221 406 43.37 7.02 Nuclear

PeTCP3 PH01000028G2500 1606492–1608084(−) 588 195 20.56 10.11 Nuclear

PeTCP4 PH01000034G2110 1532558–1534930(+) 1128 375 38.02 9.42 Nuclear

PeTCP5 PH01000065G1920 1192667–1194687(−) 1014 337 34.68 8.95 –

PeTCP6 PH01000099G0140 103728–105193(−) 867 288 31.11 6.53 –

PeTCP7 PH01000131G1060 662980–665991(−) 636 211 21.79 4.85 Nuclear

PeTCP8 PH01000135G0620 453977–455750(−) 732 243 24.02 7.87 Nuclear

PeTCP9 PH01000155G0570 362966–364770(−) 714 237 26.21 7.14 –

PeTCP10 PH01000256G0700 548272–549952(−) 462 153 16.06 10.70 Nuclear

PeTCP11 PH01000423G0070 41444–42633(−) 828 275 29.60 7.24 –

PeTCP12 PH01000519G0700 449323−453277(+) 972 323 33.70 9.76 –

PeTCP13 PH01000602G0590 389150–391333(−) 873 290 32.23 9.20 Nuclear

PeTCP14 PH01000767G0040 36399–38799(+) 1110 369 38.50 9.23 Nuclear

PeTCP15 PH01001418G0330 226485–230958(−) 456 151 16.58 9.51 –

PeTCP16 PH01001480G0290 228472–230034(−) 735 244 25.11 5.55 Nuclear

FIGURE 1 | Phylogenetic analysis and statistical analysis of TCP members in different species. (A) Phylogenetic analysis of TCP members from moso bamboo, rice,
Brachypodium distachyon, Sorghum, Arabidopsis thaliana, and poplar. Geometric figures of different colors and shapes are used to mark the TCP members from
different species. (B) Statistical analysis of TCP members from moso bamboo, rice, Brachypodium distachyon, Sorghum, Arabidopsis thaliana, and poplar.
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locational information, and physicochemical parameters, are
provided in Table 1. The CDS lengths ranged from 303 to
1,221 bp, resulting in amino acid sequences ranging from 100 to
406 aa. The molecular weight ranged from 10.40 to 43.37 kDa,
and the theoretical isoelectric point varied from 4.78 to 10.76.
In addition, the locational information of PeTCP genes revealed
that the 16 TCP genes were distributed in different scaffolds, with
none of the genes being located on the same scaffold (Table 1).

To explore the phylogenetic relationship of TCP TFs among
different species and investigate the potential function of

PeTCP TFs compared with other well-studied TCP members,
a phylogenetic tree was constructed using the neighbor-joining
method. The tree was based on the sequence alignment and
analysis of 137 full-length amino acid sequences from moso
bamboo, rice (Yao et al., 2007), Brachypodium distachyon,
sorghum (Francis et al., 2016), Arabidopsis thaliana (Yao et al.,
2007), and poplar (Ma et al., 2016; Figure 1A). The information
on TCPs was obtained from previous studies (Supplementary
Table S1). TCPs can be divided into two distinct classes: Class
I and Class II. Class I was named the PCF group (Cubas, 2002).

FIGURE 2 | Multiple sequence analysis of TCP domain. Multiple sequence alignment was carried out with Clustal X 2.0.

FIGURE 3 | Gene structures of TCPs in moso bamboo. Gene structures were performed using the GSDS online tool. Exons, introns, and untranslated regions
(UTRs) are indicated by yellow rectangles, gray lines, and blue rectangles, respectively.
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Class II was further divided into two groups: CIN and CYC/TB1.
In moso bamboo, the number of TCPs identified as PCF, CIN,
and CYC/TB1 protein members were 10, 5, and 1, respectively.
The counting of TCP TFs among the six species showed that the
maximum and minimum numbers of TCPs were found in poplar
and moso bamboo, respectively (Figure 1B). The CYC/TB1
group is the smallest.

Multiple Sequences Alignment
To investigate the conservation and diversity of the TCP domain
regions in TCP proteins, a multiple sequences alignment was
performed using Clustal X software based on the amino acid
sequences of each TCP domain (Figure 2). Alignment results
showed that differences and similarities coexisted among these
members. For example, complete basic helix I–loop–helix II
regions could be found in all TCP members of Class II, resulting
in the conservation of this group. In contrast, TCP members
of Class I displayed a higher diversity level. For example, four
genes, PeTCP4, PeTCP7, PeTCP8, and PeTCP10, contained only
partial TCP domains. In addition, TCP members of Class II
had 4-amino acid insertions compared with Class I in the basic
regions. In addition, the arginine-rich R domain was found in the
C-terminus of PeTCP13.

Gene Structures and Conserved Motifs
Analysis
The Gene Structures Display Server online tool was used to
explore the exon/intron structures of PeTCP genes (Figure 3)
based on the CDSs and the corresponding genomic DNA
sequences of the PeTCP genes. Of these, 10 PeTCP genes lacked
an intron, and the remaining members of the PeTCP genes

only had one or two introns. This result was consistent with
previous reports. As shown in Figure 2, the online MEME tool
(parameter setting: maximum number of motifs, 10; maximum
width, 100) was used to predict the conserved PeTCP protein
motifs by submitting full-length amino acid sequences and
identifying 10 specific motifs (Figure 4 and Supplementary
Table S2). The sequence of each motif was verified using the
Pfam database and only one motif (motif 1) encoded the TCP
domains. The remaining motifs did not encode any domains.
Motif 1 was present in every moso bamboo TCP protein we
verified, providing further support for the reliability of our
identification. Among the PeTCPs, the number of motifs varied
from one (PeTCP10) to nine (PeTCP5). Some motifs were specific
to particular members. For example, motif 2 existed only in
PeTCP4, 5, 8, and 12; motif 10 was present only in PeTCP4,
5, 8, 12, and 15; and motif 8 only appeared in PeTCP4, 5,
7, and 16. These three motifs existed in Class I with a high
specificity. Furthermore, all the members of the Class II PeTCPs
were characterized by motif 7 in the N-terminal TCP domain.
By comparison, the C-terminal TCP domain of motif 3 was
detected in various PeTCP members that were widely distributed
in the TCP family, except four PeTCP genes (PeTCP3, 4, 7,
and 10).

Putative Promoter cis-Acting Element
Analysis of Stress-Related Plant
Hormone
cis-Elements are linear nucleotide fragments of non-coding
DNA (Biłas et al., 2016). They are present in promoter regions
and other transcribed DNA strands (Vaughn et al., 2012).

FIGURE 4 | Schematic representation of the 10 conserved motifs in PeTCPs. Conserved motifs of the PeTCPs were identified using the online MEME program
based on 16 full-length amino acid sequences with the following parameters: maximum number of motifs, 10; maximum width, 100. The lengths and positions of
different motifs in the protein sequences are identified by the lengths and positions of the different color blocks.
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The promoter regions of stress-inducible genes contain cis-
elements that directly influence the gene regulation involved
in stress-responsive gene expression (Yamaguchishinozaki and
Shinozaki, 2005). Many stress-responsive genes that encode
TFs, with functions of signal transduction and transcriptional
regulation, play significant roles in environmental stress tolerance

FIGURE 5 | cis-Acting elements related to ABA, Me-JA, and SA in the
promoter regions of PeTCPs. A colored block with a number represents the
cis-element number of PeTCPs.

(Yamaguchishinozaki and Shinozaki, 2005; Sheshadri et al., 2016).
Various TFs interact with cis-acting elements in promoter regions
and form transcriptional initiation complexes on the TATA
box (core promoter) upstream of the transcriptional initiation
site. The transcriptional initiation complex then activates RNA
polymerase to start the transcription of stress-responsive genes.

When plants are under stressed conditions, TF binding to cis-
elements is the major genetic level change occurring in the plants.
Hence, identifying the cis-acting elements in the stress-responsive
promoters is important to understand the molecular switches
affected by stress-inducible genes. In this study, to explore the
cis-element patterns and types of PeTCP genes, the cis-elements
in the 2,000 bp upstream of the promoter regions of 16 PeTCP
genes were predicted using the PlantCARE database. Many types
of cis-elements involved in environmental stress responses were
identified, including ABA-, Me-JA-, and SA-responsive elements
(Figure 5). The TCA-element (Goldsbrough et al., 1993) and
SARE motif associated with SA responsiveness were present in
nine PeTCP genes (PeTCP1–3, 5, 9–12, and 15). Interestingly,
the Me-JA-responsive elements, CGTCA and TGACG, existed in
pairs in six PeTCPs (PeTCP2, 7, 11, 13, 15, and 16). The ABA-
responsive elements (ABRE cis-acting element) (Shen and Ho,
1995) were found in the promoter regions of PeTCP6–8, 10, 12,
14, and 15. Among these TCP genes and environmental stress-
responsive elements, we found that PeTCP9 and PeTCP14 had
single types of responsive elements, SA-responsive elements and
ABAREs, respectively. The other members presented more than

FIGURE 6 | Scatter plot statistics of Ka and Ks values among grass species.
The black dotted line with slope one is used to show Ka/Ks = 1. A circle of
different colors exhibits homologous pairs of different types. Pe-Pe:
paralogous pairs of PeTCPs; Pe-Os: orthlogous pairs of TCPs between moso
bamboo and rice; Pe-Bd: orthlogous pairs of TCPs between moso bamboo
and Brachypodium distachyon; Pe-Sb: orthlogous pairs of TCPs between
moso bamboo and Sorghum.
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one type of stress-responsive elements, such as four types in
PeTCP12 and three types in PeTCP15.

Selection Pressure and Divergence of
TCPs Between Moso Bamboo and Three
Other Grass Species
To explore the evolutionary patterns, divergence and selection
pressure of the TCPs, the homologous pairs between moso
bamboo and other three grass species (Supplementary Table
S3), including eight paralogous pairs and 30 orthologous pairs,
were identified using phylogeny-based and bidirectional best-
hit methods. The Ka/Ks ratio is widely applied to measure
genetic evolution and selection pressure. According to the natural
selection theory, if the ratio is greater than 1, then positive
selection is indicated; equal to 1 indicates neutral selection and
less than 1 indicates negative or stabilizing selection. Scatter
plot statistics showed that PeTCPs have undergone significant

negative or stabilizing selection over the course of evolution
(Figure 6). By contrast, the ratios of two homologous pairs
(PeTCP2/OsTCP1 and PeTCP10/SbTCP15) were greater than
1, indicating positive selection during evolution (Figure 6).
Meanwhile, the divergence times of the TCPs were also
calculated. The eight paralogous pairs indicated that PeTCPs
underwent duplication events from ∼5.39 to 58.90 million years
ago (MYA). Additionally, the orthologous pairs demonstrated
that PeTCPs and OsTCPs were separated around 19.35 to 55.73
MYA, BdTCPs around 22.48 to 59.87 MYA, and SbTCPs around
25.78 to 66.55 MYA.

Tissue-Specific TCP Expression Levels
of Different Tissues and Development
Stages in Moso Bamboo
Gene expression pattern analyses in various tissues and
developmental stages can contribute to understanding the roles

FIGURE 7 | Expression patterns of TCP genes in different tissues and developmental stages of moso bamboo. Lanes: YL, young leaf; L, mature leaf; S, stem; Sh,
shoot; Rh, rhizome; R, root. The mean values and SDs were obtained from three biological and three technical replicates.
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of genes. To research the expression patterns of PeTCP genes
in different tissues or developmental stages, including mature
leaf, young leaf, stem, shoot, rhizome, and root tissues from the
same strain of moso bamboo, the related transcription levels of
the PeTCP genes were analyzed using qRT-PCR. As exhibited in
Figure 7, all 16 PeTCP genes in the young and mature leaf, 13
genes (except PeTCP1, 3, and 15) in the stem, 12 genes (except
PeTCP1, 7, 8, and 13) in root, four genes (PeTCP5, 6, 9, and 11) in
rhizome, and four genes (PeTCP5, 6, 11, and 14) in shoot showed
high expression levels. In particular, three genes (PeTCP5, 6, and
11) showed high expression levels in all six tissues. In addition, all
of the PeTCP genes displayed similar expression patterns between
young and mature leaves, as well as between shoot and rhizome.

Subcellular Localization and
Transactivation Activity
In general, TFs can regulate the transcription of target genes
by binding to specific cis-elements in their promoters and this

binding occurs in the nucleus. Based on their characteristics
as TFs, PeTCPs should localize in the nuclei. To examine
this feature, the full-length CDSs without stop codons were
cloned from moso bamboo cDNAs using specific primers
(Supplementary Table S4). Later, they were independently
transformed into the pCAMBIA1305 vector containing
GFP under the control of the CaMV 35S promoter. The
resulting 35S::GFP::PeTCPs and 35S::GFP fusion proteins
were subsequently transiently expressed in Nicotiana tabacum
leaves by Agrobacterium-mediated transformation. After 36 h
of expression, the leaves of Nicotiana tabacum harboring
the fusion proteins were observed using confocal laser
scanning microscopy (Carl Zeiss LSM710, Germany). GFP
fluorescence and light-field observations were recorded in
separate channels and then merged into an overlay image.
Fluorescence microscopy showed that PeTCP4, 5, 10, and 11
were clearly localized in the nucleus according to the GFP signals
(Figure 8).

FIGURE 8 | Subcellular localization of four PeTCPs. The four PeTCP-GFP fusion proteins (PeTCP4-GFP, PeTCP5-GFP, PeTCP10-GFP, and PeTCP11-GFP) and
GFP as a control were transiently expressed in N. tabacum leaves and observed under a fluorescence microscope.
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To explore the transactivation activity of PeTCPs, the
pGBKT7::PeTCPs (specific primers listed in Supplementary
Table S5), the positive control plasmids pGBKT7-53
and pGADT7-T, and the negative control plasmid were
independently transformed into the Y2HGold yeast strain.
All of these transformants could readily grow and exhibited
visible white colonies on the SD/-Trp medium (Figure 9). In
the SD/-Ade/-His/-Trp/X-α-GAL medium, only the yeast cells
containing PeTCPs and the positive controls grew well and
turned blue. In contrast, the negative control group did not
grow on this medium (Figure 9). Thus, the four selected PeTCP
fusion constructs activated the transcription of the His3 and LacZ
reporter genes, indicating that they had transcriptional activity
in yeast strains.

Expression Patterns After ABA, Me-JA,
and SA Treatment
Plant hormones, especially ABA, Me-JA, and SA, have well-
established roles in plant stress-signaling networks and
developmental processes. Many corresponding responsive
cis-elements have been found in the promoter regions of the
PeTCPs. Hence, the qRT-PCR test was used to investigate the
potential functions of PeTCPs in response to ABA, Me-JA, and
SA (Figure 10). After the ABA treatment, the transcriptional
levels of nine PeTCPs increased to significantly high levels, three
(PeTCP8, 10, and 15) of which were at their highest levels at
12 h and then showed downward trends at 24 h. The remaining
members having high transcriptional levels (PeTCP2, 7, 12–14,
and 16) showed a downward trend during the early treatment
and increased at 24 h. Seven PeTCPs exhibited low expression
levels during treatment, especially at the early post-treatment
stage. After the SA treatment, seven TCPs (PeTCP1–3, 5, 7–8,
and 12) were upregulated and compared with control groups,
especially PeTCP1 at 3 h, with expression levels more than
150-fold higher than those of the control group. The remaining
PeTCP members showed varying degrees of downregulation
after the SA treatment. In addition, for the Me-JA treatment,
PeTCP members also had different expression levels. PeTCP1–2,
7–11, 15, and 16 showed an upregulation trend or maintained
high expression levels at different time points. In contrast, the
expression levels of PeTCP3–6 and PeTCP12–14 were lower than
in the control groups.

DISCUSSION

TCP TFs in Moso Bamboo
The plant-specific TCP TFs with versatile functions in various
plant growth and development processes have been functionally
analyzed in the model plant species Arabidopsis thaliana and
rice. Additionally, they have been genome-wide identified
in other higher plants, including in dicotyledons such as
tea plant (Wu Z.J. et al., 2017), apple (Xu et al., 2014),
Gossypium raimondii (Ma et al., 2013), watermelon (Shi et al.,
2016), Prunus mume (Zhou et al., 2016), strawberry (Wei
et al., 2016), Chrysanthemum morifolium (Wang et al., 2017),
and poplar (Ma et al., 2016), and in monocotyledons such

FIGURE 9 | Transactivational analyses of PeTCP proteins in yeast Y2HGold
strain. The positive constructs, negative constructs, and fusion constructs
were transformed into yeast Y2HGold strain and successively incubated in
SD/-Trp media and SD-His/-Ade/-Trp plate supplemented with X-α-GAL.

as maize (Chai et al., 2017) and Sorghum (Francis et al.,
2016). Here, 16 TCPTFs were identified in the moso bamboo
genome (Table 1), and a series of bioinformatics analyses were
performed to explore their potential structural and functional
characteristics. Compared with other species, moso bamboo
contains less TCP members, even though it has the largest
genome size (2.075 Gb) (Peng et al., 2013), which may
signify that gene loss events occurred over the course of
evolution.

The sequence alignment of 16 TCP proteins showed that a
non-canonical basic helix–loop–helix motif in the N-terminus
is present in the TCP members (Figure 2). These members can
be divided into two classes based on the presence of four amino
acids in the basic motif (Cubas et al., 1999). Class I contains
16 residues, while Class II contains 20 residues. Additionally,
two extremely uncharged hydrophilic amino acids, threonine,
and glycine, exist in all members of Class II. An arginine-
rich R domain outside the conserved TCP domain, with the
predicted function of facilitating protein–protein interactions,
exists in several class II TCP members (Cubas et al., 1999).
For instance, four genes (OsTCP6, 7, 13, and 14) in rice, four
(AtTCP2, 12, 18, and 24) in Arabidopsis thaliana, maize TB1,
and four (FvTCP3, 6, 9, and 14) in Fragaria vesca (Wei et al.,
2016) contain an arginine-rich R domain according to previous
reports. Similarly, PeTCP13, the TB1-like gene in moso bamboo,
was identified as having an R domain. Thus, the genes containing
an R domain may play similar roles in plant growth and
development.

However, an intrinsically disordered region exists in
the C-terminus of AtTCP8 and has been identified as a
transactivation domain (Valsecchi et al., 2013). Furthermore,
similar to reports in Arabidopsis, TCP proteins of moso bamboo
are also rich in disorder-promoting residues. The transactivation
activity experiments with PeTCP4, 5, 10, and 11 revealed that
these four PeTCPs are transcriptional genes in yeast (Figure 9).
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FIGURE 10 | Expression levels of PeTCPs under ABA, Me-JA, and SA treatment by qRT-PCR. The Y-axis and X-axis indicate the relative expression levels and the
time courses of plant hormone treatments, respectively. Error bars, 6 ± SE. Asterisks indicate significant difference compared to the transcription level of control
groups, as determined by Student’s t-test (∗p < 0.05, ∗∗p < 0.01).

The TCP domain is a plant-specific DNA-binding domain
(Kosugi and Ohashi, 2002), and the members containing this
domain regulate the expression levels of other proteins by
binding to their promoters. For instance, PCF2, which encodes
a rice TCP protein, was identified as a DNA-binding protein that
recognizes the PCNA promoter (Kosugi and Ohashi, 1997). It also
acts as a transcriptional activator of OsNHX1 in salt tolerance
by binding to the OsNHX1 promoter (Almeida et al., 2016).
PeTCP10, a PCF2-like gene, may have a similar binding site and
regulatory mechanism as that found in rice.

As DNA-binding proteins, the TCP factors are expected
to be targeted to the nuclei. Nuclear localization signals are

present in many of them, and nuclear localization has been
confirmed for several TCP members by the immunoprecipitation
of nuclear extracts or GFP-protein fusions. The four members
examined in this study were located in the nucleus (Figure 8),
consistent with earlier reports (Wei et al., 2016). In contrast,
some TCP members were not localized in the nucleus. For
example, FvTCP17 is confirmed to localize in the nucleus and
cytoplasm as assessed by the transformation of GFP-protein
fusions into Arabidopsis thaliana mesophyll protoplasts (Wei
et al., 2016).

In addition, the exon/intron and conserved motif distribution
patterns of PeTCP paralogous genes, such as PeTCP1/3, 6/11, and
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7/16, were very similar. These similarities between paralogous
pair members might signify their similar functions during moso
bamboo growth and development.

The Potential Functions of TCP TFs in
Stress-Related Plant Hormone
Transduction in Moso Bamboo
Abscisic acid is produced in both dehydrated vegetative tissues
under water deficit conditions and maturing seeds, and it
regulates the expression levels of many genes that may function
in dehydration tolerance (Yamaguchishinozaki and Shinozaki,
2005). Relationships between the TCPs and ABA have been
reported. An earlier report (Mukhopadhyay and Tyagi, 2015)
showed that OsTCP19 which is induced by salt, drought, and
cold stresses can improve ABA signal transduction by promoting
the expression of ABA INSENSITIVE4 and interacting directly
with the encoded protein. In Arabidopsis thaliana, TCP14
interacts with the DNA BINDING WITH ONE FINGER 6
TF to inhibit the activation of the ABA biosynthetic gene
ABA DEFICIENT1 and other ABA-related stress genes to
promote the germination of Arabidopsis seeds (Tatematsu
et al., 2008; Ruedaromero et al., 2012). ABA-inducible genes
contain a conserved ABRE, which functions in the ABA-
dependent gene expression induced by osmotic and cold
stresses (Yamaguchishinozaki and Shinozaki, 2005). ABRE is a
major cis-acting element in ABA-responsive gene expression.
It exists in the promoter regions of several PeTCPs, according
to cis-element prediction results (Figure 5). Additionally, the
fluctuations in PeTCP gene expression levels were induced after
the ABA treatment (Figure 10), indicating that these genes
may be involved in the ABA signal transduction pathway in
moso bamboo through a mechanism similar to that of rice or
Arabidopsis thaliana.

Meanwhile, TCPs interact with the genes that are involved
in the biosynthesis of JA and other oxylipins, which affect
development, abiotic stress responses, and plant–microbe
interactions. In this pathway, LOX2, the best-characterized
TCP-controlled gene, encodes a chloroplast enzyme involved
in JA synthesis from α-linolenic acid (Vick and Zimmerman,
1983). Its expression is controlled by Class I and Class
II TCPs, especially TCP4, through an antagonistic mode of
action (Schommer et al., 2008). The inactivation of TCP4
results in LOX2 downregulation, which reduces JA synthesis
and increases plant susceptibility to stress (Sugio et al.,
2014). Similarly, the expression patterns of TCPs in moso
bamboo were diverse after the Me-JA treatment. Additionally,
PeTCP2, the TCP4-like gene, maintains a higher expression
level after the Me-JA treatment (Figure 10). Thus, the JA
regulatory mechanism may be conserved in the TCPs in moso
bamboo.

In addition to their functions involving ABA and JA, TCPs also
play crucial roles in stimulating the synthesis of, and response to,
SA. In Arabidopsis thaliana, several TCPs interact with the SA
biosynthetic enzyme ISOCHORISMATE SYNTHASE 1 gene, and
the gene’s expression is enhanced by the TCPs, such as TCP8, 9,
and 20, binding to the TCP-binding motif in its promoter region

(Xiaoyan et al., 2015). There are many SA-related cis-elements in
the promoter regions of PeTCPs (Figure 5), and the expression
levels of several PeTCP genes significantly increased after the SA
treatment (Figure 10), indicating that PeTCPs may have roles in
the signal transduction of SA, as reported.

Interestingly, the expression of some genes by SA, Me-JA, and
ABA are different from that predicted (Figure 10). For example,
expression induction of PeTCP2 has been induced by ABA
treatment although ABA-related cis-elements are not predicted
in the promoter region of PeTCP2; expression induction of
TCP 10 has been induced by Me-JA treatment although Me-JA-
related cis-elements are not predicted in the promoter region of
PeTCP10. On the other hand, expression alteration of PeTCP10
was not observed by ABA treatment although ABA-related cis-
elements were detected. Meanwhile, this is observed in TCPs of
strawberry (Wei et al., 2016). For example, expression induction
of PvTCP3, -5, -12, -13, -16, and -19 have been induced by ABA
treatment although ABA-related cis-elements are not predicted
in their promoter region. These results may show that expression
induction of genes are complex biological processes.

CONCLUSION

In this study, we investigated the phylogenetics, multiple
sequence alignment, gene structures, conserved motifs, cis-acting
elements, and divergence time analysis of the 16 predicted TCP
TFs in the moso bamboo genome. We used qRT-PCR to explore
the expression patterns of the 16 TCP genes in different tissues
and developmental stages, as well as after three – ABA, Me-JA,
and SA – plant hormone treatments. Additionally, the subcellular
localization and transcription activity analysis of four selected
TCP members were investigated in moso bamboo. The results of
this study increase the understanding of TCP functions in diverse
aspects of plant growth and development.
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