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The development of high-throughput genotyping has made genome-wide association

(GWAS) and genomic selection (GS) applications possible for both model and non-model

species. The exploitation of genome-assisted approaches could greatly benefit breeding

efforts in American cranberry (Vaccinium macrocarpon) and other minor crops. Using

biparental populations with different degrees of relatedness, we evaluated multiple GS

methods for total yield (TY) and mean fruit weight (MFW). Specifically, we compared

predictive ability (PA) differences between univariate and multivariate genomic best linear

unbiased predictors (GBLUP and MGBLUP, respectively). We found that MGBLUP

provided higher predictive ability (PA) than GBLUP, in scenarios with medium genetic

correlation (8–17% increase with corg∼0.6) and high genetic correlations (25–156%

with corg∼0.9), but found no increase when genetic correlation was low. In addition,

we found that only a few hundred single nucleotide polymorphism (SNP) markers are

needed to reach a plateau in PA for both traits in the biparental populations studied (in

full linkage disequilibrium). We observed that higher resemblance among individuals in the

training (TP) and validation (VP) populations provided greater PA. Although multivariate

GS methods are available, genetic correlations and other factors need to be carefully

considered when applying these methods for genetic improvement.

Keywords: genomic prediction, prediction accuracy, genomic selection, multivariate models, Vaccinium
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INTRODUCTION

A central goal of genetics is the identification of genotype-
phenotype associations. Traditional quantitative trait loci (QTL)
mapping and genome-wide association studies (GWAS) are
the primary tools for achieving such a goal. Thousands of
genetic variants associated with traits of agronomic importance
in economically important crops have been identified in the last
century (Ingvarsson and Street, 2011). However, unraveling the
causal genes behind such QTLs has often not been accomplished
due to the high costs involved. Fortunately, the identification
of markers in linkage disequilibrium (LD) with agriculturally
important causal variants has been enough to move the genomic
information to breeding applications such as marker-assisted
selection (MAS), marker-assisted backcrossing, and pyramiding
of major disease resistance genes (Flint-Garcia et al., 2003;
Holland, 2004; Jiang et al., 2004; Bertrand and Mackill, 2008).
However, after decades of studies, the application and value of
the QTL paradigm for plant improvement has been questioned
due to its low success in deploying genetic markers for breeding
quantitative traits (Bertrand and Mackill, 2008; Xu and Crouch,
2008).

Genomic selection (GS), introduced by Meuwissen et al.
(2001), has become the next step in MAS methods and has been
effectively used in plant and animal breeding programs for more
than a decade (Hayes et al., 2009; Jannink et al., 2010). Currently,
several species have adopted this methodology, and moderate
to high prediction accuracies [based on cross-validation (CV)]
have been reported in crops such as wheat (Triticum aestivum),
oat (Avena sativa), maize (Zea mays), rice (Oryza sativa), rye
(Secale cereale), and barley (Hordeum vulgare) (Asoro et al.,
2011; Zhao et al., 2012; Lipka et al., 2014; Rutkoski et al., 2014;
Wang et al., 2014; Sallam et al., 2015; Spindel et al., 2015). Fruit
crops have adopted this technology slower, although major fruit
crops such as apple (Malus× domestica) and kiwifruit (Actinidia
deliciosa) have made great progress on the implementation of
these technologies (Testolin, 2010; Kumar et al., 2012; Muranty
et al., 2015). The slower adoption could be due to the availability
of genomic resources, and concerns about the effectiveness of
GS compared to classical methods, such as phenotypic recurrent
selection, which have made important progress in fruit breeding
for hundreds of years. Recently, next-generation sequencing
(NGS) studies have reduced the gap between major and minor
crops such as cranberry (Vaccinium macrocarpon Ait.; 2n = 2x)
(Huang et al., 2009; Zalapa et al., 2012; Fajardo et al., 2014;
Polashock et al., 2014; Schlautman et al., 2015; Covarrubias-
Pazaran et al., 2016). Other fruit crops, including apple and
kiwifruit, have used these methods to generate vast quantities
of markers to propose and perform GS (Testolin, 2010; Kumar
et al., 2012; Muranty et al., 2015). The efficiency of GS to
select parents in shorter intervals (i.e., predictions early on

Abbreviations: CV, cross-validation; GBLUP, genomic best linear unbiased
predictor; GBS, genotyping-by-sequencing; LD, linkage disequilibrium; LG,
linkage group; MGBLUP, multivariate genomic BLUP; MFW, mean fruit weight;
PA, predictive ability; QTL, quantitative trait loci; SNP, single nucleotide
polymorphism; SSR, simple sequence repeat; TP, training population; TY, total
yield; VP, validation population.

the breeding pipeline) and the possibility to increase selection
intensity compared to classical approaches (i.e., ability to predict
untested individuals) holds great potential for fruit breeding
(Riedelsheimer and Melchinger, 2013; Endelman et al., 2014).

Various factors including training population (TP) size,
marker density, heritability, magnitude of the LD, trait
architecture, resemblance between TP and the validation
population (VP), and the interaction of these factors, appear
to be the principal forces driving the prediction accuracies of
GS (Lorenzana and Bernardo, 2009; Guo et al., 2012; Resende
et al., 2012; Habier et al., 2013; Riedelsheimer et al., 2013;
Lorenz and Smith, 2015; Muranty et al., 2015). In addition,
a thorough characterization and modeling of environmental
variances (Technow et al., 2015) and the covariance among
multiple traits also appear to increase the accuracy of GS models.

One of the most recent ideas to increase the predictive ability
of the GS models is the use of multivariate models. The use of
multivariate mixed models in breeding was originally proposed
in animal breeding to model the genetic correlation among
traits, longitudinal data, and to model genotype by environment
interactions (trajectory across multiple years or environments)
in order to exploit the existent correlations in the data (Mrode,
2014; Lee and Van derWerf, 2016). The first application of mixed
models for multi-trait evaluation was by Henderson and Quaas
(1976). The gain in accuracy of multivariate models compared
to univariate models depends largely on the difference between
the genetic and residual correlations between the responses
(Schaeffer, 1984; Thompson and Meyer, 1986). A positive impact
of the multi-trait methodology is its capacity to increase the
predictive ability on traits with low heritability when they are
analyzed together with high heritability traits that are genetically
correlated (Thompson and Meyer, 1986). Until the last decade,
multivariate methods have been exploited in plant and animal
breeding mainly in species with pedigree information available
to model the relationships among individuals and traits in
the mixed model framework (Mrode, 2014). With the advent
of massive molecular marker datasets, genomic relationship
matrices are replacing pedigree-based relationship matrices,
opening new analysis options for crops with limited pedigree
information (Endelman and Jannink, 2012).

Like other woody perennial species, cranberry genetic
improvement has been limited by the long interval needed to
produce a cultivar (Janick and Moore, 1975; Johnson-Cicalese
et al., 2015). Furthermore, due to its recent domestication in the
mid-1800s and late start of breeding efforts in the 1920s, advances
in cranberry genetics have been even slower with respect to other
major fruit crops such as apple and peach. Therefore, cranberry
could serve as a model for how NGS coupled with molecular-
assisted breeding strategies, such as GS, could accelerate cultivar
development in non-model or partially domesticated crop species
(Zalapa et al., 2012, 2015). Within the past 5 years, NGS
technologies have been used to increase the availability of
genomic resources in cranberry from almost none to now
include: assembled organellar genomes (Fajardo et al., 2012,
2014), a draft nuclear genome and transcriptome (Polashock
et al., 2014), multiple SSR based genetic maps (Georgi et al., 2013;
Schlautman et al., 2015), and most recently high density genetic
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maps and a consensus map with thousands of SNP (Covarrubias-
Pazaran et al., 2016; Schlautman et al., 2017) and the use of
massive high throughput phenotyping techniques (Diaz-Garcia
et al., 2018). Currently, cranberry breeding relies heavily in
the evaluation of medium to large biparental populations with
the main goal of improving commercially useful traits such as
fruit color, shape, and brix degrees, as well as disease resistance
and yield. Cranberry breeding requires a hefty initial economic
investment for field evaluation due to the need of constructing
flooding beds that mimic commercial growing conditions to
allow water harvesting. Construction of a one acre cranberry bed
to evaluate 500 genotypes will cost between $25,000 and $30,000
USD, not including maintenance and evaluation of the bed.
Additionally, the release of a new cranberry varieties has required
more 20 years on average. Thus, reducing the breeding cycle
length by using genomic technologies and selective phenotyping
to reduce the high cost of evaluating biparental populations are
the main drivers of current research in cranberry breeding.

In this research, we used the genomic resources available
in cranberry to test the usefulness of genomic selection and
compare differences in PA for total yield (TY) and mean fruit
weight (MFW) in cranberry. We used both univariate and
multivariate genomic best linear unbiased predictor (GBLUP
and MGBLUP, respectively) approaches together with traditional
biparental populations commonly used in cranberry breeding.
This research will allow us to understand the benefits of using
genomic prediction using related individuals (i.e., full-sib and
half-sib individuals) with the aim of reducing the population-
sizes of families to be planted for field evaluation (which is the
most expensive part of a cranberry breeding program) while
also increasing the number of families evaluated in the field
trials. Also, we investigated two scenarios: low or null genetic
correlation scenario (in our data the correlation between TY and
MFW) and high genetic correlation scenario (in our data the
correlation amongmultiple years). These two scenarios will allow
us to investigate the usefulness of MGBLUP to improve the PA in
our current GS efforts.

MATERIALS AND METHODS

Plant Material and Marker Information
We used three cranberry biparental populations denominated
CNJ02 (Mullica Queen x Crimson Queen; MQ × CQ, N =

148), CNJ04 (MQ × Stevens, N = 67) and GRYG [BGBLNL
× (GH1x35), N = 351]. The parents of the three crosses are
highly heterozygous genotypes frequently used in cranberry
breeding programs. MQ and CQ are hybrids obtained after
three generations of selection from wild materials, BGBLNL and
GH1x35 are second-generation hybrids and Stevens is a first-
generation hybrid from twowild selected parents. The CNJ02 and
CNJ04 populations are planted and maintained at the Rutgers
University P.E. Marucci Center, Chatsworth, NJ. The GRYG
population is planted and maintained at Valley Corporation,
Tomah, Wisconsin. CNJ02 and CNJ04 are half-sibs, and are
not closely related with GRYG. Each genotype was clonally
propagated and planted in the field using multiple cuttings in

a defined 0.46 m2 (5 ft2) square plot to mimic commercial
conditions.

Genotypic information was obtained using the GBS protocol
from Elshire et al. (2011) with modifications described in
Schlautman et al. (2017). EcoT22I, which cuts the site 5′-
ATGCA↓T-3′/ /3′-T↑ACGTA-5′, was selected for reducing
genome complexity in this study based on GBS optimization
results in cranberry to ensure good coverage for sequence tags
in all populations [more details can be found in Covarrubias-
Pazaran et al. (2016) and Schlautman et al. (2017)]. Resulting
libraries were sequenced on the Illumina HiSeq 2000 sequencing
platform (Illumina, San Diego, California).

From the different number of SNPs available in each of
the three biparental populations, a total number of 7389 SNP
markers were polymorphic across the 12 linkage groups (LGs)
in at least one of the three cranberry populations. Markers were
positioned using the consensus genetic map (anchoring 6074
markers) obtained and described by Schlautman et al. (2017).
Only biallelic loci with minor allele frequency (MAF)>0.05 were
used in the analyses. According to the genetic maps published the
SNPs cover the entire linkage groups and therefore causal and
non-causal regions were assumed to have markers. Genotypic
data is available in the Supplementary File 1.

Phenotype Collection
Repeated measures for total yield (TY) and mean fruit weight
(MFW) were taken over a three-year period for 148 genotypes
from the CNJ02 population (2011–2013) and 67 genotypes
for CNJ04 (2012-2014); the GRYG population comprised 351
genotypes for which data was collected over a two-year period
(2014-2015). TY was determined by harvesting and weighting
all the fruit within a 0.09 m2 (1 ft2) metallic square set in each
cranberry plot [0.46 m2 (5 ft2)] representing each genotype.
Twenty five fruit for each genotype were randomly selected and
weighted to calculate MFW as described in Georgi et al. (2013)
and Johnson-Cicalese et al. (2015).

Experimental Design and Mixed Modeling
All populations were planted together with 15 check plots (3
plots per 5 parents) positioned spatially across the flooding
beds (commercial-condition fields). Additionally, to deal with
the lack of replication in our experimental design, a two-step
approach was used for the GS exercise for each population. First,
a heterogeneous-variance univariate mixed model including all
years of data was used to fit a model of the form y = Xβ + Zu
+ ε, where y was the response variable (TY or MFW), X and Z

were incidencematrices for fixed and random effects respectively,
β was the vector of fixed effects associated to the environment
(year-location combination), u was the vector of random effects
associated to rows [r∼ (0, Iσ2r )], range or columns [c∼ (0, Iσ2c)],
the 2-dimensional spline [d∼ (0, Iσ2d)], and genotypic effects [g∼
(0, Iσ2g)] (no marker information used at this point), and ε was

the error associated to the model ε ∼ (0, Iσ2e). The heterogeneous
variance model was used to allow a different variance component
for genotype effects in each environment as for the other random
effects. This was achieved by using the diag() covariance structure
functionality in the mmer2() function available in sommer, i.e.,
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diag(ENV):genotype fits for a random effect for genotypes with
a variance var(ug) = Ge ⊗ A, where G is the variance covariance
for genotypes among environments andA is a relationshipmatrix
among genotypes:

var
(

ug
)

= Ge ⊗ A =







σ 2
e1 . . . σe1ei

. . .
. . . . . .

σeie1 . . . σ 2
eiei






⊗A

where A was typically a variance covariance matrix among the
levels of the random effect (i.e., genotypes evaluated, levels of
blocks, etc.) and for this model was a diagonal matrix with as
many ones as genotypes evaluated (the genomic relationship
matrix was not used at this point) and σeiej was the covariance
among the same genotypes in different environment and here
was considered zero for the diagonal model. The result was that
different variance components can be estimated for each random
effect in each environment, and by-environment genotype
predictions can be obtained. Because the mapping populations
were full-sib families with replication of alleles across genotypes
in a uniformly managed cranberry bed, we made a spatial
relationship assumption stating that large rows and columns
of genotypes should resemble one another allowing to fit row
and column effects (Schlautman et al., 2015). In addition, we
fitted the two-dimensional splines to account for spatial trends
that reflect shapes proper of tensor products (Velazco et al.,
2017). Residuals were investigated using variograms to verify the
proper fit. All spatial mixed models (two-dimensional splines)
were fitted using the R package sommer (Covarrubias-Pazaran,
2016). Variance components were tested to be different from zero
using likelihood ratio tests. Description of the phenotypic data,
variance components and heritabilities for this first stepmodeling
can be found in the Additional File 1.

From these models we obtained two types of predictions for
the genotype effect, one across environments and another for
each environment. The idea was to use the by-environment
genotype prediction to fit a multivariate model using each
environment genotype predictions as a response from the same
trait (i.e., [yMFW−2011, yMFW−2012]) to mimic a natural high
genetic correlation scenario, whereas the across-environment
predictions for both traits were used to build the multivariate
response that in our data mimics a low genetic correlation
scenario given the low genetic correlation found among these
traits (i.e., [yMFW, yTY]).

Data Filtering
In our experience, the use of data from environments with
null or very small genomic-heritability values (i.e., h2g < 0.10)
in multivariate models tends to bring computational issues or
non-sense genetic correlation values. Therefore, we decided to
calculate genomic heritabilities for each environment using the
by-environment genotype prediction as response and a single
random effect for genotypes using the genomic relationship
matrix. In summary a model of the form y = Xβ + Zu +

ε, where y is the response variable (by-environment genotype
prediction for TY or MFW), X and Z are incidence matrices
for fixed and random effects respectively, β is the vector of fixed

effects associated to the intercept only, u is the vector of random
effects associated to genotypes [g ∼ (0, Aσ 2

r )], where A is the
additive genomic relationship matrix [Ag =MM’/2 6 pi(1-pi)]
(VanRaden, 2008). Genomic heritabilities instead of generalized
forms of heritability where calculated given the greater ability
of genomic heritability to provide insight on the PA of the
data (Cullis et al., 2006; de los Campos et al., 2015). For each
trait-year combination the genomic heritability was calculated
using the formula h2g = σ2g / (σ2g + σ2e), where σ2g is the genetic

variance using marker-based relationship and σ2e is the residual
variance. Standard errors for the heritabilities were computed
using the delta method implemented in the pin function of the
R package sommer (Covarrubias-Pazaran, 2016). Environments
(year-location combination) with h2g lower than 0.10 or with

SE that approximated the h2g to zero were discarded from all
posterior analyses.

Genetic Correlation Across Years
Multivariate mixed models were used to assess the genetic
correlation across years within populations. Following (Maier
et al., 2015), the multivariate mixed model implemented has the
form:

y1 = X1β1 + Z1u1 + e1
y2 = X2β2 + Z2u2 + e2

...
yt = Xtβt + Ztut + et

where yi is a vector of trait phenotypes, βi is a vector of fixed
effects, ui is a vector of random effects for individuals and ei
are residuals for trait “I” (i = 1, . . . , t). The random effects (u1
. . . ui and ei) are assumed to be normally distributed with mean
zero.X and Z are incidence matrices for fixed and random effects
respectively. The distribution of the multivariate response and
the phenotypic variance covariance (V) are:

Y = Xβ + Zu+ ε where Y∼MVN(Xβ,V)

y =







y1
...
yt






X =







X1 . . . 0

. . .
. . . . . .

0 . . . Xt







V =









Z1Kσ 2
u1t1

Z1
′

+ Z1Rσ 2
et1
Z1

′

. . . Z1Kσu11,tZt
′

+ Zt1Rσe1,tZti
′

...
. . .

...

Z1Kσu11,tZt
′

+ Z1Rσe1,tZt
′

. . . ZtKσ 2
u1t

Zti
′

+ ZtRσ 2
et
Zt

′









where K is the relationship or covariance matrix for the kth random
effect (u= 1,. . . ,k), and R= I is an identity matrix for the residual term.
The terms, σ 2

uki
and σ 2

ei
denote the genetic (or any of the kth random

terms) and residual variance of trait “i,” respectively and σ
ukij

and σeij

the genetic (or any of the kth random terms) and residual covariance
between traits “i” and “j” (i = 1,. . . ,t, and j = 1,. . . ,t). For more
details about the multivariate algorithm used in sommer please look
at Covarrubias-Pazaran (2018). The genetic correlation among years
was calculated using the by-environment genotype predictions as the
multivariate response.
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Model Comparison
By-environment and across genotype predictions were used for
validating univariate and multivariate GS in each population
independently. The following methods were compared: (1) genomic
best linear unbiased predictor (GBLUP), which used the information
from all markers coded in the additive relationship matrix, (2)
GBLUP-AD, which included the additive and dominance relationships,
(3) GBLUP-ADE, which included the additive, dominance, and
epistatic relationships, and (4) Multivariate GBLUP, which exploits the
covariance information among traits (or environments) at the level of
genotypes and residuals. These models were fitted using the sommer

package (Covarrubias-Pazaran, 2016).
The first comparison among all models was made environment by

environment and trait by trait (i.e., comparison amongmodels forMFW
in environment Y2011, Y2012, etc.) for each population using the by-
environment genotype predictions as response variable. The MGBLUP
for this first comparison used as the multivariate response the same
trait-environment response than the univariate models plus data of
an additional environment (high genetic correlation in our data). A
second comparison among models was made using across-environment
genotype predictions for each trait. The MGBLUP for this second
comparison used as the multivariate response the across-environment
genotype predictions for both traits (low genetic correlation scenario in
our data).

The models were fitted using all markers by creating the additive
genomic relationship matrixAg for prediction in a kinship-based model
[Ag =MM’/2 6 pi(1-pi)] (VanRaden, 2008), dominance relationship
matrix Dg [Dg =NN’/6 2piqi(1- piqi)] (Su et al., 2012) and additive
by additive epistatic relationship matrix Eg (Eg =A#A; where # is the
Hadamard product) (Su et al., 2012), where M is the marker matrix
coded as −1, 0, 1 for the number of reference alleles for a given biallelic
marker for the Amatrix computation and 0, 1 (0 for homozygotes and 1
for heterozygotes genotypes) for the D matrix computation. The model
used has the typical mixed model form; y= Xβ + Zu+ ε, where y is the
response variable, X and Z are incidence matrices for fixed and random
effects, respectively, β is the vector of fixed effects (intercept only), u
is the vector of random effects associated to the genotypic effects with
the corresponding relationship matrices. For the multivariate GBLUP
model only the additive relationshipmatrix was used, and themodel and
distributions follow Covarrubias-Pazaran (2018). In total, 100 iterations
of 5-fold CV were used to test the PA under the different models. Tables
and figures comparing the different models were built using the R Core
Team (2017).

Effect of Marker Density in Prediction
To examine the influence of the number of markers in the PA, we fitted
the univariate GBLUP model constructing the genomic relationship
matrix (Ag) with different number of markers equally spaced and
covering the entire genome across the 12 LGs in cranberry (Lorenzana
and Bernardo, 2009). The consensus map developed by Schlautman
et al. (2017) was used to ensure a homogeneous marker distribution.
Then, we divided the entire linkage distance (∼1,250 cM) in different
number of bins; 20, 50, 100, 250, 500, 750, 1,000 and bins to reach the
following marker densities; 1 marker every 60, 24, 12, 4.8, 4.4, 1.6, and
1.2 cM. For example, in the first case we built the A matrix with 20
markers, one marker every 60 cM, and in the densest case with 1,000
markers, picking onemarker at about every 1.2 cM. The PAwas deduced
for both TY and MFW by averaging the results from 100 iterations of 5-
fold CV for both traits where the 5-fold strategy consisted in dividing the
population in 5 groups and using 1 group as VP and the rest as TP (100
rounds of this strategy yields 500 data points). Results were recorded

and plotted using R (R Core Team, 2015). This analysis was performed
using across-environment genotype predictions for both traits.

Effect of Training Population Relationship
in Prediction
Following Lorenz and Smith (2015) the effect of resemblance between
the TP and VP on the PA was examined in the three biparental
populations. The three populations were chosen based on their degree
of relationship. CNJ02 (MQ × CQ) were half-sibs with CNJ04 (MQ ×

Stevens). The GRYG population (BGBLNL95 × [GH1x35]) had little
relationship with CNJ02 and CNJ04. Using the across-environment
genotype predictions we fixed each population as the VP and the
resemblance of the TP was varied using individuals with no relationship
to the VP, related half-sib individuals (when available), and related full-
sib individuals (within population). In total, 100 iterations of 5-fold CV
were used to test the PA under the different scenarios.

Data Availability
Supplementary File 1 (SF1) contains the phenotypic and
genotypic data. The R script for the analysis can be found in the
Supplementary Files 2–5.

RESULTS

Genomic Heritabilities
After the initial spatial modeling, we used the by-environment genotype
predictions to calculate the genomic heritability for each environment
and trait combination.We found higher genomic heritabilities forMFW
compared to TY. For example for GRYG’s population, we found a
genomic heritability of 0.22 for TY in 2014 whereas the same year gave
a genomic heritability for MFW of 0.43 (Table 1). The same trend was
found in the three populations across most years. Some years resulted
in a very low genomic heritability (<0.10 and close to zero using the
SE of the h2g). Such years of data were removed from posterior analysis
due to our experience that using genotype predictions with null or
close to zero genomic heritability provides spurious predictions or non-
sense estimates of genetic correlation when used in the multivariate
framework. The heritability was higher in GRYG than in CNJ02, and
the smallest in CNJ04. Removing the year-trait combinations with low
heritability for posterior analysis resulted in 2 years of data for GRYG
and CNJ02, and 1 year of data for CNJ04 for both traits TY and MFW.

Genetic Correlations
Given that repeated measures of TY and MFW were taken for the
three biparental populations across different years (environments) in
the 2011–2015 interval, genetic correlations between years within traits,
and genetic correlation between traits were obtained using multivariate
mixed models (Table 2). We found a high genetic correlation between
years for the trait MFW in both GRYG and CNJ02 populations (i.e.,
0.93), which indicates a good consistency of breeding values (BV) across
years (Table 2). Additionally, the genetic correlations between years
for TY for both populations were smaller compared to MFW, but
still relatively high (i.e., 0.62–0.90; Table 2). On the other hand, the
genetic correlation between TY and MFW using across-environment
genotype predictions were close to zero. The standard error of the
genetic correlations indicates that for GRYG and CNJ02 the genetic
correlations are not different than zero, whereas for CNJ04 the genetic
correlation was different than zero but with a very high SE due to the
population size (N = 67).
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TABLE 1 | Year-base genomic heritabilities (h2g estimate) and their standard error

(h2g SE) for three biparental populations (CNJ02, N = 148; CNJ04, N = 67;

GRYG, N = 351) for traits total yield (TY) and mean fruit weight (MFW).

Population Year Trait Removed* h2g estimate h2g SE

GRYG Y2014 TY No 0.228 0.080

GRYG Y2015 TY No 0.332 0.085

CNJ02 Y2011 TY No 0.163 0.127

CNJ02 Y2012 TY No 0.184 0.128

CNJ02 Y2013 TY Yes 0.097 0.133

CNJ04 Y2011 TY Yes 0.092 0.258

CNJ04 Y2012 TY No 0.204 0.261

CNJ04 Y2014 TY Yes 0.018 0.252

GRYG Y2014 MFW No 0.436 0.084

GRYG Y2015 MFW No 0.400 0.086

CNJ02 Y2011 MFW No 0.562 0.118

CNJ02 Y2012 MFW No 0.307 0.132

CNJ02 Y2013 MFW Yes 0.059 0.115

CNJ04 Y2011 MFW Yes 0.092 0.258

CNJ04 Y2012 MFW No 0.204 0.261

CNJ04 Y2014 MFW Yes 0.018 0.252

*Posterior analysis based on multivariate mixed models were not calculated when the

genomic heritability for the univariate models was <0.10.

TABLE 2 | Genetic correlation between years within traits, among traits (rg

estimate), and their standard errors (h2g SE) in three biparental populations

(CNJ02, N = 148; CNJ04, N = 67; GRYG, N = 351).

Population* Cor type rg estimate rg SE

GRYG TY-MFW −0.010 0.209

CNJ02 TY-MFW −0.297 0.386

CNJ04 TY-MFW 0.880 0.412

GRYG TY2014-TY2015 0.629 0.191

CNJ02 TY2011-TY2012 0.905 0.259

GRYG MFW2014-MFW2015 0.931 0.080

CNJ02 MFW2011-MFW2012 0.934 0.107

*Population CNJ04 had only 1 year of data left after filtering data based on genomic

heritability making the calculation of MGBLUP for years impossible.

Model Comparison
The four genomic prediction methods compared; GBLUP-A, GBLUP-
AD, GBLUP-ADE, and MGBLUP were performed by population to
reflect two difference scenarios, the effect in PA using multivariate
models under high and low genetic correlation. For the high genetic
correlation scenario we used by-environment genotype predictions as a
response (where MGBLUP uses as multivariate response the predictions
for two environments with high genetic correlation). For TY, after
100 iterations of CV (complete sets of 5-fold), we found MGBLUP to
be superior compared to GBLUP-A, GBLUP-AD, GBLUP-ADE in all
environments and populations, except for CNJ04 where only 1 year of
data was available and MGBLUP was not possible to evaluate (Figure 1;
Table 2). For example, we found an increase in PA from rTY−GBLUP =

0.12 to rTY−MGBLUP = 0.32 in the CNJ02 population in the year 2011
when using GBLUP versus MGBLUP which used an additional year of
data as an additional response (which had a genetic correlation of 0.90

± 0.25). Similarly, in the same population in 2012 we found an increase
of PA from rTY−GBLUP = 0.15 to rTY−MGBLUP =0.30 between GBLUP in
MGBLUP. In the GRYG population in 2014 we found an increase from
rTY−GBLUP = 0.26 to rTY−MGBLUP = 0.31 of GBLUP versus MGBLUP,
and rTY−GBLUP = 0.31 to rTY−MGBLUP = 0.33 in 2015 (which had a
genetic correlation of 0.62 ± 0.19) (Figure 1; Table 2). For MFW we
found an increase of PA from rTY−GBLUP = 0.42 to rTY−MGBLUP = 0.55
in the year 2011 in CNJ02 when using GBLUP vs. MGBLUP, which used
an additional year of data as an additional response (which had a genetic
correlation of 0.93 ± 0.10), and an increase of PA from rTY−GBLUP =

0.28 to rTY−MGBLUP = 0.55 in the year 2012. In the GRYG population
in 2014 we found an increase from rTY−GBLUP = 0.36 to rTY−MGBLUP =

0.45 of GBLUP versus MGBLUP, and rTY−GBLUP = 0.34 to rTY−MGBLUP

= 0.43 in 2015 (which had shown genetic correlation of 0.93 ± 0.08)
(Figure 1; Table 2). In addition, we found no difference in the PA
among the univariate models using additive, additive + dominance
and/or additive+ dominance+ epistatic kernels. The epistatic variance
component had a trend to be zero across most iterations for both traits,
and although the dominance variance component was different than
zero, it did not provide an increase in the PA (Figure 1; Table 3).

To look at the effect in PA using multivariate models under a
low genetic correlation, we used the across-environment genotype
predictions as a response for each trait and population (whereMGBLUP
uses as multivariate response the predictions for both traits which hold
a low genetic correlation in our data). We found no differences between
GBLUP-A andMGBLUP across all populations, except for CNJ02 where
MGBLUP was notoriously much less accurate to predict the genetic
BLUP. For example, in CNJ02 the mean PA for GBLUP was 0.34
whereas for MGBLUP was 0.09 for MFW. For TY we obtained a PA
of 0.21 for GBLUP and 0.01 for MGBLUP. In the other populations
MGBLUP did as well as GBLUP. For example in GRYG population
(biggest population), both GBLUP and MGBLUP had a PA of 0.44 for
MFW, and 0.3 for TY (Figure 2).

Effect of Marker Density in Prediction
To examine the influence of the marker density on the PA, we fitted
the univariate GBLUP model by constructing the genomic relationship
matrix (Ag) with different number of markers equally spaced and
covering the entire genome (Lorenzana and Bernardo, 2009) and
used the across-environment genotype predictions as a response. For
example, we built the relationship matrix with 20 markers (one marker
every 60 cM), 50 (one marker every 24 cM), and so on for 20, 50,
100, 250, 500, 750, 1,000 (covering 1,250 cM). After performing 100
iterations of 5-fold CV, the PA for both traits followed the same linear
trend reaching a plateau at about 500markers (Figure 3). Themaximum
PA for TY was 0.40 and 0.47 for MFW. We found that addition of
markers after 500 markers (i.e., from 750 or 1,000) resulted in only a
0.01 increase of PA in both traits TY and MFW in the three biparental
populations. As more markers were used to build the A matrix, the
standard error for the PA decreased as well (Figure 3).

Effect of Training Population in Prediction
Following findings by Lorenz and Smith (2015), the effect of
resemblance between the TP and VP was examined in the three
biparental populations used in the study.We fixed the VP in the GBLUP
model and varied the genetic background of the TP. When CNJ02
was fixed as VP and using non-related individuals to CNJ02 (GRYG
population) as TP, this yielded the smallest PA. Better PAs were observed
when using related half-sib individuals to CNJ02 (CNJ04 population) as
the TP. The maximum PA was found when the TP was composed of
full-sib individuals from the same VP population CNJ02 as expected.
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FIGURE 1 | Year-based comparison between univariate and multivariate genomic best linear unbiased prediction methods (GBLUP and MGBLUP) for mean fruit

weight (MFW) and total yield (TY) in three cranberry biparental populations. Methods within boxplots are GBLUP using only additive relationship matrix (GBLUP-A),

GBLUP using additive and dominance relationship matrices (GBLUP-AD), GBLUP using additive, dominance and epistatic relationship matrices (GBLUP-ADE), and

multivariate GBLUP using only additive relationship matrix (MGBLUP). MGBLUP used an additional year of data to form the multivariate response and the genetic

correlation among these responses (high genetic correlation scenario).

The same tendency in PA was found when CNJ04 and GRYG were fixed
as VP, and the best PAs were obtained as the TP were more related to the
VP. The increase in TP size was important to increase the PA (Figure 4).
This was observed in both traits.

DISCUSSION

Genetic Correlations
Multivariate BLUP models were originally proposed in animal breeding
to model the genetic correlation among traits, longitudinal data and
to model genotype by environment interactions in order to exploit
the existent correlations in the data (Mrode, 2014; Lee and Van der
Werf, 2016). Since the first application of BLUP for multiple trait
evaluation by Henderson and Quaas (1976), multiple studies have
shown the potential of multivariate mixed models in breeding under
classical and genome-assisted approaches (Schaeffer, 1984; Thompson
and Meyer, 1986; Burgueño et al., 2012; Jia and Jannink, 2012;
Marchal et al., 2016). To test the advantages that multivariate methods
could bring to the ongoing GS efforts in American cranberry, we
used repeated measures for total yield (TY) and mean fruit weight
(MFW) from three biparental populations across different years in the
2011–2015 interval. We presented genetic correlations among years
within traits for all biparental populations where each by-environment
genotype prediction can be considered as a response, and we found the
genetic correlation among years to be high (Table 2). The high genetic
correlations between years for MFW (i.e., 0.93) in CNJ02 and GRYG
populations were in agreement with breeders observing consistent
fruit size along years under commercial production, where uniform
management usually results in low genotype by environment (GxE)

effects for fruit size (N. Vorsa, personal communication). On the other
hand, the genetic correlations between years for CNJ02 and GRYG
populations for TY were more variable (i.e., 0.63–0.93), which reflects
the a natural phenomenon of quantitative traits such as yield is subject
to large genotype by environment (GxE) effects, and in fruit crops a
particular physiological phenomenon called “biennial bearing,” which
is the incidence of “on” and “off” years of production leads to cyclical
yield patterns (Jonkers, 1979; Strik et al., 1991; Curry and Greene,
1993; DeVetter et al., 2013; Schlautman et al., 2015). However, cultural
practices and new cultivars have changed or almost removed biennial
bearing tendencies in some crops. In cranberry, however, a recently
domesticated species, modern cultivars still possess a strong biennial
cycle, making genetic evaluation challenging and a long-term process
(DeVetter et al., 2013). The fact that the genetic correlation among
years (environments) in each biparental population (in both traits) was
relatively high, made us compare the univariate and multivariate GS
models under the most favorable scenario where an additional response
could be used to enhance the PA of a trait displaying a low h2 for
different reasons (i.e., environment, management conditions, etc.).

Additionally, we also calculated the genetic correlation between
MFW and TY using across-environment genotype predictions in the
three biparental populations (Table 2). The analysis showed that in
CNJ02 (N = 148) and GRYG (N = 351) biparental populations,
the genetic correlation between these two traits was equal to zero
(considering the standard error), which shows the potential effect in
the PA of multivariate GS under a low genetic correlation scenario,
where the use of a non-correlated trait does not help and even adds
noise to the predictions. For CNJ04 the genetic correlation was different
than zero and positive, but with a high SE (Table 2). The fact that
the population size of CNJ04 is rather small (N = 67) could be
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FIGURE 2 | Trait-based comparison between univariate and multivariate genomic best linear unbiased prediction methods (GBLUP and MGBLUP) for mean fruit

weight (MFW) and total yield (TY) in three cranberry biparental populations. Methods within boxplots are GBLUP using only additive relationship matrix (GBLUP-A),

GBLUP using additive and dominance relationship matrices (GBLUP-AD), GBLUP using additive, dominance and epistatic relationship matrices (GBLUP-ADE), and

multivariate GBLUP using only additive relationship matrix (MGBLUP). MGBLUP used both traits to form the multivariate response and the genetic correlation among

these responses (low or null genetic correlation scenario in our data).

FIGURE 3 | Effect of the marker density on the predictive ability (PA) in GRYG population using across-year estimates adjusted by spatial effects in TY and MFW. One

box per trait is displayed (MFW on the left and TY on the right). Within each box a boxplot comparing the different marker densities is shown, from smallest (left) to

highest density (right).

an impediment for the correct estimation of the genetic correlation
and conclusions based on this small population should be considered
carefully.

The fact that the genetic correlation between TY and MFW was
practically zero -if we consider the estimate and its standard error- is
encouraging for breeding purposes given that this means that selection
of large berries does not have a positive or negative effect in the final
yield and vice versa. Therefore, our data indicates that high-yielding,
large-berry varieties could be successfully developed, which is the case
in some modern cranberry cultivars recently developed. Even though,

our study does not represent the entire germplasm variability available
in breeding programs, our study provides an understanding, based
on three-biparental populations, of the genetic correlations among TY
and MFW and the genetic correlation among years for such traits in
cranberry.

Model Comparison
Genomic selection (GS), first introduced byMeuwissen et al. (2001), has
quickly become the preferred MAS method for quantitative traits and is
being effectively applied in plant and animal, public or private breeding

Frontiers in Plant Science | www.frontiersin.org 8 September 2018 | Volume 9 | Article 1310

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Covarrubias-Pazaran et al. Multivariate GBLUP in American Cranberry

TABLE 3 | By-year comparison of four prediction methods (GBLUP-A,

GBLUP-AD, GBLUP-ADE, MGBLUP) based on predictive abilities (and standard

deviation) for total yield (TY) and mean fruit weight (MFW) in three biparental

populations (CNJ02, N = 148; CNJ04, N = 67; GRYG, N = 351).

TRAIT Method YEAR POP PAµ PAσ

TY A Y2011 CNJ02 0.124 0.128

TY AD Y2011 CNJ02 0.093 0.159

TY ADE Y2011 CNJ02 0.092 0.158

TY MA Y2011 CNJ02 0.318 0.162

TY A Y2012 CNJ02 0.156 0.163

TY AD Y2012 CNJ02 0.111 0.198

TY ADE Y2012 CNJ02 0.111 0.197

TY MA Y2012 CNJ02 0.305 0.203

TY A Y2012 CNJ04 0.119 0.232

TY AD Y2012 CNJ04 0.045 0.278

TY ADE Y2012 CNJ04 0.028 0.281

TY A Y2014 GRYG 0.263 0.096

TY AD Y2014 GRYG 0.255 0.106

TY ADE Y2014 GRYG 0.261 0.095

TY MA Y2014 GRYG 0.310 0.096

TY A Y2015 GRYG 0.332 0.087

TY AD Y2015 GRYG 0.327 0.089

TY ADE Y2015 GRYG 0.324 0.090

TY MA Y2015 GRYG 0.360 0.093

MFW A Y2011 CNJ02 0.420 0.128

MFW AD Y2011 CNJ02 0.400 0.141

MFW ADE Y2011 CNJ02 0.395 0.135

MFW MA Y2011 CNJ02 0.554 0.113

MFW A Y2012 CNJ02 0.288 0.136

MFW AD Y2012 CNJ02 0.272 0.131

MFW ADE Y2012 CNJ02 0.289 0.129

MFW MA Y2012 CNJ02 0.517 0.113

MFW A Y2012 CNJ04 0.091 0.266

MFW AD Y2012 CNJ04 0.026 0.287

MFW ADE Y2012 CNJ04 0.001 0.292

MFW A Y2014 GRYG 0.361 0.086

MFW AD Y2014 GRYG 0.358 0.085

MFW ADE Y2014 GRYG 0.358 0.085

MFW MA Y2014 GRYG 0.454 0.082

MFW A Y2015 GRYG 0.343 0.092

MFW AD Y2015 GRYG 0.340 0.092

MFW ADE Y2015 GRYG 0.332 0.092

MFW MA Y2015 GRYG 0.439 0.083

programs. Perennial fruit crops, on the other hand, have adopted
this methodology slower due to particularities of perennial breeding;
although these crops could benefit the most given the long development
cycle and high-cost associated with fruit crop evaluation (input per
genotype evaluated). Moreover, the evaluation of cranberry clones is
challenging due to the high-cost involved to evaluating the genotypes
under commercial conditions, which require the development of
flooding beds (used for water harvesting). Additionally, due to the
high cost of developing plantings, cranberry breeding programs rely
in low replication designs for the evaluation of a small number of
biparental families with a relatively high number of individuals per

family (i.e., 300–500). Also, the physical and chemical traits evaluated
in cranberry require long evaluation periods (up to 20 years) due to
the long time to establish plantings, lengthy juvenility period, and
biennial cycling. All the above mentioned challenges make the use of GS
techniques very attractive for cranberry breeding to allow the evaluation
of a larger number of families by reducing the number of individuals
per family and shortening the selection cycles. Thus, we not only
evaluated the efficiency GS in cranberry, but also compared univariate
and multivariate GBLUP methods to improve breeding efforts.

GBLUP has been already shown to be superior to classical MAS,
which uses only the most significant markers from traditional QTL
studies (Lorenzana and Bernardo, 2009; Heffner et al., 2011). Since
the initial proposal of using all the markers through the computation
of the genomic relationship matrix, the development and inclusion
of dominance and epistastic kernels in the univariate models and
multivariate models has been tested showing limited advantage of
such additional kernels. In this study, we found that the inclusion of
dominance and epistatic kernels did not yield higher accuracies than
the regular GBLUP model that incorporates only the additive kernel,
which is consistent with results from other research groups (Su et al.,
2012; Muñoz et al., 2014). From our perspective, this phenomenon
follows the laws of parsimony, where models that better explain the
data are not necessarily the best prediction machines (Hastie et al.,
2009). In addition, the fact that a rather small number of populations is
presented in this research makes the resolution to estimate and exploit
non-additive effects very low. Also, most popular methods to calculate
the dominance and epistatic kernels yield relationship matrices are
not completely orthogonal to the additive relationship matrix, making
their effectiveness for prediction questionable, which has led different
research groups to investigate the topic and propose other orthogonal
methods (Xiang et al., 2018). The purpose of comparing the regular
GBLUP against GBLUP-AD in our study was driven by the fact that half-
and full-sib populations share ¼ and½ of the dominance variation (σ2D).
In our hypothesis, we expected these terms to be different than zero and
maybe contribute to an increase in PA proportional to the explained
variation. The inclusion of dominance kernels indeed yielded variance
component estimators different than zero, which was according to our
expectations, but this did not increase the PA compared to the only-
additive model. We found the maximum PA for both traits to be nearly
the square root of the h2 as expected given that the PA and the h2 are
intrinsically connected. We found the same relationship in the PA for
TY and MFW (Tables 1, 3).

Selection of elite genotypes is commonly based on a combination
of several traits of economic importance, which might be genetically
correlated. A multiple trait evaluation is a popular methodology to
evaluate individuals accounting for relationships among traits (Mrode,
2014). Extensive animal breeding literature using multi-trait models
has been generated using multi-trait pedigree-based BLUP (MPBLUP)
(Schaeffer, 1984; Thompson and Meyer, 1986; Mrode, 2014). With
the massive availability of markers, multi-trait models using genomic
information (MGBLUP) are now feasible to model and non-model
organisms where pedigree information is not robust. In order to test the
advantages of multivariate mixed models for GS in current cranberry
breeding efforts, we compared the univariate and multivariate versions
of the GBLUP model.

Simulation studies have shown that an increase in PA from 3 to 14%
can be achieved when genetic correlations among responses range from
0.25 to 0.75 (Calus and Veerkamp, 2011). In addition, Jia and Jannink
(2012) showed that multivariate GS could increased the PA for a low-
heritability trait when a high-heritability and correlated trait is available
(Jia and Jannink, 2012; Mrode, 2014). The research previously cited
has found higher PA for the multi-trait approach than single-trait GS
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FIGURE 4 | Effect of degree of resemblance on the predictive ability on three biparental populations (CNJ02, CNJ04, and GRYG). The effect on predictive ability (PA)

related to the familial relationship between the training population (TP) and validation population (VP) for mean fruit weight (MFW; left box) and total yield (TY; right box).

when phenotypes are not available on all individuals and traits. In other
crops such as oil palm, multivariate genomic models have increased
the accuracy of progeny tests (Marchal et al., 2016). When comparing
the MGBLUP against the univariate GBLUP using additional years of
data as additional responses (by-environment genotype predictions), we
found a clear increase in the PA because of the high genetic correlation
of the genotypes with themselves in additional environments (i.e., 0.93
in TY and MFW for CNJ02 and GRYG). We found instances where an
increase of 0.03–0.06 units (8–17% increase) in PA was observed when
the responses had a genetic correlation of 0.63 (Figure 1; Tables 2, 3).
When the genetic correlation of the responses was higher (i.e., 0.93)
we found increases of PA of 0.15–0.19 (25–156% increases depending
on the trait) (Tables 2, 3; Figure 1). On the other hand, when using
the across-environment genotype predictions from TY and MFW as
multivariate response, we found a genetic correlation of zero for CNJ02
and GRYG populations (−0.01 ± 0.20 and −0.29 ± 0.38 respectively),
which allowed us to observe the effect in PA when the responses have
a null genetic correlation. We observed that MGBLUP did not increase
the PA with respect to univariate GBLUP in all populations.

In general, the PAs and h2’s for both traits in the analyses using
by-environment genotype predictions were low to intermediate due to
the low replication within environments commonly used in cranberry
breeding (Technow et al., 2014; Zhao et al., 2015). When using
across-environment genotype predictions as input for GS models, we
found higher PA’s as expected when the level of replication increases
(Figure 3). For example, Technow et al. (2014) presented PAs of up to
0.9 for TY in maize when using across-environment genetic estimates
(from 20 locations during 14 years 131 environments), which allows
for an accurate estimation of the general BVs for genotypes. Zhao
et al. (2015) found a PA of 0.89 for TY in wheat commercial and
breeding lines evaluated in 11 environments in a p-rep design. The
greater the number of environments used (replication), the greater the

across-environment h2 is and as consequence the PAs when using such
across the environment estimates (Zhao et al., 2015). In this study we
found an important increase in the PA when performing GS using
estimates across environments in both populations with more than 1
year of data (CNJ02 and GRYG) for both traits TY and MFW.

Effect of Marker Density in Prediction
Various factors including the resemblance between TP and VP, TP
size, marker density, heritability, magnitude of LD, trait architecture,
and the interaction among all of them appear to be the principal
forces driving PA. Marker density is by far one of the most studied
factors determining PA in GS experiments. The consensus is that a
higher number of markers usually yield higher PA reaching a plateau
depending on the architecture of the trait, the number of individuals in
the TP, the size of the genome and linkage disequilibrium. Lorenzana
and Bernardo (2009) showed such relationship in maize, barley, and
Arabidopsis and concluded that predictions became more accurate as
the number of individuals and number of markers increased. Such
tendency holds given that the more markers covering the genome of
the population, the higher the probability of having a marker in LD
with the causal variant (Habier et al., 2013). Therefore, the number
of markers needed is proportional to the diversity present in the VP
and TP (LD). In the present study, we found that PA increased as the
number of markers increased, but only 500–750 markers were required
to reach the maximum PA within biparental populations. The low
number of markers required to reach a maximum PA reflect the high
degree of genetic structure present in biparental populations which are
in full linkage disequilibrium (Figure 2). This observation is typical in
biparental populations, but not in panels of diversity where LD can
break at very short genetic and physical distances. The low number of
markers required to reach the maximum PA agrees with the LD decay
estimated in this study of ∼18 cM (at r2 = 0.2) on average among
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the three biparental populations, which confirming that few markers
are required to have enough LD with the causal variant to capture
marker effects in the GS model in biparental populations (Lorenzana
and Bernardo, 2009).

Effect of TP-VP Resemblance in Prediction
The effect of resemblance between TPs and VPs on the PA has been
described by several research groups. For example, Riedelsheimer et al.
(2013), highlighted an important feature of GS, which implies that a
higher genetic resemblance often result in greater accuracies. A similar
phenomenon was found by Lorenz and Smith (2015) who observed that
adding genetically distant individuals to the TPs resulted in a reduction
in the PA in barley populations. However, Lorenz and Smith (2015)
suggested that their results could be conditional on the low marker
density used (342 SNPs). Still, their findings suggest that plant breeding
programs could benefit from focusing on good phenotyping of smaller
TPs closely related to the selection candidates rather than large and
diverse TPs. This is particularly important in cranberry breeding, which
relies on large-sized biparental populations that are often closely related
to each other given the low number of elite parents currently used.

In this study, the three full-sib populations used had different
degrees of relationship; GRYG had a distant relationship with CNJ02
and CNJ04, whereas CNJ02 and CNJ04 were half-sibs. When the
GBLUP model was used for TY and we fixed CNJ02 as the VP and
varied the genetic background of the TP using non-related individual
from GRYG (at different TP sizes), half-sib individuals from CNJ04,
and full-sib individuals from the CNJ02, we found greater PAs as
the TP was more related to the VP (Bassi et al., 2016). The same
PA tendency was found when CNJ04 and GRYG were fixed as VP
(Figure 4). These results were similar to those found by Lorenz and
Smith (2015) where higher resemblances resulted in greater accuracies
when predicting an individual in the following order: full-sibs, half-
sibs, and no relationship. Increasing the TP size also increased the
PA in all scenarios without reaching a plateau with the available
population sizes. Plant breeding programs take advantage of these
relationships by carefully planning the new-generation crosses to
reuse TPs from previous generations as long as the TP and VP
share some relationship and new individuals are added to the TP
to retrain the models. This strategy can be easily implemented in
recurrent selection schemes, which are the base of most breeding
programs.

CONCLUSIONS

GS has gained popularity in plant and animal breeding due to its
straightforward use within ongoing breeding programs. Unfortunately,
minor fruit crops have hardly explored the potential of GS. We
found GS to be effective in cranberry biparental populations using
the GBLUP approach and reaching its maximum PA with relatively
few markers (∼500–750) due to the full LD typically present in

biparental populations. This implies that in structured populations (i.e.,
biparental), such as those used in the cranberry breeding programs,
a medium marker density is enough to reach maximum PA. The
conformation of the TP and its resemblance with the VP were shown
to be decisive factors in achieving maximum PA. In addition, we were
particularly interested in testing the advantages of using multivariate
compared to univariate GBLUP, and the former was shown to provide
a positive impact in the PA when the genetic correlation among the
responses was high (i.e., 0.6), and to have a negative effect in the PA
when the correlation was close to zero. We conclude that the use of
multivariate methods to select plants simultaneously for different traits
and to predict traits of low heritability should be considered in cranberry
breeding, as well as in other fruit crops and understudied species.
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