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DISCIPLINARY ORIGINS OF PLANT SILICON AND PHYTOLITH
RESEARCH

Plant silicon and phytolith research stands as a good example for how a single phenomenon
or theme is studied by scholars from multiple disciplines, and for how knowledge flows among
disciplines. At its very core and origins, plant silicon and phytolith research lies in traditional
botany, since it studies the occurrence and role of silicon and phytoliths within plants and among
plant groups (e.g., Hodson et al., 2005; Katz, 2014, 2015; Strömberg et al., 2016) and can be
potentially used to improve taxonomy and systematics by providing more characters to be included
in analyses (e.g., Prychid et al., 2004; Katz, 2014, 2018a). Nevertheless, plant physiologists study
the mechanisms of silicon uptake, transport and accumulation within plants (e.g., Peleg et al., 2010;
Mitani-Ueno et al., 2014; Ma and Yamaji, 2015; Kumar et al., 2017), chemists study the mechanisms
of its deposition (e.g., Currie and Perry, 2007; Patwardhan et al., 2012), ecophysiologists identify
silicon’s and phytoliths’ functions within plant tissues (e.g., Fauteux et al., 2005; Liang et al., 2007;
Epstein, 2009; Guntzer et al., 2012; Cooke and Leishman, 2016; Coskun et al., 2016) and ecologists
study how silicon and phytoliths interact with herbivores (e.g., Massey and Hartley, 2006; Katz
et al., 2014; Hartley, 2015; Frew et al., 2016) and shape plant communities (e.g., Jacobs et al., 2013;
Schoelynck et al., 2014; Cooke et al., 2016), ecosystems (e.g., Cooke and Leishman, 2011; Cooke
et al., 2016; Schoelynck and Struyf, 2016), and even biomes and the entire ecosphere (e.g., Carey
and Fulweiler, 2012, 2016; Song et al., 2012, 2017; Katz, 2018b).

Within Earth sciences, biogeochemists study the physics and chemistry of plant silicon and
phytoliths, including their dissolution (e.g., Fraysse et al., 2009; Cabanes and Shahack-Gross, 2015)
and chemical and isotopic composition (e.g., Hodson et al., 2008; Kamenik et al., 2013; Alexandre
et al., 2015). Others study the silicon cycle (e.g., Alexandre et al., 2011; Carey and Fulweiler, 2012,
2016; Song et al., 2012, 2017) and its connections with other biogeochemical cycles (e.g., Street-
Perrott and Barker, 2008; Carey and Fulweiler, 2012, 2016; Song et al., 2012, 2017; Alexandre
et al., 2015; Cornelis and Delvaux, 2016). Plant silicon and phytoliths are also often used in
geoarchaeology to infer past human life (e.g., Tsartsidou et al., 2008; Lancelotti et al., 2014; Hart,
2016), as well as in paleontology to reconstruct ancient vegetation and ecosystems (e.g., Strömberg
et al., 2007; Albert and Bamford, 2012) and to trace the evolution of plants and animals (e.g., Prasad
et al., 2011; Strömberg, 2011; Katz, 2015; Strömberg et al., 2016).

Thus, plant silicon and phytolith research demonstrates the integration of knowledge from both
Earth and life sciences. The plant silicon and phytolith research community studies the effects of
plant silicon uptake on other organisms, ecosystems and biogeochemical cycles in tandem with the
effects of other organisms, ecosystems and biogeochemical cycles on plant silicon uptake. Likewise,
members of the community use geoarchaeological and palaeontological methods to understand the
evolution and history of plants and animals, while using knowledge of the evolution of plants and
animals to understand changes in the geosphere and Earth themselves. While all these themes are
intimately connected, share many theoretical and methodological aspects, and constitute a single
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research topic, only rarely do we see a researcher or a research
group that covers a considerable portion of this wide range.
One possible reason for this is that the question one asks, the
methods one employs to answer them, and the interpretations
of these results are strongly influenced by one’s parent discipline.
Many of us study plant silicon and phytoliths as part or in
addition to other themes within our parent disciplines, thus
hindering the formation of a common meeting ground or
language for plant silicon and phytolith researchers from various
parent disciplines. The compilation of the International Code for
Phytolith Nomenclature (Madella et al., 2005) is an advancement
toward solving part of this problem, albeit somewhat limited to
more technical rather than theoretical issues.

By remaining bound to parent disciplines, we sentence our
field to remain adjacent to the mainstream (rather than within
it) and led by parent disciplines and their agendas. Instead, we
should form a greater integrated framework that links our parent
disciplines, extends their scopes, increases dialogue among
them, and achieves high-order knowledge transfers among them
(Figure 1). This is possible now more than ever. Since Earth
and life sciences are merging, our field that sits between them
can gain a rightful place at the center stage of a new emerging
superdiscipline.

SILICON AND PHYTOLITH RESEARCH
WITHIN THE INTERDISCIPLINARY
EARTH-LIFE SCIENCES MERGER

As science progresses, so do models of knowledge transfer
(Krishnan, 2009). The simplest model is cross-disciplinary
knowledge transfer (Figure 1A), in which knowledge from one
discipline is borrowed by researchers from another discipline,
without true collaboration or dialogue among disciplines. This
model is very uncommon because of its inherent shortcoming:
that people outside a discipline use knowledge although they have
lesser understanding of its underlying assumptions and theories
or of specific methodologies (Keene, 1983; Krishnan, 2009). The
use of this model nowadays is limited strictly to methodological
technicalities.

A second, common model is of multidisciplinary
collaboration (Figure 1B), in which one discipline initiates
a research programme, on which research teams from other
disciplines work independently. The initiating discipline is
responsible for synthesis and gains most of the knowledge, while
the other disciplines gain less knowledge (often methodological
knowledge only). Examples for multidisciplinary collaborations
in plant silicon and phytolith research include the use of phytolith
analysis to increase botanical knowledge in archaeology (e.g.,
Albert et al., 1999; Tsartsidou et al., 2008; Lancelotti et al.,
2014; Hart, 2016) and palaeoecology (e.g., Albert and Bamford,
2012). Others revealed parts of evolutionary history through
new insights into plant physiology and ecology (e.g., Strömberg
et al., 2007; Prasad et al., 2011; Strömberg, 2011; Katz, 2015,
2018a). Vice versa, some scholars use plant silicon and
phytoliths to identify possible external evolutionary stimuli
that may provide insight into the function of plant silicon

FIGURE 1 | Four models for transfer and sharing among disciplines (Klink

et al., 2002; Krishnan, 2009). (A) Cross-disciplinary knowledge transfer:

Scholars from one discipline (yellow) use knowledge or methods from another

discipline asymmetrically and unidirectionally. (B) Multidisciplinary

collaboration: One discipline (yellow) initiates a research programme, on which

other disciplines work independently. Synthesis is carried out almost solely by

the initiating discipline, and although knowledge transfer is not unidirectional, it

is asymmetrical. (C) Interdisciplinary framework: Several disciplines share a

theoretical framework. All disciplines contribute knowledge to the shared

framework and take part in synthesis. Knowledge flows symmetrically, but

through a mediating intersection. (D) A superdiscipline: Disciplines are

rearranged by relaxing boundaries among them and thus looking at the union

rather than at the intersection. Each discipline bears an equal weight and

knowledge flows in all directions (ideally) free of constrains.

and phytoliths (e.g., Katz, 2014, 2015; Strömberg et al., 2016).
Finally, phytolith chemistry contributes to our understanding of
silicon dissolution in soil and transport in ecosystems (Fraysse
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et al., 2009; Alexandre et al., 2015; Cornelis and Delvaux,
2016).

A third, more complex model is the interdisciplinary
framework (Figure 1C), in which researchers from various
disciplines contribute and gain relatively equally, but all
knowledge transfer is carried out through a shared theoretical
framework. Two interdisciplinary frameworks that are of special
interest for plant silicon and phytolith researchers are Earth
System Science (ESS) and plant functional diversity. ESS is an
interdisciplinary framework that attempts “to obtain a scientific
understanding of the entire Earth System on a global scale by
describing how its component parts and their interactions have
evolved, how they function, and how they may be expected to
continue to evolve on all time scales” (Earth System Science
Committee, 1986) by applying methods and concepts from
systems and complexity theories. ESS is therefore a merger of
Earth and life sciences that uses systems and complexity theories
as the common ground. Both paleontology and ecosystem
ecology can be seen as subdivision of ESS, the former focusing
on evidence for the evolution of the entire Earth System and
the latter focusing on the direct interactions of Earth and life
components within ecosystems, hence relying on emergence
theory and ecosystem theory (respectively) as subsets of systems
and complexity theories. Some studies of the silicon cycle and
its interactions with the carbon cycle have quite explicitly used
systems and complexity theories (Alexandre et al., 2011; Carey
and Fulweiler, 2012, 2016; Cornelis and Delvaux, 2016), and thus
represent an integration of plant silicon and phytolith research
within the ESS framework.

Plant functional traits are quantitative traits whose values are
affected by environmental variables and affect plant, community
and ecosystem properties and functioning (Garnier et al., 2016).
When discussing ecosystem functions like elemental cycling,
plant functional diversity is an interdisciplinary framework that
connects Earth and life sciences, with plant functional traits as the
common ground that mediates the effects of Earth components
on plants and the effects of plants on the ecosystem, again
greatly relying on systems theory. Therefore, ESS studies and
models can improve if they take into account plant functional
traits and types (Beerling, 2007; Van Bodegom et al., 2012;
Wullschleger et al., 2014). Although often ignored bymainstream
plant functional diversity literature, plant silicon and phytolith
contents are gaining increasing recognition as a plant functional
trait, and are now known to be involved in plant responses to
their environment and plant effects on the environment (Cooke
and Leishman, 2011; Carey and Fulweiler, 2012; Song et al.,
2012, 2017; Katz, 2014, 2015, 2018b; Schoelynck et al., 2014;
Cooke et al., 2016; Schoelynck and Struyf, 2016). Therefore, plant
silicon and phytolith research is a part of the interdisciplinary ESS
framework.

AN EARTH-LIFE SUPERDISCIPLINE–A
PROMISING FUTURE

These three aforementioned models, and especially
multidisciplinary collaborations and interdisciplinary

frameworks, have served scientists very well, including in
merging knowledge from Earth and life sciences and in plant
silicon and phytolith research. However, they are not without
shortcomings, including the asymmetry of knowledge transfer,
the adherence to certain framing theories, and the limited
integration that stems from maintaining boundaries among
disciplines.

These shortcomings are overcome in the most advanced
model of knowledge transfer and sharing among disciplines,
the superdiscipline (Figure 1D), in which boundaries among
disciplines are relaxed and knowledge flows freely within the
greater domain of the superdiscipline, unbounded to any
discipline or framing theory. Although relaxing disciplinary
boundaries without the mediation of framing theories is difficult,
it is very promising when attempting to answer big, complex,
discipline-transgressing and irreducible questions (Krishnan,
2009). The seeds for a merged Earth-life superdiscipline have
been sown many years ago. Ecosystem ecology, ESS and
plant functional diversity represent great advancements in
this direction, yet as interdisciplinary frameworks they are
bound to the intersections of the parent disciplines and to
the framing of systems and complexity theories. The road
to a true Earth-life superdiscipline lies, at least in part, in
removing these boundaries, as Beerling (2007) has nicely
demonstrated in his book The Emerald Planet, which introduces
a synthesis of plant physiology, paleontology and atmospheric
sciences.

Somewhat ironically, the fact that plant silicon and phytolith
research is adjacent to the mainstream means that it is less
constrained than existing interdisciplinary frameworks, and
therefore freer to achieve superdiscilinarity and have a leading
role in the formation of an Earth-life superdiscipline. A key
reason why plant silicon and phytoliths research can take a
leading role in forming the new Earth-life superdiscipline is
that this phenomenon inherently and intimately links Earth
and life. Silicon is the second most abundant element in the
Earth’s crust, whose uptake by plants affects biotic (Massey
and Hartley, 2006; Epstein, 2009; Cooke and Leishman, 2011,
2016; Strömberg, 2011; Guntzer et al., 2012; Schoelynck et al.,
2014; Hartley, 2015; Schoelynck and Struyf, 2016; Frew et al.,
2016) and abiotic (Street-Perrott and Barker, 2008; Alexandre
et al., 2011; Carey and Fulweiler, 2012, 2016; Song et al.,
2012, 2017) processes at multiple scales. Understanding some
of these processes requires and benefits from understanding
the variation of plant silicon uptake and accumulation across
taxa (Hodson et al., 2005; Katz, 2014, 2015; Strömberg et al.,
2016), habitats, ecosystems and biomes (Carey and Fulweiler,
2012; Katz et al., 2013, 2014; Schoelynck et al., 2014; Song et al.,
2017) and geologic time (Prasad et al., 2011; Strömberg, 2011;
Katz, 2015; Strömberg et al., 2016). The references cited in this
paragraph alone (and throughout this manuscript) demonstrate
that many of us already carry out studies that cross and
relax disciplinary boundaries, either in a single study or in
a person’s or group’s combined research portfolio. It seems
that this attribute of our field puts it in a better and more
developed and advanced position to intimately merge Earth
and life sciences, possibly even compared to some fields of
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research that lay deeper within the mainstream and that are
more intensively studied, such as photosynthesis and the carbon
cycle.

Hence, embedding superdisciplinary thinking in plant
silicon and phytolith research can not only advance our
field, but increase its impact in the merger of Earth and
life sciences into a single superdiscipline. Working toward
this goal is a true new frontier for plant silicon and
phytolith research, for Earth-life sciences and for science in
general.
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