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The study investigated some new developed variable indices and chemometrics for the
fast detection of cadmium (Cd) in tobacco root samples by laser-induced breakdown
spectroscopy. The variables selection methods of interval partial least squares (iPLS),
backward interval partial least squares (BiPLS), and successive projections algorithm
(SPA) were used to locate the optimal Cd emission line for univariate analysis and to
select the maximal relevant variables for multivariate analysis. iPLS and BiPLS located
10 Cd emission lines to establish univariate analysis models. Univariate analysis model
based on Cd I (508.58 nm) performed best with the coefficient of determination
of prediction (Rp

2) of 0.9426 and root mean square error of prediction (RMSEP) of
1.060 mg g−1. We developed two new variable indices to remove negative effects
for Cd content prediction, including Index1 = (I508.58 + I361.05)/2 × I466.23 and
Index2 = I508.58/I466.23 based on Cd emission lines at 508.58, 361.05, and 466.23 nm.
Univariate model based on Index2 obtained better result (Rp

2 of 0.9502 and RMSEP of
0.988 mg g−1) than univariate analysis based on the best Cd emission line at 508.58 nm.
PLS and support vector machines (SVM) were adopted and compared for multivariate
analysis. The results of multivariate analysis outperformed univariate analysis and the
best quantitative model was achieved by the iPLS-SVM model (Rc

2 of 0.9820, RMSECV
of 0.214 mg g−1, Rp

2 of 0.9759, and RMSEP of 0.712 mg g−1) using the maximal
relevant variables in the range of 474–526 nm. The results indicated that LIBS coupled
with new developed variable index and chemometrics could provide a feasible, effective,
and economical approach for fast detecting Cd in tobacco roots.

Keywords: cadmium, tobacco root, laser-induced breakdown spectroscopy, interval partial least squares,
variable index, multivariate analysis

INTRODUCTION

Cadmium (Cd) is a nonessential and toxic heavy metal for plants, animals, and humans.
With the development of modern industry and human activities such as industrial emission
and domestic sewage, Cd has been widely spread in agricultural environment and plant-
environment system (Dong et al., 2007). The accumulation of Cd may lead to the decrease
of yield, affect the quality of plants and endanger human health through the food chain.
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Root and root hair are almost interspersed in all spaces of
soil-plant system and absorb Cd from the polluted soil solution
in plant-environment system (Yang et al., 2013). There is no
doubt that roots are the usual primary scene exposing to heavy
metal in living environments. And some authors pointed out that
the greater the heavy mental ionic impulsion in plant roots, the
heavier the damage to plant growth (Wang et al., 1994; Khare
et al., 2017; Usharani and Vasudevan, 2017). Cd could be easily
enriched in tobacco and the proportion of human Cd exposure
caused by smoking may exceed the figure from diet, especially
for those heavy smokers. Rapid monitoring Cd accumulation in
tobacco root is conducive for the detection and supervision of
tobacco and land heavy metal pollution timely. However, there
is no precedent for fast detection of Cd accumulation on related
tobacco research yet.

Laser induced breakdown spectroscopy (LIBS) is an emerging
elemental analytical technique based on laser shooting on a
sample surface to generate a short pulse of high energy radiation
and ablate a little sample to excite a plasma consisting of
atomic, ionic, and molecular species (Yi et al., 2017b). Due to
the merits of multi-element analysis, fast response, little to no
sample treatment and remote sensing, LIBS is now competitive in
element detection, compared with other conventional laboratory
techniques such as atomic absorption spectrometry (AAS),
inductively coupled plasma mass spectrometry (ICP-MS), and
inductively coupled plasma optical emission spectrometer
(ICP-OES), which are time-consuming and require a very
experienced digestion procedure (Jantzi et al., 2016; Yang et al.,
2016, 2017). And LIBS also is successful in different applications
ranging from space and ocean detection to biological specimens
such as the complex plant materials (Santos et al., 2012).
However, the application of LIBS in plant materials involving
the field of agricultural and environmental sciences is more
challenging because of adverse “matrix effects” caused by the
complex plant tissue. Matrix effects include changes in chemical
composition and physical properties of plant tissue such as
hardness, roughness, porosity, density, and moisture (Guezenoc
et al., 2017).

The LIBS full spectra of plant samples such as tobacco roots
are composed of massive variables containing large amounts
of information, including matrix effects information and the
experimental conditions fluctuation information such as laser
shot-to-shot energy fluctuation and random error of testing
samples (Peng et al., 2017). In view of such case, the accuracy and
stability of quantification of target element in plant materials are
affected and interfered by the vast ineffective variables in the LIBS
full spectra. With regard to quantitative analysis, the effective
variables are the critical point whether univariate or multivariate
procedures are used for LIBS spectral data processing (Fu et al.,
2017). The sensitive emission line of target element, which was
inquired from National Institute of Standards and Technology
Atomic Spectra Database directly performs well in other areas,
but may be interfered by other elements and not be suitable
in plant materials (Peng et al., 2016). To select the effective
variables of target element in specific material tobacco roots,
some chemometric methods such as interval partial least squares
(iPLS) (Li et al., 2018), backward interval partial least squares

(BiPLS) (Zou et al., 2007), and successive projections algorithm
(SPA) (Liu et al., 2009) could be attempted. The selected variables
could also be combined as new variable index to elevate validity of
quantification. The variable selection methods and variable index
are adopted mostly in near-infrared spectroscopy (Abrahamsson
et al., 2003; Lleo et al., 2011) (molecular spectra) but rarely in
LIBS spectra (mainly atomic spectra) analysis. Up to the present,
Pontes et al. (2009) considered SPA to select variables for the
classification of 149 Brazilian soil samples into three different
orders; Fu et al. (2017) proposed a fast variable selection method
combining iPLS and modified iterative predictor weighting-PLS
for the LIBS quantitative analysis of soils. At the same time,
variable selections and variable index in the LIBS spectra of plant
materials has not been reported. It is therefore wise to select
effective variables of target element Cd and compare different
variables combinations to improve LIBS analytical performance
for laboratory applications and field supervision of tobacco roots.

In this paper, we studied the feasibility of rapid analysis
of Cd accumulation in tobacco root by using LIBS variable
index and chemometrics. The specific objectives of this
research were (1) to choose suitable variables selection
method from iPLS, BiPLS, iPLS-SPA, and BiPLS-SPA, and
to obtain outstanding Cd emission lines and the most relevant
variables for reference Cd values in tobacco roots; (2) to
execute univariate analysis by the selected Cd emission
lines and put forward new index based on Cd emission
lines to elevate univariate analysis capacity; (3) to compare
the prediction performance of PLS and SVM multivariate
analysis models based on the selected variables and to
find out the optimal variables and the best quantitative
models for fast and valid detection of Cd content in tobacco
roots.

EXPERIMENTAL

Sample Preparation
Hydroponic experiment was carried out on Zijingang Campus,
Zhejiang University, Hangzhou, China. Tobacco seeds (MS 87,
Yuxi Zhong Yan Seed co., Ltd, China) were used in this study. The
sterilized seeds were germinated and cultivated on the Murashige
and Skoog culture medium at 30◦C for 2 weeks. Then, the
seedlings with root length of approximately 4 cm approximately
were transplanted into 10 L full strength Hoagland’s nutrient
solution and the culture solutions were renewed every 3 days. On
the ninth day after transplanting, five treatments were adopted in
this experiment with similar size plants, that is, control group and
experimental group of 5, 30, 70, and 100 µM Cd stress (prepared
by CdCl2 solution). The experiment was laid in a completely
randomized design with 12 replications for control (CK) and
5 µM Cd stress group, 18 replications for other three treatments
(30, 70, and 100 µM) receptively. After 20 days treatment, each
tobacco root was collected and soaked in 20 mM Na2EDTA
solution and then washed by deionized water to clear away free
Cd out of root tissue. In total, 80 root samples were collected and
dried at 80◦C for 4 h in an oven, then were grinded and pressed
into pellet separately. Tobacco root powders with 150 mg were

Frontiers in Plant Science | www.frontiersin.org 2 September 2018 | Volume 9 | Article 1316

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01316 September 11, 2018 Time: 18:49 # 3

Liu et al. Root Cadmium Detection by LIBS

placed into a square die set and pressed with 10 tons of pressure
for 1 min.

LIBS Instrumentation
A schematic diagram of the self-assembled LIBS setup used in
this work is presented in Figure 1. Laser pulses were delivered by
a Q-switched Nd:YAG pulse laser (Vlite 200, Beamtech, China)
at 532 nm with maximum energy of 200 mJ, 8 ns pulse width,
repetition rate from 1 to 10 Hz, and 7 mm beam diameter.
A plano-convex lens (f = 100 mm) was used to focus the
excitation laser beam on the samples. The plasma light of ablation
was collected by an optical fiber, which delivers light to an
Echelle spectrograph coupled with intensified charge coupled
device (ICCD) camera (ME5000 and DH334, Andor Technology,
United Kingdom) to record signals. The delay time between
the ICCD camera and laser Q-switch was controlled by a delay
generator (DG645, Stanford Research Systems, United States).
The experimental parameters were optimized to obtain the best
signal-to-noise ratio at laser energy of 115 mJ, delay time of
4.41 µs, and gate width of 6.48 µs. Individual test pellet was
placed on an automatic x–y–z translation stage to supervise the
laser ablation position on the sample surface. In this case, the
laser beam was focused 2 mm below the sample surface and
ablated 4 × 4 array craters. The spectrum for each pellet was
recorded by the average of 80 spectra form 16 positions with 5
times accumulation of laser pulses in one position.

Reference Method for Determining
Cadmium Content
Cadmium content in tobacco roots were determined using
ICP-OES after microwave digestion (Divya et al., 2017). The
pellets after LIBS acquisition were weighed and placed into the
TFM vessels with 4 mL of 65% HNO3 and 1 mL of 30% H2O2
for microwave digestion, respectively. After digestion, the cleared
digestion solution was translated into 50 mL volumetric flasks
and diluted to 30 mL with distilled water by weighing method.
Finally, the reference Cd content of solutions was determined

with ICP-OES. The Cd values of 78 tobacco root samples were
shown in Table 1. As shown in Table 1, the Cd values in tobacco
roots in different Cd-stress levels show statistically significant.
Then these reference Cd values were input in regression model
with LIBS spectral variables for fast detection of Cd in tobacco
roots.

Data Treatment
Wavelet transform (WT) was used to preprocess the raw spectra
for reducing the effects of systematic noise. WT decomposes the
spectral into low-frequency signals and high-frequency signals
(Chen et al., 2014). The principle of WT is to analyze wavelet
functions with different spatial and frequency properties. WT
with wavelet function Daubechies 6 and decomposition level
3 was used in our study. In addition, by sorting the samples
from the lowest to highest according to the reference Cd content
values, three in every four samples were selected to a calibration
set, and the rest were assigned to prediction set. Thus, 51 and
17 samples were split into the calibration set and prediction set,
respectively. The samples in calibration set was employed in the
modeling procedures including variables selected by iPLS, BiPLS,
SPA for PLS, and SVM calibration models, whereas the prediction
set was only used in the final accuracy evaluation of the Cd
content prediction models.

According to interval variable selection algorithms, iPLS
algorithm divides the spectra into several intervals and generates
PLS models for each of these intervals (Norgaard et al., 2000). The
intervals were formed by continuous emission lines. Only one
interval is chosen from the all intervals to establish PLS model
for giving the lowest root mean square error of cross-validation
(RMSECV) and the highest coefficient of determination (R2)
(Borin and Poppi, 2005). Different from iPLS, BiPLS selects more
relevant intervals to explore latent variables (LVs). In BiPLS
procedure, PLS models are calculated with each interval left out,
that is, if one chooses k intervals then compare models based
on every different k−1 intervals leaving out each interval of k
intervals and leave out one interval giving the poorest performing
model with respect to RMSECV. The rest k−1 intervals continue

FIGURE 1 | Schematic diagram of the LIBS experimental setup.
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TABLE 1 | Reference Cd content of tobacco roots obtained by ICP-OES (mg g−1).

Groups 0 µM 5 µM 30 µM 70 µM 100 µM

Number 12 12 18 18 18

Min 0 0.006 1.112 3.128 8.199

Max 0.002 0.030 3.361 9.666 19.048

Mean 0.001 0.015 2.304 6.663 11.577

S.D. 0.006 0.087 0.602 1.735 2.617

SD, standard deviation.

the above procedure until only one interval remains (Wu et al.,
2010; Balabin and Smirnov, 2011).The model with the lowest
RMESCV based on the best interval variables is investigated. The
scheme of variable selection method, which selects the optimal
variables in the study is shown in Figure 2.

The SPA followed by iPLS and BiPLS was used to select
variables with minimum redundant information from the
informative intervals selected by the above interval variable
selection algorithms (Krepper et al., 2018). The response
informative intervals were arranged in a matrix X, with m
rows (sample number) and j columns (LIBS variables accounted
j−1 column and Cd reference value accounted 1 column)
corresponding to the samples and variables, respectively. The
main procedures of SPA are summarized (Liu et al., 2009; Milanez
et al., 2017) that (1) set the maximum number of variables p
to be selected, (2) one of j columns was yielded to calculate
the projection of the remaining j−1 column (the process is
expressed as projection operations in Figure 2), and the columns
displaying the least collinearity and maximum projection value
were projected onto the orthogonal subspace, (3) if total number
of variables in the subspace of the previously selected variable = p,
restarting (2) procedure from other columns of X, (4) the optimal
initial variable and number of variables can be determined on the
basis of the smallest RMSECV in a separate validation set.

PLS and SVM were used to provide quantitative analysis
and reliable models for explaining the relationship between
sample spectral data and true element concentration. As a
linear regression method, PLS correlates the maximal variance
in independent variables with the dependent variable using
regression method (Gottfried et al., 2008; Li et al., 2013). The
number of LVs chosen for all the PLS models were optimized by
leave-one-out cross-validation in the calibration model. SVM can
solve linear and nonlinear regression problems and embody the
structural risk minimization principle (Zhang et al., 2015; Yi et al.,
2017a). Based on principal components (PCs), the SVM models
also applied fivefold cross-validation to get best performances.
The radial basis function (RBF) was used as the kernel function
of SVM models in this work. All the data analysis was performed
in the MATLAB 2014 b (The Mathworks Inc. Natick).

RESULTS AND DISCUSSION

Raw Spectra Analysis
The average raw spectral profiles of five different Cd-stress
group samples are shown in Figure 3. The patterns of the raw

spectra were representative for tobacco roots, with similar basic
trends for each group accounting for similar matrix. Based on
the Kurucz database and National Institute of Standards and
Technology (NIST) Atomic Spectra Database (ASD), some same
strong emission lines were observed in all five tobacco root
groups such as C (247.86 nm), Mg (279.55, 279.80, 383.82,
516.73 nm), Ca (373.69, 397.37, 82, 422.67, 558.90, 849.80,
866.21, 643.91, 644.98 nm), Cu (324.75, 327.40 nm), CN (393.37,
396.85 nm), Na (589.00, 589.59 nm), and K (766.49, 769.90 nm).
These lines included atomic emission lines, ionic emission lines,
and molecule bands without spectral interferences and self-
absorption phenomenon. The observed emission lines of Fe, Na,
Si, Mg, Ca, and K could be used to analyze the variation of
micronutrients and macronutrients in tobacco roots. However,
some differences were also observed in Figure 3. The peak
intensity of Ca, Fe, Na, K increased with Cd stress level. Some
low-intensity emission lines appeared in the highest Cd-stress
group and disappeared in CK group.

Variable Selection Based on iPLS, BiPLS,
and SPA
In this experiment, 22,015 variables per spectrum were acquired
in the spectral range of 229.99–880.01 nm with high resolution
(λ/1λ = 5000) and 0.03 nm interval. Too many variables of LIBS
spectra with redundancy information may lead to an unpleasant
model for quantitative detection of Cd in tobacco roots. The
sensitive emission line inquired from NIST ASD may perform
poor correlation with Cd content because of complex matrix
effect and spectral interference. Meanwhile the urgent demand
for fast analysis and online detection need simple variables with
less interference and high precision. Therefore, we explored to
select effective variables by variable selection methods of iPLS,
BiPLS, and SPA.

For iPLS, the spectra were divided into i (i = 2, 3, . . ., 30)
equidistant subintervals and PLS models for each subinterval
were established. The best performance of PLS model is based
on 1693 variables in the eighth subintervals with i = 13
according to the lowest RMSECV value of 0.564 mg g−1 as
shown in Supplementary Table S1. The optimal subinterval was
corresponding to interval 474–526 nm (Figure 4). Compared
with the full spectra, the number of variables in the subintervals
i = 13 made a big difference. The RMSECVs reduced from 1.360
to 0.564 mg g−1, while the number of variables was reduced
from 22,015 to 1693. It turned out that in most case the full
LIBS spectra have plenty of invalid data for Cd content and iPLS
provides an overview of the relevant information of different
spectral subdivisions to excavate hidden variables.

As for BiPLS, the full spectra were divided into i (i = 2, 3,
. . ., 30) equidistant subintervals the same as the iPLS method.
The first model was built based on the rest intervals after leaving
out one interval. The second model was based on the rest
intervals after leaving out the second interval. This procedure
continued until only one interval left. Each total subintervals
(i) obtained its lowest RMSECV after all cycle processes. When
i = 28, BiPLS model achieved the lowest RMSECV value of
all subintervals numbers (i). The detailed results for i = 28
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FIGURE 2 | The functions and procedure of the variable fast selection methods iPLS, BiPLS, and SPA.

FIGURE 3 | LIBS full spectra after WT of five different Cd stress with additional offset of 65. The five Cd stress from top to bottom is Ck (0 µM), 2 (5 µM), 3 (30 µM),
4 (70 µM), and 5 (100 µM). The obvious emission lines are also marked in CK spectra.
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FIGURE 4 | The optimal subinterval and interval selection by iPLS. The selected interval 474.473–526.095 nm obtain the Cd emission lines 508.58 nm (the 1769th
variable of the full spectra).

are also shown in Table 2. The first discarded interval for
i = 28 was the number 1 because of the poorest performing
PLS model based on the rest intervals. The selected intervals
were intervals [22, 16, 17, 19, 15, 9, 8, 11, 10] with respect
to the optimized RMSECV value 0.690 mg g−1. The optimal
subintervals were corresponding to intervals 323–390 nm,
451–521 nm, 523–546 nm, and 631–662nm. The variable number
decreased from 22,015 to 7074 after variable selection based on
BiPLS. BiPLS eliminated the corresponding noise intervals and

extracts effective variables to establish the base model at every
step (Ren et al., 2016).

The LIBS spectra selected by iPLS or BiPLS may have a
high level of collinearity and useless information. It will have a
negative effect on the prediction performance of the Cd content
calibration model. In contrast, SPA have been successfully
employed to minimize collinearity problems (Pontes et al., 2009).
At the first step of SPA, permitted maximum number was set
to 30. Figures 5A,C shows the robust variables selected by

TABLE 2 | Selection of the most efficient interval regions by BiPLS for reference Cd values in tobacco roots.

BiPLS i = 28 BiPLS i = 28

Interval
Number

Removed
Interval

RMSECV Numbers Interval
Number

Removed
interval

RMSECV Numbers

28 1 1.163 22015 14 25 0.739 11004

27 4 1.121 21228 13 21 0.712 10218

26 28 1.081 20441 12 18 0.699 9432

25 20 1.055 19655 11 23 0.692 8646

24 5 1.027 18869 10 24 0.691 7860

23 3 0.987 18082 9 22 0.690 7074

22 12 0.966 17295 8 16 0.691 6288

21 27 0.932 16509 7 17 0.693 5502

20 7 0.905 15723 6 19 0.700 4716

19 26 0.885 14936 5 15 0.700 3930

18 2 0.867 14150 4 9 0.710 3144

17 6 0.824 13363 3 8 0.744 2358

16 13 0.777 12576 2 11 0.971 1572

15 14 0.757 11790 1 10 0.870 786
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FIGURE 5 | The four optimal variables (474.64, 493.51, 507.47, and 508.58 nm) selected by iPLS-SPA (A) and the selected Cd I (508.58 nm) emission lines among
the varieties; (B) the five optimal variables (331.24, 361.05, 373.69, 383.82, and 558.90 nm) selected by BiPLS-SPA (C) and the selected Cd I (361.05 nm) emission
lines among the varieties (D).

SPA from spectra intervals after iPLS and BiPLS procedures,
respectively.

iPLS-SPA selected four variables (474.64, 493.51, 507.47, and
508.58 nm) for Cd content analysis, where the RMSECV reached
its lowest value (0.657 mg g−1). According to NIST, it could be
obviously seen that 508.58 nm is the atomic emission line of
Cd and the characteristic peak of Cd in Figure 5B is pure and
not influenced by other lines. Obviously, the intensity of Cd I
(508.58 nm) lines were increased with the Cd-stress aggravated
and the Group 4 had the highest emission intensity of Cd without
self-absorption. The intensity of 474.64 and 507.47 nm revealed
that the two variables were close to stable background signals, as
shown in Figure 5A.

In Figure 5C, BiPLS-SPA selected five variables (361.05,
373.69, 558.90, 383.82, and 331.24 nm) with the lowest RMSECV
value of 0.543 mg g−1. The characteristic peak at 361.05 nm is
the frequently used sensitive line Cd I. Clearly, Fe I (360.88 nm)
is close to the LIBS excited line Cd I (361.05 nm), and there
is a small gap between Fe line and excited Cd line, as shown
in Figure 5D. The iron atoms may disturb ablation energy
absorption of the Cd atoms. The intensity differences of Cd
I (361.05 nm) lines and four other variables are shown in
Figure 5C. Signal at 331.24 nm had the lowest intensity and
belonged to smooth and steady background signal. Ca and Mg

are macronutrients of tobacco roots. Peaks at 373.69, 558.90,
and 383.82 nm belonged to Ca I, Ca I, and Mg I according
to NIST and had strong intensities. Peaks at 373.69, 558.90,
and 383.82 nm were far from Cd I (361.05 nm) and had no
interference. The spectral lines at 373.69 nm (Ca I), 558.90 nm
(Ca I), 383.82 nm (Mg I), and background signal at 331.24 nm
chosen by BiPLS-SPA may improve the analytical sensitivity of
Cd I (361.05 nm).

Univariate Analysis Based on Cd
Emission Lines and Variable Index
Univariate analysis is a traditional calibration method and
generates the calibration curve by relating the reference element
content values with spectral intensities. The ideal univariate
analysis is that the intensities of emission lines are proportional
to the interested element (Cd) content with no shot-to-shot
fluctuation, interruption of other emissions, and matrix effect.
As mentioned earlier, the iPLS selected interval 474–526 nm and
BiPLS selected intervals 323–390 nm, 451–521 nm, 523–546 nm,
and 631–662 nm. According to the above-selected intervals,
our study recognized 10 atomic emission lines of Cd I
(326.10, 340.36, 346.61, 361.05, 361.28, 361.44, 466.2, 467.81,
508.58, and 643.84 nm) by consulting NIST and referring
to the relative intensities of ions. The univariable calibration
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and prediction results of the above Cd lines were shown in
Table 3.

The Cd intensity data at 361.05 nm also showed an obvious
correlation with reference Cd content in tobacco roots. While
the Cd quantitative model based on 508.58 nm had the highest
correlation coefficients and lowest RMSE for calibration and
prediction set. One reason is that the Cd I (361.05 nm) line
was adjacent to Fe I (360.88 nm) having strong and stable
intensity in the Figure 5D. Fe is the micronutrients of plant
and belongs to the matrix atoms of tobacco roots. Fe atoms
absorbed more laser energy so that the laser energy absorbed by
the atoms of Cd lessened and the analytical sensitivity of target
element Cd worsened (Li et al., 2017). The Cd lines in 508.58 nm
were pure and nondisruptive. The results were corresponding to
the variables selected by iPLS-SPA (508.58, 493.51, 474.64, and
507.47 nm) and BiPLS-SPA (361.05, 373.69, 558.90, 383.82, and
331.24 nm) respectively.

In molecular spectra analysis, spectral indices were proposed
to explore the range of pigments such as chlorophyll and
anthocyanin in normal conditions (Peng and Lu, 2007; Qin and
Lu, 2008). Lleó et al. (2011) pointed that the indices may consist
of a single reflectance wavelength, differences or ratios between
wavelengths or derivatives. We attempted to propose new indices
based on the selected Cd emission lines. And no significant
correlation is observed between intensity of Cd I (466.23 nm)

TABLE 3 | The results for univariate analysis with different Cd atomic emission
lines.

Cd Lines (nm) Calibration Set Prediction Set

Rc
2 RMSECV mg g−1 Rp

2 RMSEP mg g−1

326.10 0.9578 0.979 0.9160 1.391

340.36 0.9366 1.204 09089 1.372

346.61 0.9517 1.051 0.9152 1.282

361.03 0.9600 0.952 0.9185 1.269

361.28 0.9350 1.222 0.8609 1.720

361.44 0.6286 2.912 0.4968 3.159

466.23 0.0544 4.657 0.1867 3.993

467.81 0.8951 1.545 0.8926 1.566

508.58 0.9684 0.846 0.9426 1.060

643.84 0.4902 3.447 0.5181 3.084

and Cd reference content, as shown in Table 3. It means that
the signal of 466.23 nm presented a narrowing effect and was
severely influenced by background noise, matrix effect, sensors,
or other circumstances. Our paper proposed two new indices of
Cd content prediction based on 508.58, 361.05, and 466.23 nm:

Index 1 = (I508.58 + I361.05)/(2∗I466.23) (1)

Index 2 = I508.58 /I466.23 (2)

The two indices were applied for linear regression with reference
Cd content values and the regression coefficients were shown
in Figure 6. The calibration model of Index1 with Rc2 value of
0.9712 and RMSECV value of 0.809 mg g−1 performed better
than any other calibration model based on Cd emission line
508.58 nm or 361.05 nm. The prediction model of Index2 with
Rp2 value of 0.9502 and RMSEP value of 0.988 mg g−1 behaved
better than the best univariate analysis based on Cd emission
line at 508.58 nm. The results revealed the indices based on LIBS
spectral variables were appropriate for univariate analysis of Cd
content in tobacco roots.

Multivariable Analysis Based on
Chemometrics
Multivariate analysis is capable to combine useful multi-variables
to deal with matrix effect and shot-to-shot fluctuation of LIBS
spectral. In recent years, the chemometric methods such as partial
least squares (PLS) and support vector machines (SVM) have
been extensively used in LIBS spectra for multivariable analysis
(Zhang et al., 2014; Yan et al., 2017).

The full spectra and the spectral variables selected by iPLS,
BiPLS, iPLS-SPA, and BiPLS-SPA were input into the PLS and
SVM models, respectively. The efficiency of PLS and SVM models
were all evaluated according to RMSECV, the lowest root mean
square error of prediction (RMSEP), and the highest correlation
coefficient square (R2) of calibration set and prediction set (Rc2

and Rp2).
The performance of the PLS calibration models and prediction

models for Cd content in tobacco roots were obtained and
summarized in Table 4. Among the four variable selection
patterns, the full spectra PLS model was the worst with the
lowest Rc2 and Rp2 value and highest RMSECV and RMSEP, and

FIGURE 6 | The relationship between reference Cd value and LIBS measured Cd value that predicted by (A) Index1 analysis and (B) by Index2 analysis.
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TABLE 4 | The results for multivariate analysis by PLS and SVM with different variable selection methods.

Variable Selection
Methods

Model Number Factor Calibration Set Prediction Set

Rc
2 RMSECV mg g−1 Rp

2 RMSECP mg g−1

PLS 22015 8 0.9235 1.326 0.8917 1.430

SVM 22015 13 0.9294 1.271 0.9005 1.372

iPLS PLS 1693 11 0.9860 0.564 0.9668 0.805

SVM 1693 13 0.9820 0.214 0.9759 0.712

BiPLS PLS 7074 10 0.9795 0.691 0.9262 1.35

SVM 7074 13 0.9994 0.110 0.9743 0.713

iPLS-SPA PLS 4 4 0.9810 0.657 0.9512 0.997

SVM 4 4 0.9880 0.521 0.9539 1.04

BiPLS-SPA PLS 5 5 0.9870 0.543 0.9537 0.984

SVM 5 5 0.9946 0.349 0.9666 0.891

Factor for PLS was latent variable, and factor for SVM was PCs.

this result indicated that the full spectra data contained massive
redundant information leading to bad prediction results; The
PLS models based on the four variables selected by iPLS-SPA
and the five variables selected by BiPLS-SPA performed well with
similar results of Rc2 > 0.98 and Rp2 > 0.95; The 1693 variables
selected by iPLS showed the best quantitative result and indicated
that variables selected by BiPLS still reserved invalid information
and iPLS-SPA and BiPLS-SPA removed the effective variables of
Cd values in tobacco roots. Figure 7 shows the calibration and
prediction plots of the full spectral PLS model and the top two
PLS model based on iPLS and BiPLS-SPA selected variables. The

BiPLS-SPA model was found to fit reasonably well with Rc2 value
of 0.9870 and RP2 value of 0.9537 for 5 LVs. The iPLS model
showed best linearity, with Rc2 value of 0.9860 and Rp2 value of
0.9668 for 11 LVs.

As mentioned previously, Table 4 and Figure 8A shows that
the full spectra data owing interference information lead to a
bad SVM modeling effect. After variable selection, new and
reduced spectral matrix was generated by selecting the LIBS
spectra only at the most important variables that contained the
most relevant spectral information of Cd content in tobacco
roots.

FIGURE 7 | The relationship between reference Cd value and LIBS measured Cd value that predicted by PLS models based on (A) 22015 variables of the full
spectra; (B) 1693 variables selected by the iPLS; (C) five variables selected by the BiPLS-SPA.

FIGURE 8 | The relationship between reference Cd value and LIBS measured Cd value that predicted by SVM models based on (A) 22015 variables of the full
spectra; (B) 1693 variables selected by the iPLS; (C) five variables selected by the BiPLS-SPA.
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As shown in Table 4, the SVM model based on the 1693
variables selected by iPLS obtained the best quantitative result
with Rc2 value of 0.9820 and Rp2 value of 0.9759 for 13 PCs, and
the prediction result has been displayed in Figure 8B. The SVM
models using the four and five variables selected by iPLS-SPA
and BiPLS-SPA (Figure 8C) were more simplified models with
high accuracy and benefit to develop portable instrument for Cd
content fast detection in tobacco field and workshop. In addition,
the results of SVM models outperformed those of PLS models, as
shown in Table 4. It was mainly attributed to the ability of SVM
to deal with nonlinear information caused by the “matrix effect”
and complex ablation processing. The results demonstrated that
new matrices formed by variables selection methods (especially
iPLS) could replace the full range spectra to build SVM models to
determine Cd in tobacco roots.

Multivariate analysis except using full spectra as input
was superior to univariate analysis in terms of calibration
and prediction correlation. Multivariate analysis had the
capability to deal with specialized features that might be caused
by laser-to-sample interaction, the variance of experimental
parameters, matrix effect, and so on. Taking spectral selectivity
and sensitivity into account, multivariate analysis was more
suitable for accurate detection of Cd content in tobacco roots
for meticulous laboratory research. On the other hand, univariate
analysis based on the new indices and multivariate analysis
based on variables selected SPA-iPLS and SPA-BiPLS were more
beneficial for exploiting portable instrument for rough fieldwork.
At the stage of accurate detection, our method shows the ability
of rapid detection for Cd content in tobacco roots. The whole
sample pretreatment for acquisition of LIBS signals was less than
5 min including grinding and pressing, while the pretreatment
for ICP-OES procedure needs more than 150 min and contains
weighting, adding other reagent, digesting, discharging acid,
diluting, and so on. After sample pretreatment, time of LIBS
information collection for one sample is about 1 min and
is compatible with the requirements of on-site analysis. The
accuracy and rapidness of LIBS technique combining with
variable index and chemometrics provide an accurate assessment
for heavy metal Cd content of tobacco roots in a short period of
time. The method also benefits for quickly analyzing pollution
levels of soil contacting the roots and real-time monitoring the
growth of tobacco plants.

CONCLUSION

In this experiment, we have shown the potential of LIBS to
rapidly detect heavy metal Cd in tobacco root samples with
good accuracy results. Our study located the optimal variables
by the feature selection methods iPLS, BiPLS, and combinations
of the two methods with SPA (iPLS-SPA and BiPLS-SPA). The
variables selected by four variables selection methods all obtained
low RMSECV and good correlations of reference Cd content.
iPLS-SPA and BiPLS-SPA selected the nonoverlapped atomic
emission line Cd I (508.58 nm) and the high intensity line Cd
I (361.05 nm), respectively. Univariate analysis models were
established by the ten Cd emission lines within the variables

selected by iPLS and BiPLS. Among the 10 Cd lines, Cd I
508.58 nm performed best with the Rp2 of 0.9426 and RMSEP
of 1.060 mg g−1. Two indices based on 508.58, 361.05, and
466.23 nm were proposed to improve the univariate analysis
ability for Cd content prediction and remove some negative
impact form noses, then Index2 obtained the better result with
the predicted correlation coefficient of 0.9502 and RMSEP of
0.988 mg g−1. In addition, PLS and SVM were adopted for
multivariate analysis based on full spectra and selected variables.
SVM models outperformed PLS models. The best prediction
result was achieved by the iPLS-SVM model (Rc2 = 0.9820,
RMSECV = 0.214 mg g−1, Rp2 = 0.9759, RMSEP = 0.712 mg g−1)
with the variables in the range of 474–526 nm.

The proposed approach provided a fast locating method for
effective variables. Then the heavy metals in biological samples
were quantified by the effective LIBS variables based on the
appropriate multivariate analysis models precisely. The proposed
approach is simple and efficient, and it is available for element
detection in biological samples such as roots and tubers food.
Besides, the proposed indices were available for the development
of portable instrument detecting Cd contamination in harsh field.
Nevertheless, further advances on the basis of our study are still
needed. The accumulation of the same heavy metals in different
parts of plants such as leaf and stem can be explored for matrix
differences and more samples with other chemometric methods
can be attempted to develop more robust and precise models and
indices.
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