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White spruce [Picea glauca (Moench) Voss] is a commercially valuable boreal tree that
has been known for its ability to colonize deglaciated rock tailings. Over the last decade,
there has been an increasing interest in using this species for the revegetation and
successful restoration of abandoned mine spoils. Herein, we conducted a glasshouse
experiment to screen mycorrhizal fungi and rhizobacteria capable of improving the
health and growth of white spruce seedlings growing directly on waste rocks (WRs)
or fine tailings (FTs) from the Sigma-Lamaque gold mine located in the Canadian Abitibi
region. After 32 weeks, measurements of health, growth, and mycorrhizal colonization
variables of seedlings were performed. Overall, symbionts isolated from roots of healthy
white spruce seedlings growing on the mining site, especially Cadophora finlandia
Cad. fin. MBN0213 GenBank No. KC840625 and Pseudomonas putida MBN0213
GenBank No. AY391278, were more efficient in enhancing seedling health and growth
than allochthonous species and constitute promising microbial symbionts. In general,
mycorrhizae promoted plant health and belowground development, while rhizobacteria
enhanced aboveground plant biomass. The observed beneficial effects were substrate-,
strain-, and/or strains combination-specific. Therefore, preliminary experiments in
control conditions such as the one described here can be part of an efficient and
integrated strategy to select ecologically well-adapted symbiotic microorganisms, critical
for the success of a long-term revegetation program.

Keywords: mycorrhizae, mine waste, Picea glauca, rhizobacteria, plant growth, plant health

INTRODUCTION

Mining operations generate an enormous volume of waste materials that are difficult to dispose
of. With more than 200 active sites, the Canadian mineral extraction industry produces over 1,000
million tons of solid waste per year (Statistics Canada, 2012; Mining Association of Canada, 2016).
Prior to the first legislation in the 1970s, proper mine closure plans were not required, and residues
were usually stored on adjacent wasteland where they constitute a very challenging substrate for
the regeneration of natural ecosystems.
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In Val-d’Or, Québec, the Sigma-Lamaque gold mine has been
in operation since 1935. No mine closure plan was in place,
coarse WRs and FTs cover 150 ha within the city limits that
must now be efficiently revegetated. To do so, the revegetation of
this area considered at low risk for contamination (Beauregard
et al., 2012; Callender, 2014; Nadeau et al., 2016) with native
species can be a successful strategy (Jackson et al., 1995;
Larchevêque et al., 2013; Nadeau et al., 2016). White spruce
is a dominant species of the boreal forest. Due to its ability
to repopulate harsh environments and promote the subsequent
establishment of a self-sustaining and more diverse ecosystem
(Sutton, 1973), it is commonly used for land reclamation (Renault
et al., 2004; Leewis et al., 2013; Onwuchekwa et al., 2014;
Schoenmuth et al., 2015; Frerichs et al., 2017). A few healthy white
spruce [Picea glauca (Moench) Voss] seedlings found naturally
regenerating on the mine tailings revealed a mycorrhizal fungal
community distinct from the neighboring ecosystems (Nadeau
et al., 2016). Beneficial microorganisms discovered from the
rhizosphere of seedlings can significantly ease plant growth and
development – a major asset in a nutrient-depleted substrate
like the Sigma-Lamaque gold mine tailings (Nguyen et al., 2006;
Hoeksema et al., 2010). For instance, in tailings of a copper
mine, fungal inoculation enhanced Japanese red pine (Pinus
densiflora) seedlings performance (Zong et al., 2015). Similarly,
in western Canada, Onwuchekwa et al. (2014) have shown that
the inoculation of white spruce and jack pine (Pinus banksiana)
with several fungal species (Hebeloma crustuliniforme, Suillus
tomentosus, Laccaria bicolor) improved plant survival on oil sand
tailings.

In addition to symbiotic fungi, rhizobacteria were also isolated
from the rhizosphere of white spruce host naturally regenerating
on the Sigma-Lamaque mining site. Like mycorrhizae, bacterial
strains can increase plant performance as observed in coniferous
tree species (Cardoso et al., 2011). As a matter of fact, the use
of biofertilizers in agriculture is gaining popularity worldwide
(Humphry et al., 2007; Baset Mia and Shamsuddin, 2010; Damir
et al., 2011; Hrynkiewicz and Baum, 2011).

In nature, positive interactions between plant host and its
symbionts occur through a number of mechanisms. Whether
a beneficial microorganism is a biocontrol agent (Kropp and
Langois, 1990; Pieterse et al., 2003), improves root development,
water, and nutrient uptake (Blum et al., 2002; Allen, 2007;
Vayssières et al., 2015) and/or limits the uptake of toxic
compounds (Chaudhry et al., 2005), it co-exists with other
organisms within the microbiome. Combinations of microbial
strains or species may be neutral or even profitable to the
plant host. However, some fungal and bacterial species can also
behave like antagonists (Artursson et al., 2006; Uroz et al., 2007;
Uroz et al., 2009). Plant–microbe interactions evolve with the
development of a more complex ecosystem, with soil weathering
and aging of the plant host (Mummey et al., 2002; Allen E.B. et al.,
2003; Allen M.F. et al., 2003; Elliott et al., 2007).

White spruce has a substantial potential to be used in the
phytorestoration of mine tailings. Because it is highly sensitive to
transplanting shock (Nienstaedt and Zasada, 1990), the selection
of adequate symbionts to improve the establishment of young
seedlings could determine the success of a revegetation program

with this species. Moreover, the role of mycorrhizal fungi and
rhizobacteria in tree physiology on Precambrian metamorphic
rocks of the Canadian Shield has never been studied. In the
context of evaluating a new selection strategy for site-specific
reforestation, we investigated the potential of selected cultivable
fungi and rhizobacteria to improve the performance of white
spruce seedling on mine tailings under glasshouse conditions.
Thus, two hypotheses were formulated. First, the combined
inoculation of seedlings with fungi and rhizobacteria improves
the growth and overall health of seedling. Second, the use of
native strains isolated directly from the mining site may give
better results than the allochthonous ones.

MATERIALS AND METHODS

Seed Germination and Seedling Growth
White spruce seeds were germinated in Styroblock containers.
Cavities (9.5 mL capacity) were filled with a peat–vermiculite–
perlite substrate (80:15:5). The trial was conducted in a
greenhouse at the Université Laval (Quebec City, QC, Canada).
The greenhouse was disinfected with a bleach solution prior
to the experiment. To favor seedling establishment and
nutrition before inoculation, plants were fertilized 2 weeks after
germination with a commercial solution (20N-8P-20K). Three
weeks after germination, seedlings were transferred into 1.75 L
pots filled with WRs or FTs collected from Sigma-Lamaque
gold mine (Val-d’Or, QC, Canada). The mine residues are
considered to have low risk of contamination (Taner et al.,
1986; Beauregard et al., 2012) but soil chemical composition
analyses of four randomly selected samples indicate an absence
of nitrogen source (NO−3 , NO−2 , or NH+4 ), low concentration of
elements important for plant growth (P: 0.203± 0.123(SE) g/kg;
K: 0.096 ± 0.003 g/kg) and relatively important concentration
of metals (Fe: 14.5 ± 0.5 g/kg; Ca: 22.3 ± 0.5 g/kg;
Mg: 4.2 ± 0.2 g/kg; and Al: 5.7 ± 0.1 g/kg); arsenic
(8.75 ± 0.25 mg/kg); and cyanides (4.6 ± 0.6 mg/kg). The pH
of tailings was relatively alkaline with values varying between
8.55 and 8.68. Throughout the 32-week-long experiment,
seedlings were watered daily at field capacity. Greenhouse
conditions for optimal growth of white spruce seedlings were
set at an alternating temperature of 25/20◦C (day/night).
Seedlings received artificial light with light intensity of 400 lux
(5.56 µE m−2 s−1) for 16 h/day.

Bacterial and Fungal Inoculation
Three bacterial strains were selected for this experiment. One
commercial strain of Azotobacter chroococcum ATCC 9043 was
purchased from CEDARLANE Laboratories, Ltd. (Burlington,
ON, Canada). Two (Pseudomonas putida MBN0213 GenBank
No. AY391278 and Rhizobium radiobacter MBN0213 GenBank
No. FR828334) were isolated from the rhizosphere of healthy
white spruce host naturally regenerating on coarse WRs of the
mining site following the method described by Mazinani et al.
(2013), a combination of the soil paste and the direct sowing of
single soil grains on Mannitol-agar medium selective isolation
methods for nitrogen-fixing bacteria. Bacteria were not screen
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for metal resistance. For accurate identification, DNA extraction,
PCR amplification using standard 16S rRNA primers 27f and
1492r (Peace et al., 1994), and DNA sequencing were performed
following the method employed by Herter et al. (2011).

For maximum cell production before inoculation, bacteria
were cultivated in suspension cultures under aseptic conditions
at 30◦C for 7 days. P. putida, R. radiobacter, and A. chroococcum
were respectively grown in Tryptic soybean broth – Difco
medium, a liquid yeast extract mannitol medium and a liquid
Waksman medium following the method developed by Agri-
Tech (Aurangabad-Maharashtra, India). Bacterial cells were
harvested after centrifugation (20 min, 4000 rpm at 4◦C) and
resuspended in sterile water until the inoculant reached a
concentration of 108 CFU mL−1. Ten milliliter of the inoculant
was applied onto roots of 4-week-old white spruce seedlings
two times within 14 days in order to increase rhizospheric
colonization success.

Three mycorrhizal fungi displaying compelling in vitro growth
and tolerance to mine tailings were chosen for this experiment
(Nadeau, 2014). Hebeloma crustuliniforme UAMH5247, from the
Centre for Forest Research genomic and microbial collections1,
was isolated from white spruce roots in a natural forest stand
of the boreal forest in Canada. Both Tricholoma scalpturatum
Tri. scalp. MBN0213 GenBank No. KC840613 and Cadophora
finlandia Cad. fin. MBN0213 GenBank No. KC840625 were
isolated from healthy naturally regenerating white spruce
seedlings on Sigma-Lamaque gold mine coarse tailings (Nadeau
et al., 2016).

The inoculum was produced by cultivating fungal mycelia in
a liquid Melin Norkrans medium at 23◦C under aseptic shaking
conditions. After 2 months, the mycelia were collected and rinsed
with sterile water to discard excess nutrients. Blended mycelia
were mixed with sterile water (ratio 1:10) to obtain a final
concentration ≥5 × 105 viable propagules mL−1. White spruce
seedlings were inoculated with 5 ml of the inoculant when they
were 3-week-old and a second time 4 weeks later to increase root
inoculation success. The inoculum was released into the root zone
using an analog adjustable-dispenser.

Experimental Design and Treatments
The experimental design was a randomized complete
block (RCB) with three crossed fixed factors (Tailing
type × fungi × bacteria). Tailing type was composed of two
levels: WR and FT. Fungal factor had a total of four levels:
none (noF), H. crustuliniforme (Hc), T. scalpturatum (Ts), and
C. finlandia (Cf ). Bacteria also had four levels: none (noB), P.
putida (Pp), R. radiobacter (Rr), and A. chroococcum (Ac). There
were 32 treatments with three replicates in each of the four blocks
for a total of 384 experimental units. Each replicate was randomly
assigned to experimental units within blocks. Every experimental
unit consisted of a 1.75-L pot filled with tailings containing
one white spruce seedling. Experimental units within blocks
were separated by a thin piece of plastic to avoid cross bacterial
contamination. Each block was surrounded by two guard rows
to maintain the most homogeneous environmental conditions

1http://www.cef-cfr.ca/index.php?n=CEF.Collections

possible in all experimental units. Supplementary Figure S1
gives detailed layout and illustrations of the experimental design.

Measurements of Seedling Survival Rate
and Nutrient Content Analyses
Detailed descriptions of seedling survival rate and nutrient
content analyses are presented in the companion paper (Nadeau
et al., 2018).

Measurements of Seedling Health and
Growth
At the end of the glasshouse experiment, seedlings were brought
into a growth chamber an hour before measuring chlorophyll
fluorescence. Photochemical efficiency (Fv/Fm) was measured in
a dark environment using a portable fluorometer PAM-2000 with
the data acquisition software DA-2000 (Heinz Walz, Effeltrich,
Germany). Briefly, the foliage was placed under the fluorescence
booster for recording Fv/Fm data.

Needles were excised from stems, weighted, and individually
positioned on a transparent plastic plate prior to scanning
(WinSEEDLE PRO LA2400 scanner system and software, Regent
Instruments, Inc., Quebec City, QC, Canada) were used to
determine specific surface foliar areas (SSFA) of green, yellow,
brown, dark-red, and light-red foliar tissues. Percentages of
healthy-green foliage and dark-red foliage were calculated by
comparing their SSFA with the sum of all SSFAs.

Stems were weighted and measured with a 15-cm ruler. Roots
were washed gently with tap water in a 2-mm mesh sieve to
remove all soil particles and thereafter weighed. The percentage
of fungal colonization was calculated after manual counting
under a microscope as the ratio of mycorrhizal root tips number
to total root tips number multiplied by 100. Subsequently, roots
were transferred onto a transparent plastic plate. WinRHIZO
PRO LA2400 scanner system and software (Regent Instruments,
Inc., Quebec City, QC, Canada) were used for measuring total
root length, volume, and number of root tips.

For dry biomass analyses, white spruce seedling roots, shoots,
and needles were dried at 65◦C for 7 days. Percentage of water
content was calculated by subtracting dry biomass from wet
biomass, dividing the result by wet biomass and then multiplying
by 100.

Statistical Analyses
Differences Among Treatments
All the statistical analyses were conducted with the SAS
software (SAS Institute Inc., 2012). Seedling health, growth, and
percentage of fungal root colonization data were subjected to
three-way analyses of variance (Tailing type × fungi × bacteria)
using PROC GLM. Proper transformations were performed when
needed. Log transformations were performed with total root
length, number of root tips and dry biomass data. Arcsine
transformation was used with the photochemical efficiency
variable. Finally, non-parametric analyses (Wilcoxon rank sum
test and post hoc test) was conducted on the percentage of dark-
red foliage and percentage of roots colonized by fungus because
it was not possible to meet normality and/or homoscedasticity
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assumptions even after transformations. The non-parametric
tests were performed using PROC NPAR1WAY. Significance for
all analyses was set at α = 0.05 (P ≤ 0.05). Means and standard
errors of each treatment were calculated for all health, growth,
and colonization variables.

Correlation Analyses
Correlations between the percentage of colonized roots and
other health and growth variables were investigated using
PROC CORR. Furthermore, correlation analyses between health
variables (photochemical efficiency, percentage of healthy green
foliage, and percentage of dark-red foliage) and growth variables
(root, stem, and needle dry biomass) were performed in order
to determine if there was a relationship between white spruce
seedling health and growth. For these analyses, individual data
were used. Significance for all Pearson correlation coefficients (r)
was set at α = 0.05 (P ≤ 0.05).

RESULTS

Effect of Symbiotic Association on
Plant Health
After the 32 weeks of glasshouse trial in Sigma-Lamaque
gold mine tailings, seedling exhibited contrasting phenotypes
(Figure 1A). Seedling growth and health clearly benefitted
(Figures 1B,C) from symbiotic associations that prove to be
successful (Figures 1D–F).

Belowground, the inoculation of seedlings with one of the
two native mycorrhizal fungi T. scalpturatum and C. finlandia,
increased root water content by 6 and 4%, respectively, when
compared to non-inoculated control plants (Figure 2A, left
panel; P-values < 0.0001). Despite a 2% increase, seedlings
inoculated with H. crustuliniforme did not differ statistically
from control. For the bacterial treatments, only A. chroococcum-
associated seedlings outperformed non-inoculated control plants
(Figure 2A, right panel; P-values = 0.003).

The proportion of dark-red foliage is a health-related variable
indicative of element toxicity; a higher percentage value indicates
reduced seedling health. In the control seedlings, almost one-
third (31 ± 2%; P-values < 0.0001) of seedling foliage was dark
red. This suggests the importance of the symbiotic associations
with either fungal partner or a bacteria strain for plant health
in a severely disturbed environment. Indeed, plants inoculated
with C. finlandia exhibited significantly less dark-red foliage
than controls (Figure 2B, left panel; P-value < 0.0001). The
proportion of healthy green foliage on seedlings inoculated with
C. finlandia and T. scalpturatum was significantly greater than
control plants without fungal inoculation (Figure 2C, left panel;
P-value < 0.0001). The benefit of the allochthonous fungus
H. crustuliniforme was not significant, a trend we also observed
for photochemical efficiency (Figure 2D, left panel).

For bacterial treatments (Figures 2C,D, right panels;
P-values < 0.0001), only the A. chroococcum commercial
strain significantly increased the proportion of healthy-green
foliage and to a slightly lower extent, association with the

locally sourced-bacteria R. radiobacter compared to control and
P. putida treatments (Figure 2B, right panel; P-value < 0.0001).

Photochemical efficiency (Fv/Fm) measures the capacity
of the photosystem apparatus to capture light energy. From
0.56 in control plants, Fv/Fm ratio did not improve in
H. crustuliniforme-associated plants (0.58) but reached 0.63 and
0.70 in plants associated with T. scalpturatum and C. finlandia
(P-value < 0.0001). Association with the A. chroococcum
commercial strain also improved photochemical efficiency
compared to P. putida-associated plants (P-value = 0.0048). In
fact, P. putida did not improve any of the four health-related
parameters measured.

Effect of Symbiotic Association on
Plant Growth
A contrario, bacterial treatments, especially site-specific species,
significantly improved aboveground growth (Figure 3). After
32 weeks, seedlings inoculated with P. putida had significantly
greater needle biomass (P-value < 0.0001), stem biomass
(P-value = 0.0048), and stem length (P-value = 0.0217) than
control plants not associated with a bacterial strain.

Surprisingly, no aerial growth parameter was directly
influenced by mycorrhizal fungi treatment. However,
careful observation of the belowground growth was much
more informative. For the number of root tips per plant,
there was an interaction between the three factors Tailing
type × fungus × bacteria (Figure 4; P-value = 0.0128), while

FIGURE 1 | White spruce seedling after 32 weeks of growth in waste rocks or
fine tailings from the Sigma-Lamaque gold mine. (A) Partial view of the
glasshouse experiment; typical examples of (B) a healthy white spruce
seedling and (C) an unhealthy white spruce seedling; root tips colonized by
(D) Hebeloma crustuliniforme, (E) Tricholoma scalpturatum, and
(F) Cadophora finlandia.
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FIGURE 2 | White spruce health related parameters affected by symbiotic associations. (A) Root water content (%); (B) proportion of dark-red foliage (%);
(C) proportion of healthy green foliage (%), and (D) photochemical efficiency (Fv/Fm ratio) were affected by both mycorrhizal fungal treatment and bacterial treatment
after 32 weeks of growth. Values are means ± SE. Different letters indicate significant difference.

root tips number was <400 in plants grown on WR and
without microorganism associations: this number increased
significantly by 60 to 140% (Figure 4, “WR” labeled bars on
the left) with the inoculation of at least one symbiont (fungus,
bacteria, or both). The association with native fungi were the
most beneficial: on WRs, number of root tips went consistently
above average (Figure 4, see dashed line) when plants were
associated with T. scalpturatum. On FTs (Figure 4, “FT” labeled
bars on the right), the number of root tips increased by 20 to
100% (from 461 when plants were grown without a partner)
but only when seedlings grew in association with some specific
symbiont combinations. On this tailing type, the association
with T. scalpturatum was also beneficial but the inoculation of
rhizobacteria was not sufficient to notice a significant increase;
neither did the allochthonous fungus H. crustuliniforme alone
and several other fungus× bacteria combinations.

Mycorrhizal Root Colonization Rate
Root colonization was greater on WRs (45%) than on FTs
(37%) (Figure 5A; P-value < 0.0001). The percentage of
root tips colonized was not influenced by bacterial treatment

(P-value = 0.3194) but varied between the different mycorrhizal
fungi (Figure 5B; P-value < 0.0001). For instance, seedlings
associated with C. finlandia displayed the greatest percentage of
colonized root tips (63%).

Interestingly, the proportion of root tips colonized correlated
with health and growth variables in this experiment (Table 1).
The proportion of healthy green foliage, photochemical
efficiency, root growth parameters (total biomass, volume,
stem length, and root tips number), stem and finally needle
dry biomass correlated positively with the percentage of root
tips colonized. However, those relationships broke for several
growth parameters (number of root tips, stem, or needle dry
biomass) when plants were associated with the allochthonous
H. crustuliniforme and tended to be significantly much stronger
with C. finlandia than with T. scalpturatum.

DISCUSSION

In the present study, tree-symbiont associations proved to be
beneficial to the establishment of white spruce seedlings on
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FIGURE 3 | White spruce growth parameters affected by association with bacteria. (A) Needle dry biomass (mg), (B) Stem dry biomass (mg), and (C) stem length
(mm) were affected by rhizobacterial treatments after 32 weeks of growth. Values are means ± SE. Different letters indicate significant difference.

waste material of the Sigma-Lamaque gold mine. Mine-adapted
mycorrhizae and rhizobacteria were respectively capable of
improving plant health and growth under glasshouse conditions.

Microbial Symbiotic Association
Improved Overall Plant Health
Azotobacter chroococcum and to a lesser extent R. radiobacter
were more successful in enhancing white spruce seedlings
health but much less than mycorrhizal fungi and C. finlandia
in particular. Indeed, seedling health was greatly improved
by the two fungi C. finlandia and T. scalpturatum isolated
from the mining site. Inoculation with H. crustuliniforme
neither improved root water uptake nor other plant health

parameters, albeit Onwuchekwa et al. (2014) have demonstrated
that H. crustuliniforme increased white spruce water uptake on
oil sand tailings. Moreover, the same strain we used in this
study had proven to be beneficial to seedlings grown on peat
moss and sand mix under salt stress conditions (Mushin and
Zwiazek, 2002). But as a drought intolerant strain isolated from
a natural boreal forest stand (Coleman and Bledsoe, 1989),
H. crustuliniforme may not be well-suited to grow in mine
tailings, an environment very prone to water stress. Native C.
finlandia and T. scalpturatum fungi may be better adapted,
thereby capable of enhancing seedling health. Both species are
commonly found in high abundance and frequency, in heavy
metal polluted sites (Krpata et al., 2008; Gorfer et al., 2009).
Extreme, arid, or toxic soil conditions lead to the evolution
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FIGURE 4 | Number of white spruce root tips after 32 weeks of growth in 32 different conditions. There was an interaction between the three factors
(P-value = 0.0128): tailing type (WR, waste rocks; FT, fine tailings); mycorrhizal fungi (no fung., no fungi; +Hc, Hebeloma crustuliniforme; +Ts, Tricholoma
scalpturatum; +Cf, Cadophora finlandia); and bacteria (no bact., no bacteria; +Pp, Pseudomonas putida; +Rr, Rhizobium radiobacter; +Ac, Azotobacter
chroococum). The two large light gray bars indicate average root tips number on waste rocks and FTs. Values are means ± SE, same letters are not significantly
different at α = 0.05, Tukey test.

FIGURE 5 | The proportion of root tips colonized by mycorrhizal fungi.
(A) Figure is different on waste rocks than on fine tailings, (B) diverge between
the different fungi inoculated. Values are means ± SE. Different letters indicate
significant difference.

of tolerant strains, an adaptation indispensable for both tree
and fungal survival (Colpaert et al., 2011). Like for many
fungi (Douhan et al., 2011), the genetic diversity of C. finlandia

is still unknown but, under conditions of high heavy metal
concentrations, it has the capability to enhance the expression
of several genes encoding extracellular and plasma membrane
proteins potentially involved in detoxification processes (Gorfer
et al., 2009). T. scalpturatum is a generalist species with high
genetic diversity at the local scale (Carriconde et al., 2008),
whereas, H. crustuliniforme has low intraspecific genetic diversity
(Aanen et al., 2000).

The ability of mycorrhizae to improve seedling health is
indeed site-specific and positively associated with its capacity to
grow on a given substrate. Root colonization rate was much lower
on FTs than on WRs, the substrate on which plants performed the
best. In a preliminary in vitro experiment (unpublished), we have
found that C. finlandia produced the highest mycelial biomass
on poor liquid medium amended with mine tailings followed
by T. scalpturatum and then H. crustuliniforme. Accordingly,
in the present study, plants inoculated with H. crustuliniforme
were the ones with the least colonized root system compared
to T. scalpturatum and C. finlandia inoculated ones, the later
being the most colonized. C. finlandia is also the one symbiont
that alleviated the most Ca and Fe deleterious effects in vivo
(Nadeau et al., 2018). Health-related parameters were strongly
and positively correlated with root colonization rates of the two
fungi isolated from the mining site but only to a smaller extent
with mycorrhization rate of H. crustuliniforme, the fungus that
presents the lowest potential for reforestation program in gold
mine WR and FTs.
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TABLE 1 | Pearson correlation coefficient (r) and their associated P-values calculated for the proportion of root tips colonized by different mycorrhizal fungi and measured
health and growth variables.

Proportion of healthy green foliage Photochemical efficiency

Cadophora
finlandia

r = 0.75 (P-value < 0.0001) r = 0.67 (P-value < 0.0001)

Tricholoma
scalpturatum

r = 0.71 (P-value < 0.0001) r = 0.54 (P-value < 0.0001)

Hebeloma
crustuliniforme

r = 0.47 (P-value < 0.0001) r = 0.33 (P-value = 0.0014)

Root dry biomass Total root volume Total root length Root tips number Stem dry
biomass

Needle dry
biomass

Cadophora
finlandia

r = 0.56
(P-value < 0.0001)

r = 0.59
(P-value < 0.0001)

r = 0.49
(P-value < 0.0001)

r = 0.34
(P-value = 0.0013)

r = 0.38
(P-value = 0.0004)

r = 0.34
(P-value = 0.0014)

Tricholoma
scalpturatum

r = 0.43
(P-value < 0.0001)

r = 0.47
(P-value < 0.0001)

r = 0.41
(P-value < 0.0001)

r = 0.26
(P-value = 0.015)

r = 0.28
(P-value = 0.0078)

r = 0.21
(P-value = 0.0451)

Hebeloma
crustuliniforme

r = 0.37
(P-value = 0.0003)

r = 0.41
(P-value < 0.0001)

r = 0.35
(P-value = 0.0008)

r = 0.15
(P-value = 0.1714)

r = 0.2
(P-value = 0.0606)

r = 0.12
(P-value = 0.2653)

Significant correlation at α ≤ 0.05. Statistically significant values (P < 0.05) are given in bold.

Improvement of Plant Growth Is
Associated With Symbiont Type and
Source
Despite its huge effect on plant health, mycorrhization did not
enhance seedling aerial growth in this experiment. Moreover,
mycorrhization rate of native species correlated well with root
growth but much less with aerial growth parameters. Early
root colonization could have a carbon cost that negates the
aboveground seedling growth during the first growing season
but enhances it the subsequent years (Rygiewicz and Andersen,
1994). An idea supported by the fact that several treatments
with at least one symbiont yielded a higher number of fine
root tips on white spruce seedlings than the control without
symbiont. Mycorrhizal fungi and rhizobacteria such as species
of the genus Pseudomonas and Azotobacter produce auxins that
alter considerably the host root morphology (Rajkumar et al.,
2009; Etemadi et al., 2014). On that account, hormone production
by the investigated symbionts plays probably a very important
role in plant growth behavior. The production of a higher number
of root tips by seedlings inoculated with mycorrhizal fungi and/or
rhizobacteria may be highly beneficial to white spruce trees by
allowing extra uptake of water and nutrients.

The inoculation of white spruce with P. putida, a rhizobacteria
strain isolated from the rhizosphere of healthy white spruce
seedlings naturally regenerating on the mining site, was the only
treatment that increased considerably seedling aerial growth.
Beall and Tipping (1989) and O’Neill et al. (1992) have also
reported that P. putida enhanced jack pine and spruce aerial
growth.

Though the beneficial effects of A. chroococcum or
R. radiobacter have been extensively demonstrated in both
woody (Leyval and Berthelin, 1993; Karthikeyan and Sakthivel,
2011) and non-woody (Aquilanti et al., 2004; Humphry et al.,
2007; Baset Mia and Shamsuddin, 2010) plant species, neither
of the commercial strain of A. chroococcum nor the indigenous
R. radiobacter influenced plant growth according to our results.

However, to the best of our knowledge, the present study is
the first to investigate the impact of native rhizobacteria on
gold mine tailings, a completely different environment than
agricultural fields and forest stands. Indeed A. chroococcum may
not be adapted to tailing conditions as much as P. putida in that
perspective. However, unlike P. putida, both A. chroococcum
and R. radiobacter had appreciable effects on seedling health
suggesting a much complex explanation for their limited plant
growth promoting ability. For that reason, bacterial selection
must be cautiously done in order to identify strains that have the
potential to be effective in the field.

Selection of Symbiotic Partners for
Successful Mine Reforestation Programs
In conclusion, our initial on-site sampling strategy proves to
be effective: mycorrhizal fungi and rhizobacteria isolated from
roots of healthy white spruce seedlings naturally regenerating
on the mining site proved to be remarkably more efficient
than allochthonous species in enhancing seedling health and
growth when planted on mine tailings. Within the 32 weeks of
glasshouse trial, native fungi, C. finlandia, T. scalpturatum, and
the native rhizobacteria R. radiobacter promoted seedling health
through better root colonization rate. The native rhizobacteria
P. putida was the sole symbiont that distinctly improve seedling
aerial growth but not seedling health. Allochthonous fungus,
H. crustuliniforme had little effects on seedling performance,
whereas plants benefited from the inoculation of A. chroococcum.
Specifically, the allochthonous rhizobacteria A. chroococcum
improved seedling root water uptake, especially when paired with
mycorrhizal fungi. As discussed in a companion paper (Nadeau
et al., 2018), a symbiont (or symbiont combination) capacity to
modulate plants access to otherwise limited (water, nutrients) or
toxic compounds is directly linked to the success of the white
spruce seedling establishment.

Since its soil chemical composition is already
well-documented, the Sigma-Lamaque gold mine at Val-d’Or
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is at one and the same time a land that must be revegetated once
its exploitation is completed and a potential testing ground to
validate the several steps involved in the development of a new
green technology (Nadeau, 2014). The comprehensive analysis of
the entire ecosystem – of which the present study is an important
component – should unravel the significance of each parameter
for the success of an integrated reforestation program including
the soil chemical composition and the isolation, selection,
validation, and large-scale production of the best plant–symbiont
combinations (Nadeau and Khasa, 2016).
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FIGURE S1 | Illustrations and design of the experiment. Mycorrhizal fungi and
rhizobacteria used in this (A) glasshouse experiment were either (B) native from
the Sigma-Lamaque gold mine site [Tricholoma scalpturatum (Ts), Cadophora
finlandia (Cf), Pseudomonas putida (Pp), Rhizobium radiobacter (Rr)] or isolated
from a natural forest stand [Hebeloma crustuliniforme (Hc)] or of commercial origin
for Azotobacter chroococcum (Ac). White spruce saplings were either planted in
(C) waste rocks (WRs) or in fine tailings (FTs). (D) Randomized complete block
(RCB) design with three crossed fixed factors: tailing type (FT in regular font, WR in
bold); fungi [none (noF) in black; Ts, green font; Cf, blue font; Hc, red font]; and
bacteria [none (noB), no background; Rr, background in red; Pp, background in
blue; Ac, background in green] for a total of 32 treatments, 4 blocks, 3 replicates
per treatment per block, and 384 experimental units.
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