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Morończyk J, Wójcik AM,
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Tomasz Nodzyński3, Jagna Karcz4 and Małgorzata D. Gaj1*

1 Department of Genetics, University of Silesia in Katowice, Katowice, Poland, 2 Department of Molecular Biology
and Genetics, Medical University of Silesia, Katowice, Poland, 3 Mendel Centre for Genomics and Proteomics of Plants
Systems, CEITEC MU – Central European Institute of Technology, Masaryk University, Brno, Czechia, 4 Scanning Electron
Microscopy Laboratory, University of Silesia in Katowice, Katowice, Poland

Auxin is an important regulator of plant ontogenies including embryo development and
the exogenous application of this phytohormone has been found to be necessary for
the induction of the embryogenic response in plant explants that have been cultured
in vitro. However, in the present study, we show that treatment of Arabidopsis explants
with trichostatin A (TSA), which is a chemical inhibitor of histone deacetylases, induces
somatic embryogenesis (SE) without the exogenous application of auxin. We found that
the TSA-treated explants generated somatic embryos that developed efficiently on the
adaxial side of the cotyledons, which are the parts of an explant that are involved in
auxin-induced SE. A substantial reduction in the activity of histone deacetylase (HDAC)
was observed in the TSA-treated explants, thus confirming a histone acetylation-
related mechanism of the TSA-promoted embryogenic response. Unexpectedly, the
embryogenic effect of TSA was lower on the auxin-supplemented media and this finding
further suggests an auxin-related mechanism of TSA-induced SE. Congruently, we
found a significantly increased content of indolic compounds, which is indicative of IAA
and an enhanced DR5::GUS signal in the TSA-treated explants. In line with these results,
two of the YUCCA genes (YUC1 and YUC10), which are involved in auxin biosynthesis,
were found to be distinctly up-regulated during TSA-induced SE and their expression
was colocalised with the explant sites that are involved in SE. Beside auxin, ROS were
extensively accumulated in response to TSA, thereby indicating that a stress-response
is involved in TSA-triggered SE. Relevantly, we showed that the genes encoding the
transcription factors (TFs) that have a regulatory function in auxin biosynthesis including
LEC1, LEC2, BBM, and stress responses (MYB118) were highly up-regulated in the
TSA-treated explants. Collectively, the results provide several pieces of evidence about
the similarities between the molecular pathways of SE induction that are triggered by
TSA and 2,4-D that involve the activation of the auxin-responsive TF genes that have
a regulatory function in auxin biosynthesis and stress responses. The study suggests
the involvement of histone acetylation in the auxin-mediated release of the embryogenic
program of development in the somatic cells of Arabidopsis.
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INTRODUCTION

Epigenetic modifications of DNA and histones are believed to
play a pivotal role in controlling the development processes in
animals and plants (reviewed by Feng et al., 2010; Lauria and
Rossi, 2011). Among the epigenetic processes, the methylation
of DNA and histone acetylation have been the most intensively
studied regulatory mechanisms that control gene expression
(Eberharter and Becker, 2002; Zilberman et al., 2007; Stricker
et al., 2017).

The acetylation of lysine residues on the N-terminal tails
of histones results in the removal of their positive charge,
which alters the histone-histone and histone-DNA interaction
and changes the accessibility of DNA to the chromatin-binding
proteins (Turner, 2000). Hence, the acetylation of histones is
believed to be associated with the open chromatin state and the
activation of gene transcription, whereas the hypoacetylation of
histones is characteristic for heterochromatin and gene silencing
(Feng and Michaels, 2015).

Two families of antagonistically acting enzymes, histone
acetyltransferases (HATs) and histone deacetylases (HDACs), are
responsible for the dynamic changes in the state of histone
acetylation. HATs use acetyl-coenzyme A (acetyl-CoA) to catalyze
the addition of the acetyl group onto the ε-amino group
of the lysine side chains, while HDACs remove this histone
mark (Steunou et al., 2013). In Arabidopsis, the HAT proteins
are divided into four types (GNAT, MYST, p300/CBP, and
TAF1/TAFII250) based on their primary homology with yeast and
the mammalian enzymes. The Arabidopsis HDAC family consists
of 18 members that belong to three subfamilies, RPD3/HDA1,
SIR2, and the plant-specific HD2 family (Pandey et al., 2002;
Alinsug et al., 2009). The interplay between the HAT and
HDAC enzymes contributes to the control of many biological
processes including embryo development, seed dormancy and
germination, morphogenesis, light signaling and flowering of
Arabidopsis (reviewed by Boycheva et al., 2014; Wang et al.,
2014). Moreover, histone acetylation has been postulated to
regulate the transcription of the genes that control the stress
responses (Liu et al., 2014) and plant-to-plant interactions
(Venturelli et al., 2015).

Moreover, the role of the epigenetic processes in somatic
cell dedifferentiation and plant regeneration from explants that
have been cultured in vitro has also been postulated (Us-
Camas et al., 2014). Changes in both DNA methylation and
histone modifications have been reported during the cellular
differentiation and embryogenic transition that was induced in
the tissue of various plants that have been cultured in vitro
(LoSchiavo et al., 1989; Santos and Fevereiro, 2002; Leljak-
Levanić et al., 2004; He et al., 2011; Nic-Can et al., 2013;
Ikeuchi et al., 2015; Mozgová et al., 2017). Congruent with the
postulated involvement of histone acetylation in the embryogenic

Abbreviations: 2,4-D, 2,4-dichlorophenoxyacetic acid; CIM, callus induction
medium; Ct, threshold cycle; E0, control medium, free of plant growth regulators;
EA, embryogenesis induction the auxin medium (E0+ 2,4-D); ET, embryogenesis
induction the medium with TSA (E0 + TSA); IZE, immature zygotic embryo;
PRC2, polycomb repressive complex 2; SE, somatic embryogenesis; SIM, shoot
induction medium; TF, transcription factor; TSA, Trichostatin A.

reprogramming of plant somatic cells, the genes encoding
members of the HAT and HDAC families were found to be up-
regulated during SE induction in Arabidopsis (Wickramasuriya
and Dunwell, 2015). Moreover, the hda9 and hdt1 mutants of
Arabidopsis showed a reduced callus formation capacity (Lee
et al., 2016) and the hac1 mutant exhibited a delayed initiation of
shoot regeneration from the calli (Li et al., 2011). The chromatin
decondensation and transcriptional activation of the genes that
accompany the dedifferentiation of the protoplasts isolated from
tobacco leaves were found to be associated with an increased level
of acetylated lysine 9 and 14 in histone 3 (Williams et al., 2003).
In Pinus radiata, immature needles that exhibited a high capacity
for in vitro shoot organogenesis displayed a greater accumulation
of histone 4 acetylation (H4Ac) compared to the mature needles,
which showed a less efficient organogenic response (Valledor
et al., 2010). Similarly, an increased level of H3 and H4 acetylation
(H3Ac and H4Ac), which is associated with the expression of
the histone acetyltransferase genes, was demonstrated during the
microspore embryogenesis of Brassica napus (Rodríguez-Sanz
et al., 2014).

Together, these reports confirm that the acetylation status
of histones, primarily H3 and H4, seems to control the
developmental programs that are induced in vitro in somatic
plant cells. However, knowledge about the role of specific histone
marks including the acetylation of specific lysine residues in the
molecular mechanism that controls the developmental plasticity
in somatic plant cells remains limited.

Among the various experimental approaches that can
be used to modify histone acetylation the use of TSA,
which is an antifungal antibiotic that is isolated from
Streptomyces hygroscopicus that inhibits HDAC activity, has
been recommended (Tsuji et al., 1976; Yoshida et al., 1995).
TSA targets the RPD3/HDA1 and HD2-type subfamilies of
the HDACs enzymes (Brosch et al., 1996; Jung et al., 1997)
and the direct interaction of TSA with the active zinc site of
RPD3/HDA1 HDACs was also shown (Finnin et al., 1999).
In plants, the TSA-mediated inhibition of HDACs resulted in
chromatin conformational changes that enhance gene expression
due to histone hyperacetylation (Görisch et al., 2005). Relevantly,
TSA treatment has been found to cause an increase of the
H3K9/K14Ac and H4K5Ac epigenetic marks in the TSA-treated
seedlings of Arabidopsis (Venturelli et al., 2015; Mengel et al.,
2017).

In mammals, TSA has been widely used to improve the
nuclear reprogramming of somatic cells for embryo cloning
(Beigh et al., 2017; Miyamoto et al., 2017). Moreover, the
TSA-induced inhibition of tumor growth and the apoptosis of
cancer cells indicates the potential application of this drug in
epigenetic therapy against cancer (Damaskos et al., 2017). While
the potential of TSA to induce somatic cell reprogramming in
plants was demonstrated, in contrast to mammals, the number
of reports on TSA-treated plant material remains limited. TSA
promoted the initiation of embryogenic tissue in Arabidopsis
seedlings (Tanaka et al., 2008) and explants of conifers, Picea
abies and Pinus sylvestris cultured in vitro (Uddenberg et al.,
2011; Abrahamsson et al., 2017). In addition, the beneficial effects
of TSA on cultures of the microspores of Triticum aestivum
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(Jiang et al., 2017) and B. napus (Li et al., 2014) have been
reported. However, the genetic mechanism of the TSA-promoted
embryogenic response of somatic plant cells has not yet been
identified.

The numerous TFs that are differentially expressed during
SE induction in Arabidopsis are plausible targets of TSA
(Gliwicka et al., 2013) including LEAFY COTYLEDON1 (LEC1),
LEC2 (LEAFY COTYLEDON2), AGL15 (AGAMOUS LIKE15),
BBM (BABY BOOM), WUS (WUSCHEL), MYB118, and EMK
(EMBRYOMAKER). These TFs positively regulate the vegetative-
to-embryonic transition and their overexpression results in SE
induction without auxin treatment (Lotan et al., 1998; Stone et al.,
2001; Boutilier et al., 2002; Zuo et al., 2002; Harding et al., 2003;
Wang et al., 2009; Tsuwamoto et al., 2010). The similarity of
the genetic pathways that control the embryonic reprogramming
of somatic cells in different plants seems to be plausible since
overexpression of the Arabidopsis genes, BBM, LEC2, and WUS,
was successfully used to improve the plant regeneration efficiency
of in vitro recalcitrant crops (Solís-Ramos et al., 2009; Deng et al.,
2009; Heidmann et al., 2011; Belide et al., 2013; Lowe et al., 2016).

However, controlling the developmental plasticity of plant
somatic cells requires deciphering the epigenetic processes that
regulate the expression of the SE-involved TFs that to date has
been limited to the polycomb repressive complex 2 (PRC2). PRC2
regulates the phase transitions during plant development through
the trimethylation of lysine 27 of histone 3 (H3K27me3) and
its role in SE induction has been inferred given that the clf
swn mutant in the genes encoding the catalytic subunits curly
leaf (CLF) and swinger (SWN) is capable of somatic embryo
development from the roots and shoots (Chanvivattana et al.,
2004; Ikeuchi et al., 2015; Mozgová et al., 2017; Birnbaum and
Roudier, 2017). Among the PRC2-controlled genes, LEC2, which
has an essential function in SE induction, was identified (Gaj
et al., 2005; Ikeuchi et al., 2015).

To gain insights into the role of histone acetylation in the
embryogenic transition that is induced in somatic plant cells,
we analyzed the developmental effects of TSA in the IZEs of
Arabidopsis explants that were cultured in vitro. We found that
in the absence of auxin treatment, TSA efficiently promoted
somatic embryo development and that this process was associated
with the extensive up-regulation of the TF genes that play a
crucial role in SE induction. Among the TSA-activated genes
were the YUC genes that are involved in auxin biosynthesis and
the up-regulation of YUC1 and YUC10 was associated with a
significant accumulation of auxin in the TSA-treated explants.
Collectively, the results indicate an auxin-related mechanism of
TSA-promoted SE induction.

MATERIALS AND METHODS

Plant Material
The Columbia (Col-0) genotype of Arabidopsis thaliana (L.)
Heynh and transgenic plants with the reporter construct in the
Col-0 background were used. The Col-0 seeds were supplied by
NASC (The Nottingham Arabidopsis Stock Centre). The seeds
of the DR5::GUS line and the YUC (pYUC1-GFP, pYUC10-GFP)

reporter lines were kindly provided by Jane Murfett (Division
of Biological Sciences, University of Missouri, Columbia, MO,
United States) and Helene Robert Boisivon (CEITEC MU-
Central European Institute of Technology, Masaryk University,
Mendel Centre for Genomics and Proteomics of Plants Systems,
Brno, Czechia), respectively.

In vitro Cultures of the Explants
IZEs at the cotyledonary stage of development were used as the
explants for the in vitro cultures. In one experiment, cotyledons
that had been cut off from freshly isolated IZEs were cultured.
The explants were sterilized and cultured following the standard
protocol for SE (Gaj, 2001) and shoot organogenesis (ORG)
(Kraut et al., 2011) induction. In each culture combination, ten
explants were cultured in one Petri dish (Ø 35 mm for SE or
60 mm for ORG) and thirty explants in three replicates were
analyzed.

SE Induction
The basal E0 medium contained 3.2 g L−1 of B5 (Gamborg et al.,
1968) micro- and macro-elements (Duchefa Biochemie; #G0210),
20 g L−1 sucrose and 8 g L−1 agar, pH 5.8. The standard medium
for SE induction (EA) contained 5.0 µM of 2,4-D. Other auxin
media, which were supplemented with 0.5; 2.5; 3.5 µM of 2,4-
D, were also used. In one experiment, 2,4-D was replaced with
IAA (10; 30; 50 µM) and NAA (5; 10; 20 µM). In addition, an E0
medium that supplemented with TSA (Sigma Aldrich; #T1952) at
concentrations of 0.1; 0.5 and 1.0 µM was used.

Shoot Organogenesis
The IZEs were incubated for 7 days in a liquid CIM, then
the cotyledons were cut off and cultured on solid shoot
induction media (SIM-C) according to Kraut et al. (2011). The
CIM medium contained a basal composition of a B5 medium
(Gamborg et al., 1968), 0.5 g L−1 MES, 20 g L−1 glucose,
2.2 µM of 2,4-D and 0.2 µM of kinetin. The SIM-C medium
contained the micro-elements of MS (Murashige and Skoog,
1962), macro-salts and vitamins of a B5 medium (Gamborg
et al., 1968) and was supplemented with 30 g L−1 sucrose,
0.5 µM of NAA (1-naphthaleneacetic acid) and 4.4 µM of BAP
(6-benzylaminopurine).

Evaluation of the Embryogenic Capacity
The explant capacity for SE was evaluated in 21-day-old
cultures and two parameters were calculated – SE efficiency (the
percentage of explants that formed somatic embryos) and SE
productivity (the average number of somatic embryos produced
per explant). All of the culture combinations were evaluated in
three replicates and at least 30 explants (ten explants/Petri dish)
were analyzed per one replicate.

Conversion of Embryo-Like Structures
Into Plants
The capacity of the embryo-like structures to develop into
plants (so-called conversion rate) was analyzed as was previously
described (Nowak et al., 2012). The average conversion rate was
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based on three independent experiments and at least 100 of the
embryo-like structures per replicate were evaluated.

Plant Growth and in vitro Culture
Conditions
The seed-derived plants were grown in Jiffy-7 (Jiffy, Norway) pots
at 22◦C under a 16 h photoperiod of 100 µM m−2 s−1 white,
fluorescent light. The plant materials that were grown in sterile
conditions were kept at 23◦C under a 16/8 h photoperiod of
40 µM m−2 s−1 white, fluorescent light.

Lipid Staining
Sudan red 7B staining, which is indicative of neutral lipids
(Brundrett et al., 1991), was used. The explants were stained
overnight in a filtered Fat Red (Sigma Aldrich) solution
(0.05%), rinsed with distillated water and examined under a
stereomicroscope.

Superoxide Anion Detection
In order to detect ROS, nitroblue tetrazolium chloride (NBT),
which detects superoxide anion (O2

.−), was applied (Rossetti and
Bonatti, 2001). The explants were stained in a solution of 2 mM
NBT (Invitrogen) in a 20 mM sodium phosphate buffer (pH 6.1)
for 30 min and then they were washed in distilled water and
examined under a stereomicroscope.

GUS Detection
Explants of the DR5::GUS line cultured on the E0 and ET (1.0 µM
TSA) media for 0, 5, 10, 15, 21, and 28 days were sampled and
incubated in a GUS assay solution at 37◦C for 12 h (Jefferson
et al., 1987). Pigments from tissue were removed with 95%
ethanol.

Processing of Samples for Scanning
Electron Microscopy (SEM)
Explants from different time points of the SE cultures were
collected and fixed in 4% PFA in PBS with 0.1% Tween for
3 h at room temperature in a vacuum. Next, the samples were
rinsed for 30 min in methanol and washed 3 × 5 min in 100%
ethanol. After fixation, the samples were washed in PBS and
dehydrated in an ethanol series (30, 50, 70, 80, 90, 95, and
100%) for 10 min each, followed by replacing the ethanol with
acetone. The dehydrated samples were dried with a CPD 2
critical-point drier (Pelco) using liquid carbon dioxide, mounted
on aluminum stubs with double-sided adhesive carbon tape
and sputter-coated with a 12.5 nm (0, 5, 10, and 15 days) or
20 nm (21 and 28 days) film of gold in anSC-6 sputter coater
(Pelco). After processing, the samples were imaged using a
Hitachi SU 8010 UHR FESEM field emission scanning electron
microscope (Hitachi High-Technologies Corporation, Tokyo,
Japan) at 5 kV accelerating voltage with a secondary electron
detector (ESD).

Microscope Analysis
A Zeiss Stemi 2000-C microscope was used to analyze the lipids,
ROS accumulation and GUS signal, the images were saved as

jpg files using an Axi-Vision Camera. Live-cell microscopy was
performed on a Zeiss 700 confocal laser scanning microscope
using a 488 nm emission filter to detect the GFP signal.

Assessment of the Content of
Indolic-Compounds
A colourimetric technique that permitted the detection of indolic
compounds including IAA was used (Bric et al., 1991). The IZE
explants cultured on the E0 and ET media for 5, 10, 15, 21, and
28 days were analyzed. The procedure was performed as was
previously described (Wójcikowska et al., 2013). Accordingly,
fresh tissue was transferred to mortars containing 2 mL of
10 × PBS immediately after it was harvested. The material
was homogenized and the solution was centrifuged (25 min;
18,000 × g). Then, 2 mL of supernatant was mixed with 100 µL
of 10 mM orthophosphoric acid and 4 mL of Salkowski’s reagent.
The pink absorbance that developed after a 30 min incubation at
room temperature was read at 530 nm. The IAA concentration
was determined with the calibration curve of pure IAA as the
standard following linear regression analysis. Each analysis was
carried out in three biological replicates.

Nuclear Extract Isolation
Following the protocol of Gendrel et al. (2005) with the minor
modifications of Buszewicz et al. (2016), the nuclear proteins
were isolated from the explants cultured on the EA, E0, and ET
media for 0, 5, 10, and 15 days and 0.04–0.2 g of fresh tissue per
sample was used. Protein concentration was estimated using the
Bradford assay and absorbance was measured by Tecan Infinite
M200 in Bio-one Cellstar 96-well plate (Greiner) with 595 nm
wavelength. Samples were stored at−80◦C.

HDAC/HAT Enzymes Activity
The activity of the HAT and HDAC enzymes was measured in a
nuclear protein extract and 1.8–8.2 µg of the extract was used
per sample. The colourimetric ELISA method and commercially
available kits – Epigenase HDAC Activity/Inhibition Direct
Assay Kit1 and EpiQuik HAT Activity/Inhibition Assay
Kit2 (Epigentek) were used. The procedure followed the
manufacturer’s protocols. The ratio of acetylated/deacetylated
histones was colourimetrically measured by reading the
absorbance in a Tecan Infinite M200 Microplate reader with
450 nm wavelength. As a control to the blank, reader wells
without the antigen or primary antibody were used. The activity
of the HDAC, and HAT enzymes was proportional to the OD
intensity that was measured. Three biological and two technical
replicates of each culture combination were analyzed in order to
calculate the average enzyme activity.

Isolation of RNAs and miRNAs
A RNAqueous Kit (AMBION) and mirVanaTM Kit (AMBION)
was used to isolate the total RNAs and miRNAs, respectively,

1http://www.epigentek.com/catalog/epigenase-hdac-activityinhibition-direct-
assay-kit-colorimetric-p-2867.html
2https://www.epigentek.com/catalog/epiquik-hat-activityinhibition-assay-kit-p-
951.html

Frontiers in Plant Science | www.frontiersin.org 4 September 2018 | Volume 9 | Article 1353

http://www.epigentek.com/catalog/epigenase-hdac-activityinhibition-direct-assay-kit-colorimetric-p-2867.html
http://www.epigentek.com/catalog/epigenase-hdac-activityinhibition-direct-assay-kit-colorimetric-p-2867.html
https://www.epigentek.com/catalog/epiquik-hat-activityinhibition-assay-kit-p-951.html
https://www.epigentek.com/catalog/epiquik-hat-activityinhibition-assay-kit-p-951.html
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01353 September 11, 2018 Time: 18:49 # 5

Wójcikowska et al. TSA Triggers an Embryogenic Transition

from the IZE explants induced on the different media for
0, 5, 10, 15, 21, and 28 days. Depending on the age of the
culture from 250 (day 0) to 4 (day 28) explants were used to
isolate the RNAs/miRNAs. The concentration and purity of the
RNA/miRNA was assessed using a ND-1000 spectrophotometer
(NanoDrop).

Reverse Transcription, Stem-Loop
Reverse Transcription, RT-PCR and
RT-qPCR Analyses
In order to control any DNA contamination, the RNAs were
treated with RQ1 RNase-free DNase I (Promega) according
to the manufacturer’s instructions. The first-strand cDNA was
produced in a 20 µL reaction volume using a RevertAid First
Strand cDNA Synthesis Kit (Fermentas).

The product of the reverse transcription was diluted with
water at a 1:1 ratio and 1 µL of this solution was used for the RT-
PCR reactions. A LightCycler R© 480 (Roche) real-time detection
system was used for the RT-qPCR reactions to analyze the relative
level of mRNAs and miRNAs using the gene/miRNA-relevant
primers (Supplementary Table S1) following Wójcikowska and
Gaj (2017) and Speth and Laubinger (2014), respectively. The
product of the reverse transcription was diluted with water at
a 1:4 ratio and 2.5 µL of this solution was used for the RT-
qPCR reactions. The relative RNA levels were calculated and
normalized to the internal control of the AT4G27090 (TIN) gene
encoded 60S ribosomal protein (Thellin et al., 1999). The relative
expression level was calculated using 2−11CT where 11C T
represented 1C T

reference condition – 1C T
compared condition. The

plant tissues for the gene expression analysis were produced
in three biological replicates and two technical replicates were
analyzed.

Statistical Analysis
The Student’s t-test (P < 0.05) or two-way ANOVA analysis
(P < 0.05) followed by Duncan’s test (P < 0.05) was used to
determine any values that were significantly different between the
combinations that were being compared. The figures show the
averages from the biological replicates with the standard error.

RESULTS

TSA Promotes an Embryogenic
Response in Explants That Are Cultured
on an Auxin-Free Medium
In order to examine the role of histone acetylation in the
epigenetic control of the embryogenic transition that was induced
in the somatic plant cells, the effect of TSA was assessed in the
IZE explants of Arabidopsis that were cultured in vitro. The
IZE explants cultured on an auxin-free E0 medium developed
into seedlings while supplementing the medium with TSA (0.1–
1.0 µM) resulted in the formation of embryo-like structures
(Figures 1A–K). SEM analysis indicated that the upper part
of the explants including the cotyledons and SAM responded
exclusively to the TSA treatment and that in the 10-day-old

culture, the first protuberances started to emerge on the adaxial
side of the cotyledons and somatic embryos were subsequently
developed (Figures 1L–R). We found that 42–61% of the explants
treated with 0.1–1.0 µM of TSA underwent SE induction and that
an average of 27 of the embryo-like structures were produced
per explant (Figure 2A). The cotyledons isolated from the IZEs
also displayed an efficient SE induction and over 80% of the
cotyledons located on the abaxial side on the medium that
supplemented with 1.0 µM of TSA formed numerous somatic
embryos on the upper, i.e., adaxial side (Figure 2B). In contrast,
the cotyledons that had been placed on the medium in the
opposite orientation displayed a significantly lower (up to 2.5-
fold) embryogenic response. To summarize, the adaxial side of
the IZE cotyledons responded to the TSA-induced embryogenic
transition efficiently.

Upon their transfer onto the TSA-free medium, the TSA-
induced embryo-like structures were capable of developing
shoots with roots and the concentration of TSA used in
the induction medium was positively correlated with the
frequency of somatic embryos that regenerated complete plants.
Accordingly, the somatic embryos induced on the ET medium
with 1.0 µM TSA developed into plants with the highest
efficiency of 60% (Figure 2C). This result implies that the
majority of the embryo-like structures induced in the presence
1.0 µM of TSA represented complete somatic embryos with
a functional shoot and root poles. Additional evidence of the
embryonic identity of the TSA-induced structures was provided
by staining with Sudan Red 7B, which marks the neutral
lipids accumulate specifically in the embryonic tissue (Brundrett
et al., 1991). We found that in contrast to the seedlings and
adventitious shoots that had regenerated on the E0 and CIM/SIM
media, respectively, the structures induced with TSA and auxin
showed an intense red staining, thus indicating their embryonic
character (Supplementary Figure S1A). In addition, the explants
treated with TSA and auxin accumulated high level of ROS
(Supplementary Figure S1B). To summarize, the results showed
that TSA at a concentration of 1.0 µM efficiently triggered an
embryogenic response in the IZE explants and that the majority
of developing somatic embryos were bipolar embryos with the
functional shoot and root poles.

Decreased Activity of HDAC and HAT in
the TSA-Treated Explants
To verify the assumption that TSA promotes SE induction
via a histone acetylation-related mechanism, we evaluated the
activity of HDACs and HATs in the explants cultured on the ET
medium with 1.0 µM of TSA (Figure 3). The analysis indicated
a significant reduction of up to 93% of the HDAC activity
in the explants cultured on the ET medium compared to the
freshly isolated tissue (0 d). Surprisingly, the HDAC activity also
decreased in the explants cultured on the TSA-free media, E0 and
EA. Nevertheless, the HDAC activity was up to twofold lower in
the explants cultured on the TSA-supplemented media.

In addition to HDACs, the activity of HATs was substantially
reduced in the explants that have been cultured in vitro and the
auxin- and TSA-treated cultures displayed the lowest activity of
acetylases, which was up to fivefold lower than in the 0 d explants.
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FIGURE 1 | TSA promotes SE induction in in vitro cultured Arabidopsis explants. The IZE explants of Col-0 (A) developed into seedlings (B–F) and somatic embryos
(G–K) on the control E0 and ET (E0 + 1.0 µM TSA) medium, respectively. SEM images (L–R) of the explants cultured on the ET medium. Explants at different time
points are indicated as the day (d) of the culture: 0 (A,L), 5 (B,G,M), 10 (C,H,N), 15 (D,I,O), 21 (E,J,P), and 28 (F,K,R). Magnification views (Nm, Om, Rm) of the
areas framed in N, O, R. An asterisk (∗) indicates somatic embryos.

Simultaneous Treatment of the Explants
With TSA and Auxin Inhibited SE
Induction
Because 2,4-D is commonly used to induce an embryogenic
response in Arabidopsis, we addressed the question of the
response of explants that had simultaneously been treated with
2,4-D and TSA. It was found that 2,4-D negatively affected the

embryogenic response induced by TSA alone in a concentration-
dependent manner. Total repression of the embryogenic response
and the production of a non-embryogenic callus was observed
in the explants induced on the ET medium supplemented with
3.5 µM of 2,4-D (Figure 4A). The inhibition of a TSA-induced
embryogenic response was not specific to 2,4-D and it was also
observed that other auxins, IAA and NAA, significantly inhibited
SE induction on the ET medium (Supplementary Figure S2).
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FIGURE 2 | Evaluation of the embryogenic response of the Col-0 explants treated with TSA. SE efficiency and SE productivity were evaluated in the IZE explants of
Col-0 cultured on the E0 medium with 0.1, 0.5, and 1.0 µM of TSA (A). The SE efficiency of the isolated cotyledons placed on the adaxial and abaxial side on the E0
medium with 1.0 µM of TSA (B). The conversion rate of the somatic embryos derived from the IZEs cultured on the medium with 0.1, 0.5, and 1.0 µM of TSA
calculated as the frequency of the somatic embryos that developed into plants with roots (C) (n = 3; means ± SE).

Auxin Accumulation in the TSA-Induced
Explants
Given the key role of auxin in SE induction, we decided to assess
the auxin accumulation in the TSA-treated explants. To this end,
the content of indolic compounds (ICs), which are indicative
of IAA, was evaluated in the ET- vs. E0-induced explants and
the analysis showed a significant, more than threefold increase
of ICs in the 10 d culture treated with TSA (Figure 4B).
Further evidence that TSA treatment results in an intensive auxin
accumulation was provided by a strong DR5::GUS signal in the
explants cultured on the ET medium (Figure 4C). In conclusion,
we assume that the enhanced biosynthesis of IAA is associated
with the TSA-promoted mechanism of SE induction.

TSA Treatment Up-Regulates the YUC1
and YUC10 Genes That Are Involved in
Auxin Biosynthesis
In order to identify the auxin biosynthesis genes that were
activated in the embryogenic culture in response to TSA, the
expression patterns of eleven member genes of the YUCCA
family were analyzed in the explants cultured on the ET
vs. E0 medium. A RT-PCR analysis indicated the expression
of nine YUC genes (YUC1, 3, 4, 5, 6, 8, 9, 10, and 11)
in the ET-induced culture (Supplementary Figure S3) and
the transcription of YUC1 and YUC10 appeared to increase
on the ET medium. The RT-qPCR analysis supported this
assumption and we found that the YUC1 and YUC10 genes were
substantially up-regulated in response to TSA and, in particular,
the YUC10 transcripts were intensively accumulated (over 1300-
fold) (Figures 5A,B).

To confirm the contribution of the YUC1 and YUC10 genes
to TSA-induced SE, we analyzed the spatiotemporal pattern of
their expression in the pYUC1:GFP and pYUC10:GFP explants in
the TSA- and E0-cultured explants (Figures 5C–F). The analysis

revealed that in response to TSA, YUC1, and YUC10 were
expressed in the cotyledons and SAM-proximity, which are the
explant regions that are involved in SE induction (Figures 5E,F).
The GFP signal was scattered on the adaxial side of the cotyledons
and was probably colocalised with the sites of the early SE
induction (days 3–5). In the more advanced culture (day 10), the
YUC expression had protuberances that emerged on the adaxial
side of the cotyledons. Notably, we found that the expression of
YUC1 and YUC10 was not exclusively limited to the SE-involved
tissue and that the GFP signal was also observed in the hypocotyls
that were incapable of SE.

TSA-Treatment Results in the Extensive
Up-Regulation of the SE-Involved TF
Genes
The expression level of several TFs that have a reported
contribution to SE induction including LEC1, LEC2, FUS3, BBM,
WUS, AGL15, EMK, and MYB118 were analyzed in the explants
cultured on the ET vs. E0 medium. We observed that except
for WUS whose transcripts were not detected in the explants
cultured on both of the media that were used (Supplementary
Figure S4), TSA treatment significantly increased the expression
of analyzed TF genes over the level that was observed on the
E0 medium (Figures 6A–G). MYB118, whose transcript level
increased up to 255-fold in the 15 d culture induced by TSA,
displayed the highest up-regulation (Figure 6A). The other
TFs including LEC1, LEC2, AGL15, FUS3, and BBM were up-
regulated at least 15-times more in response to TSA and for
the majority of them, the maximal transcript accumulation
was observed in the culture induced on the ET medium for
15 days (Figures 6B–F). Notably, the expression level of the
TF genes in the TSA-induced culture substantially exceeded
those that were observed in the auxin-induced explants and,
in particular, the LEC2 transcripts were highly accumulated
and their level was more than 125-times higher in response
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FIGURE 3 | Enzymatic activity of HDAC (A) and HAT (B) in the IZE explants of the Col-0 cultured on the E0, EA (E0 + 5.0 µM 2,4-D) and ET (E0 + 1.0 µM TSA) media
for 0, 5, 10, and 15 days. The enzyme activity was calculated as the OD/min/mg protein. A two-way ANOVA analysis (P < 0.05) followed by Duncan’s test (P < 0.05)
was used to indicate values that were significantly different from: 0d (∗); the E0 culture at the same age (∗∗); the EA culture at the same age (∗∗∗) (n = 3; ± SE).

to TSA- compared to the 2,4-D-treatment (Supplementary
Figure S5).

Given that the simultaneous treatment of the explants with
TSA and auxin inhibited the embryogenic response (Figure 4A
and Supplementary Figure S2), we were curious about the
expression level of the key SE-regulators in the explants cultured
on the ET medium with 2,4-D. Therefore, LEC1, LEC2, and BBM,
which control auxin biosynthesis were analyzed and a strong
inhibition of their expression was observed in the culture induced
on the ET medium supplemented with 5 µM of 2,4-D (Figure 7).
This suggests that the inhibition of the embryogenic response that
was observed on the ET medium with 2,4-D resulted from the
reduced expression of the TF genes that have a key function in SE
induction.

DISCUSSION

The reprogramming of differentiated cells toward an embryonic
state, which requires the remodeling of chromatin in order to
break the epigenetic barriers and histone acetylation in concert
with the methylation of histones and DNA are believed to
play central roles in this process reviewed in Fehér (2015) and
Horstman et al. (2017a). In support of the function of histone
acetylation in cellular reprogramming, the inhibitor of HDACs –
TSA – has been shown to improve embryo cloning in mammals
(Beigh et al., 2017; Miyamoto et al., 2017) and to promote
somatic embryo development in Arabidopsis seedlings (Tanaka
et al.; 2008). Given that the TSA treatment was observed to
have a distinct impact on gene expression in animals and plants
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FIGURE 4 | TSA-induced SE is associated with auxin accumulation. Auxin inhibits TSA-induced SE. SE efficiency and productivity was assessed in the IZE Col-0
explants cultured on the ET (E0 + 1.0 µM TSA) medium supplemented with different 2,4-D concentrations (0.0, 0.5, 2.5, and 3.5 µM) in relation to the ET medium
that was set at 100% (A) (n = 3 ± SE; the Student’s t-test P < 0.05). The content of indolic compounds was analyzed in the explants cultured on the ET
(E0 + 1.0 µM TSA) and E0 media; values significantly different from the E0-derived culture of the same age are indicated by an asterisk (∗) (B) (n = 3 ± SE; the
Student’s t-test P < 0.05). Spatiotemporal localisation of the DR5::GUS signal, which was indicative of auxin accumulation in the explants cultured on the ET
(E0 + 1.0 µM TSA) and E0 media (C).

(Görisch et al., 2005; Chang and Pikaard, 2005; Inoue et al.,
2015), the embryogenic response that is induced by TSA appears
to result from the de-repression of the specific regulatory genes
that control the embryogenic transition. To gain insight into
the molecular mechanism of TSA-induced embryogenesis, we
analyzed the effects of TSA in IZE of Arabidopsis cultured in vitro
that provide a model system for studies on the molecular factors
that govern the embryogenic response of somatic plant cells
(Wójcikowska and Gaj, 2016).

Similarity of TSA- and 2,4-D-Induced
Embryogenic Response
We demonstrated that the TSA-treated IZE explants underwent
SE induction in the absence of exogenous auxin (2,4-D), which
is a standard SE-inducer in Arabidopsis and other plants

(Horstman et al., 2017a). Alike 2,4-D-induced SE, the TSA-
triggered embryogenic transition was induced rapidly with
only sporadic callus production and exclusively the adaxial
side of cotyledons responded to SE induction (Kurczyńska
et al., 2007; Gaj, 2011). Moreover, we found that the TSA-
triggered embryogenic response was highly efficient because up
to threefold more somatic embryos were produced per explant in
the TSA (present results) than in the 2,4-D-induced (Gaj, 2011)
cultures. The cotyledons detached from the IZEs also displayed
a capacity for TSA-induced SE, thereby confirming a high and
autonomous embryogenic potential of the cotyledon tissue in
Arabidopsis. Most importantly, we found a distinct difference in
the TSA-responsiveness between the adaxial and abaxial sides of
the cotyledons as somatic embryos were generated almost three
times more frequently from the adaxial side of the cotyledons.
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FIGURE 5 | TSA up-regulated the YUC1 and YUC10 expression in the SE-involved explant parts. The RT-qPCR-monitored relative expression level of the YUC1 (A)
and YUC10 (B) genes in the IZE explants of Col-0 cultured for 5, 10, 15, 21, and 28 days on the ET (E0 + 1.0 µM TSA) medium. The relative transcript level was
normalized to the internal control (At4g27090) and calibrated to the E0 culture. Values that were significantly different to that on E0 at the same age are indicated
with an asterisk (∗) (n = 3; means ± SE; the Student’s t-test P < 0.05). The GFP-monitored spatiotemporal expression pattern of the YUC1 (C,E) and YUC10 (D,F)
genes in the IZE, Col-0 explants cultured for 0, 3, 5, and 10 days on a control E0 (C,D) and ET (E0 + 1.0 µM TSA) (E,F) media. GFP signals at different locations are
indicated including the adaxial side of the cotyledons (blue asterisk); SAM-proximity (white asterisk); regenerating somatic embryos (blue arrowhead); hypocotyl
(white arrowhead). White frames (1–6) indicate the magnified areas.

We assumed that the specific expression pattern of genes in
the adaxial tissue might account for the enhanced capacity of
this tissue for SE induction. Relevantly, the SE-involved PHB
(Wójcik et al., 2017) is active exclusively on the adaxial side of the
cotyledons/leaves as a result of the miR165/166-mediated PHB
repression in the abaxial region (Kidner and Martienssen, 2004;
Grigg et al., 2009). In addition, the YUCCAs and ARFs genes,

which play key roles in the auxin-induced embryogenic transition
(Wójcikowska et al., 2013; Wójcik et al., 2017), have been found
to be differently expressed in the adaxial and abaxial tissue
(Garcia et al., 2006; Chitwood et al., 2009; Wang et al., 2011;
Machida et al., 2015; Guan et al., 2017).

We found that TSA treatment with 1.0 µM was the most
efficient in inducing the high frequency of bipolar somatic
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FIGURE 6 | TF genes that have a regulatory role in SE induction were significantly up-regulated in response to the TSA treatment including MYB118 (A), LEC1 (B),
LEC2 (C), AGL15 (D), FUS3 (E), BBM (F), and EMK (G). The IZE explants of Col-0 were cultured on an ET (E0 + 1.0 µM of TSA) medium and the tissue for the
RT-qPCR analysis was sampled on days 5, 10, 15, 21, and 28 of the culture. The relative transcript level was normalized to the internal control (At4g27090) and
calibrated to the culture on E0. Values that were significantly different to the culture on E0 at the same age are indicated by an asterisk (∗); (n = 3; means ± SE; the
Student’s t-test P < 0.05).

embryos that developed into shoots with roots, while a
lower concentration (0.1 µM) resulted in incomplete somatic
embryos. Similarly, 2,4-D-treatment affected the frequency of
bipolar somatic embryos in a concentration-dependent manner
(Raghavan, 2004; Nowak et al., 2012). Given that a specific auxin
treatment was required in order to activate the root-specific TFs
(PLETHORA1, 2 and WUSCHEL-RELATED HOMEOBOX5) in
the somatic embryos (Mozgová et al., 2017), we assumed that a
specific TSA concentration was required for the de-repression
of the genes that control the establishment of the root pole
in the embryo-like structures. Although this assumption needs
experimental verification, TSA and other HDAC inhibitors were
demonstrated to affect the expression of genes in a culture of
human cells in a concentration-dependent manner (Xu et al.,
2007).

A high TSA concentration of 50.0 µM was demonstrated to be
required to induce an SE response in the postgermination tissue
of Arabidopsis (Tanaka et al., 2008). In contrast, we demonstrated
that 0.1 µM of TSA is sufficient to trigger an embryonic response
in a culture of IZE explants and that the differences between
the TSA concentrations that promote SE in seeds vs. IZEs might

reflect different histone acetylation-related repressive states in the
postgerminative vs. embryonic tissue.

A TSA-Promoted SE Response Is
Associated With Auxin Biosynthesis and
ROS Production
We found that the TSA-induced SE was associated with a high
and transient increase of the auxin content in the explants.
An IAA surge has also been observed during SE that induced
in various plants using different factors (Michalczuk et al.,
1992; Charrière et al., 1999; Pasternak et al., 2002; Wójcikowska
et al., 2013; Grzyb et al., 2017; Wójcik et al., 2017). Thus,
TSA seems to trigger an embryogenic response via a common
embryogenic pathway that involves stimulating auxin production
in the somatic tissue. In support of this, we found that the
YUC1 and YUC10 encoding the YUC enzymes of the central
IAA biosynthesis pathway in Arabidopsis (Kasahara, 2016) were
significantly up-regulated in the TSA-treated culture. In addition,
we found that both of these genes were expressed on the adaxial
side of the cotyledons, which are the explant areas that are
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FIGURE 7 | Combined treatment with TSA and 2,4-D represses the expression of the LEC1 (A), LEC2 (B), and BBM (C) genes. The IZE explants of Col-0 cultured
on the EA (5.0 µM of 2,4-D) and EAT (1.0 µM of TSA + 5.0 µM of 2,4-D) media and the tissue for the RT-qPCR analyses was sampled on days 5, 10, 15 of the
culture. Relative transcript level was normalized to the internal control (At4g27090) and calibrated to the 0 d. Values significantly different to that observed on 0 d is
indicated by an asterisk (∗); (n = 3; means ± SE; the Student’s t-test P < 0.05).

involved in the embryogenic response. Relevant to TSA-induced
SE, the function of YUC1 and YUC10 has also been observed
during zygotic embryogenesis (Cheng et al., 2007) and in SE that
was induced as a result of LEC2 overexpression and a phytoglobin
2 (pgb2) mutation (Wójcikowska et al., 2013; Godee et al., 2017).
In addition, it was suggested that YUC1 marks the future somatic
embryo initiation sites in the Arabidopsis callus (Bai et al., 2013).

Notably, we also observed the expression of YUC1 and YUC10
in the hypocotyl, which is not involved in somatic embryo
production. Given that non-cell autonomous auxin biosynthesis
seems to be of importance in plant development including zygotic

embryogenesis reviewed in Robert et al. (2015), the auxin that is
produced in the explant hypocotyls might also contribute to SE
induction. In support of this assumption, the auxin transporter
PIN1 was demonstrated to mediate the preferential accumulation
of IAA in the SE-responsive cells of IZE-cotyledons (Elhiti et al.,
2013). The impact of the non-cell autonomous auxin biosynthesis
on SE induction should be addressed in future studies.

The intensive crosstalk between ROS and auxin has
been reported to control the cell responsiveness to different
developmental stimuli (Tognetti et al., 2017). Accordingly, auxin-
induced embryogenic cultures were observed to accumulate ROS
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(Kairong et al., 1999; Elhiti and Stasolla, 2015; Cheng et al.,
2015, 2016), and similarly, we found the intensive production
of superoxide anion (O2

.−) in the TSA-treated explants. It is
noteworthy that ROS accumulation was not observed in the
TSA-treated roots of Populus (Ma et al., 2016) and this finding
strengthens the assumption that ROS are produced in relation
to the auxin accumulation rather than in response to the TSA
treatment per se. The role of ROS in plant development and stress
responses has been widely demonstrated reviewed in Choudhury
et al. (2017) and Mittler (2017) and among the different free
radicals, nitrate oxide (NO) has been found to control auxin
biosynthesis during SE induction through the inhibition of
the MYC2 repressor of IAA biosynthesis (Elhiti et al., 2013;
Godee et al., 2017). Moreover, a link between NO and histone
acetylation-mediated regulation of gene expression in stress
response has recently been demonstrated (Mengel et al., 2017).
Thus, the ROS that are commonly produced during both auxin-
and TSA-induced SE might provide a functional signal in the
de-repression of the SE-regulatory genes including those that are
involved in auxin biosynthesis.

Taken together, these results suggest that the mechanism
of TSA-induced SE is associated with the YUC1 and YUC10-
mediated auxin biosynthesis and as a result of auxin and ROS
accumulation, the embryogenic transition is triggered in the
embryogenically competent explant tissue of the adaxial side of
cotyledons.

TSA-Treatment Results in the Intensive
Up-Regulation of the SE-Involved TF
Genes
In order to reveal the genetic components of the TSA-triggered
embryogenic pathway, we profiled the expression of several
genes encoding TFs for which the role in SE induction was
documented including LEC1, LEC2, FUSCA 3 (FUS3), AGL15,
BBM, EMK/CHO1/AIL5/PLT5, WUS, and MYB118 (Lotan et al.,
1998; Stone et al., 2001; Boutilier et al., 2002; Zuo et al.,
2002; Harding et al., 2003; Gaj et al., 2005; Wang et al.,
2009; Tsuwamoto et al., 2010). We found that TSA treatment
substantially up-regulated the analyzed TFs except for WUS.
The TSA-induced up-regulation of the LECs and the LEC1-
type HAP3 was also reported in Arabidopsis seedlings and the
IZEs of Picea abies, respectively (Tanaka et al., 2008; Uddenberg
et al., 2011). Similar to plants, TSA was found to de-repress the
transcription of the TF genes that control the reprogramming of
mammal somatic cells into embryonic stem cells (Hattori et al.,
2004).

The majority of SE-regulators exert their function in SE
induction via the control of the hormone-related pathways
including LEC1, LEC2, and FUS3 reviewed by Boulard et al.
(2017) and Jia et al. (2014), AGL15 (Zheng et al., 2016), BBM
(Horstman et al., 2017b) and EMK (Yamagishi et al., 2008; Yano
et al., 2009). Some of these TFs might contribute to the YUC-
mediated auxin biosynthesis in the TSA-induced explants and
accordingly, LEC1 directly activated the expression of YUC10
in seedlings (Junker et al., 2012) and LEC2 stimulated YUC1
and YUC10 during SE induction (Wójcikowska et al., 2013).

Moreover, BBM might indirectly impact the YUC-mediated
auxin biosynthesis via the activation of LEC1 and LEC2 in the
SE-induced explants (Horstman et al., 2017b).

In auxin-induced SE, LEC2 expression is activated by the
PHB gene that is under the repressive control of miR165/166
(Wójcik et al., 2017). Consistent with this, we found LEC2 up-
regulation to be associated with an increased PHB expression
and the repression of miR166 in the TSA-induced culture
(Supplementary Figure S6). This result provides additional
evidence that there is some convergence of the TSA- and 2,4-D-
induced embryogenic pathways.

Besides auxin, stress factors are postulated to play pivotal
roles in triggering the embryogenic response, and accordingly,
numerous stress-related TF genes were differentially expressed
during SE that was induced in Arabidopsis on the auxin
medium (Gliwicka et al., 2013; reviewed in Nowak and Gaj,
2016). Similarly, a stress-response might also contribute to TSA-
triggered SE given that we found that MYB118, which has stress-
related functions (Zhang et al., 2015), was highly up-regulated
in the TSA-induced culture. MYB118 controls seed maturation
via the regulation of the biosynthesis of storage compounds
(Barthole et al., 2014) and the targets of MYB118 involve
numerous genes of the LATE EMBRYOGENESIS ABUNDANT
(LEA) group (Zhang et al., 2009). We found three of these
genes including EM1, EM6, and EM10 encoding the proteins
that are rich in hydrophilic amino acids and that have a
high hydrophilicity and heat stability to be up-regulated in the
TSA-induced culture (Supplementary Figure S7). Relevantly,
seed maturation products were postulated as enhancing the
embryogenic competence of IZEs that are treated with 2,4-D
possibly by providing a stress-protective environment (Stone
et al., 2008; Gliwicka et al., 2012). In conclusion, as in auxin-
induced SE, TSA-induced embryogenesis seems to be associated
with the activation of the stress-related responses and in support
of this, the essential role of HDACs in the regulation of gene
expression in the plant response to environmental stress has been
demonstrated (Luo et al., 2017).

Despite a general similarity between the TSA- and 2,4-
D-induced patterns of the expression of TFs, the gene
transcript level was distinctly higher in the TSA-induced culture
(Supplementary Figure S5). Thus, the potential of TSA for gene
de-repression seems to be stronger than that of 2,4-D and in
line with this assumption, only TSA is capable of activating the
SE-regulatory genes in the postgermination tissue of Arabidopsis
(Tanaka et al., 2008).

Although the role of WUS, which is a member of the WOX
gene family, in SE induction was reported (Zuo et al., 2002; Su
et al., 2009), we did not detect any WUS transcripts in the TSA-
induced explants. Recently, a very low level of WUS transcripts
was shown in embryogenic cells isolated from the auxin-
induced IZE explants of Arabidopsis (Magnani et al., 2017),
thus implying technical limitations in the RT-qPCR detection of
WUS transcripts in a mixed population of embryogenic and non-
embryogenic explant cells. Therefore, spatiotemporal analysis
using a relevent reporter line would be of interest in order
to gain insight into the WUS expression in the TSA-induced
explants.

Frontiers in Plant Science | www.frontiersin.org 13 September 2018 | Volume 9 | Article 1353

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01353 September 11, 2018 Time: 18:49 # 14

Wójcikowska et al. TSA Triggers an Embryogenic Transition

Histone Acetylation Preferentially
Activates the Expression of the
Auxin-Responsive SE-Involved TF Genes
A global gene expression analysis indicated a non-stochastic
induction of genes via TSA, and accordingly, only a small subset
of genes respond to TSA treatment in human and Arabidopsis
(Chang and Pikaard, 2005; reviewed in Xu et al., 2007). The
results of the present study imply that the SE-involved TF genes
seem to be among the targets of TSA. Similarly, the TF genes
that have a central function in the zygotic genome activation
were preferentially stimulated in TSA-treated mouse somatic cells
(Inoue et al., 2015).

In line with reports demonstrating the TSA-induced
inhibition of HDACs (Tai et al., 2005; Ma et al., 2016; Mengel
et al., 2017), we observed that the activity of HDACs was the
lowest in the TSA-induced explants of Arabidopsis. Thus, a
decreased level of histone deacetylation might contribute to the
up-regulation of the SE-involved TF genes in the TSA-treated
explants. In support of this, the involvement of the histone
deacetylase complex was implicated in the repression of the
genes of the LAFL network that involves the LEC2 and FUS3
genes (Jia et al., 2014) with a TSA-stimulated expression (present
results).

The significant differences (up to 255-fold) in the TSA-
induced transcription level that were observed between the
TF genes suggest that distinct HDACs that have individual
sensitivities to TSA might specifically regulate the promoters of
the TF genes (Weiste and Dröge-Laser, 2014). However, it is
also possible that TSA indirectly affects the expression of the SE-
involved TF genes and therefore further studies are needed to
evaluate the histone acetylation level in the promoters of the TFs
in response to TSA.

In order to regulate gene expression, HDACs cooperate with
HATs and the complex physical and functional interplay between
these enzymes was demonstrated to control cell acetylome
(reviewed in Pfluger and Wagner, 2007; Peserico and Simone,
2011) In line with this belief, we found that the decreased activity
of HDACs was associated with a reduced activity of HATs.
Notably, the explants cultured on different media displayed a
reduced acitvity of deacetylases and acetylases, thereby suggesting
that in vitro culture conditions per se might account for this
result. Although, to the best of our knowledge, data on the
acetylase/deacetylase activity during an in vitro culture are not
available, the modulated expression of the specific HDAC and
HAT genes in response to stress (reviewed in Chinnusamy and
Zhu, 2009), which is inevitably associated with the explant
culture together with reports on somaclonal epigenetic variants
that have a deregulated deacetylase activity (Yaacob et al., 2013;
Halim et al., 2017) provide indirect support on the possible
impact of in vitro culture conditions on the (de)acetylase
activity.

The current model of auxin-regulated gene expression implies
a relationship between the auxin- and TSA-responsiveness of
genes reviewed in Weijers and Wagner (2016). In line with
this model, we identified AuxREs (Auxin Response Elements)
in the promoters of the majority (five out of seven) TF

genes that have a TSA-up-regulated expression (Supplementary
Table S2). Similarly, the majority (60%) of the TF genes that
were differentially expressed in auxin-induced SE of Arabidopsis
had the AuxREs in their promoters (Gliwicka et al., 2013;
AGRIS3 ). Among the candidate targets of TSA, numerous
ARFs (AUXIN RESPONSE FACTORS) that have an auxin-
regulated expression in SE might be considered (Gliwicka
et al., 2013; Wójcikowska and Gaj, 2017). Consistent with this,
we observed a down-regulation of ARF10 and ARF17 in the
TSA-induced explants (Supplementary Figure S8). Similarly,
TSA was demonstrated to down-regulate numerous genes that
are involved in auxin signaling in Arabidopsis (Chang and
Pikaard, 2005) and Populus (Ma et al., 2016). Notably, in
contrast to the TSA-induced down-regulation of ARF10 and
ARF17, auxin-treatment resulted in an increased expression of
these genes (Wójcikowska and Gaj, 2017). Thus, although TSA
seems to preferentially target the auxin-responsive genes, the
effects of TSA vs. 2,4-D on the gene expression level might
differ.

Interestingly, we found that treatment of the explants with
TSA in combination with 2,4-D and other auxins (IAA and
NAA) resulted in the inhibition of the embryogenic response
possibly due to the repression of the LEC1, LEC2, and BBM
genes that control the auxin biosynthesis that is associated
with SE induction (Wójcikowska et al., 2013; Horstman et al.,
2017b). Given that SE induction requires auxin biosynthesis, we
assumed that the inhibition of the positive regulators of auxin
biosynthesis prevents auxin accumulation and SE induction on
the medium supplemented with TSA and auxin. In addition
to auxin biosynthesis, auxin transport, which plays a key role
in the embryogenic response that is induced in vitro (Chen
and Chang, 2004; Cueva-Agila et al., 2016), might be also
affected in explants that are treated with TSA and auxin. In
support of this hypothesis, the Arabidopsis seedlings treated
with the HDAC-inhibitor and auxin exhibited a defective
development of roots, which was attributed to the degradation
of the PIN1 protein (Nguyen et al., 2013). Further studies
are required in order to reveal the auxin-related epigenetic
mechanism that underlies the contrasting effects induced in
the explants treated with TSA alone and in combination with
auxins.

Importantly, in addition to histones, non-histone proteins
were also observed among the HDAC-targets that involve
the proteins of the transcriptional complexes (Spange et al.,
2009; Duffy et al., 2012) and other polypeptides such as
hormone receptors, chaperones and cytoskeleton proteins, which
regulate cell proliferation and cell death (Xu et al., 2007; Hartl
et al., 2017). Thus, the TSA-induced SE mechanism might
also comprise unrelated modifications to gene transcription
that at present remain unexplored. Moreover, TSA also affects
other epigenetic processes including the methylation of DNA
and histones (Kishigami et al., 2006; Ou et al., 2007; Yang
et al., 2010). Hence, understanding the intricate mechanism
that govern the de-repression of the embryogenic potential
in somatic plant cells requires deciphering the complex

3http://arabidopsis.med.ohio-state.edu/AtcisDB/
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regulatory network in which histone and non-histone acetylation
and various epigenetic processes interplay to regulate gene
expression.
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FIGURE S1 | Enhanced accumulation of neutral lipids and ROS suggest an
embryogenic character of the TSA-induced morphogenic pathway. The IZE
explants of Col-0 were induced toward alternative developmental processes
including seedling development (E0), shoot organogenesis (CIM/SIM) and SE (ET

and EA). Neutral lipids (A) and superoxide anion O2
.− (B) were stained with

Sudan Red 7B and NBT, respectively.

FIGURE S2 | The TSA-induced embryogenic response was reduced on the
media supplemented with IAA and NAA. The IZE explants of Col-0 were cultured
on ET medium with IAA and NAA at different concentrations and the SE efficiency
and productivity was assessed in relation to the ET medium that was set at 100%
(n = 3; means ± SE).

FIGURE S3 | RT-PCR analysis of the YUC gene expression in the cultures of the
IZE, Col-0 explants induced on the E0 and ET (E0 + 1.0 µM TSA) media for 5, 10,
15, 21, and 28 days. The TIN gene (At4g27090) was used as the control for the
cDNA synthesis.

FIGURE S4 | Transcripts of WUS were not detected in IZE Col-0 explants cultured
on E0 and ET (E0 + 1.0 µM TSA) media for 0, 5, 10, 15, 21, and 28 days
analyzed with RT-PCR. The At4g27090 gene a was used as the control for the
cDNA synthesis. NC, negative control.

FIGURE S5 | RT-qPCR analyzed the expression level of the MYB118 (A), LEC1
(B), LEC2 (C), AGL15 (D), FUS3 (E), BBM (F), and EMK (G) genes in the
TSA-induced (1.0 µM of TSA) culture in relation to the gene expression level in the
2,4-D-induced (E5) culture (Grzybkowska et al., 2018). The IZE explants of Col-0
were cultured for 5, 10, and 15 days and sampled for RT-qPCR analyses. Their
relative transcript level was normalized to the internal control (At4g27090) and
calibrated to the culture on E5. Values that were significantly different to those
observed on E5 at the same age of culture are indicated by an asterisk (∗); (n = 3;
means ± SE; the Student’s t-test P < 0.05).

FIGURE S6 | Relative amount of mature miR166 molecules and transcript level of
PHB and PHV genes during TSA-induced SE. IZE explants of Col-0 were cultured
on an ET (E0 + 1.0 µM of TSA) medium and the tissue for analyses was sampled
on day 5, 10, 15, 21, and 28 of the culture. Relative transcript level was normalized
to the internal control (At4g27090) and calibrated to the culture on E0 (n = 3).

FIGURE S7 | TSA treatment results in up-regulated expression of EM1 (A), EM6
(B), and EM10 (C) genes, the targets of MYB118. IZE explants of Col-0 were
cultured on an ET (E0 + 1.0 µM of TSA) medium and the tissue for RT-qPCR
analyses was sampled on days 5, 10, 15, 21, and 28 of the culture. Relative
transcript level was normalized to the internal control (At4g27090) and calibrated
to the culture on E0 (n = 3). Values significantly different to that observed on E0 at
the same age of culture are indicated by an asterisk (∗); (n = 3; means ± SE; the
Student’s t-test P < 0.05).

FIGURE S8 | Expression level of the ARF10, ARF16, and ARF17 genes during the
SE process that was induced by TSA. The IZE explants of Col-0 were cultured on
an ET (E0 + 1.0 µM of TSA) medium and the tissue for the RT-qPCR analyses
was sampled on days 5, 10, 15, 21, and 28 of the culture. The relative transcript
level was normalized to the internal control (At4g27090) and calibrated to the
culture on E0 (n = 3).

TABLE S1 | The primers that were used in experiments.

TABLE S2 | The auxin-related cis-elements localized in the promoter region of the
analyzed genes.

REFERENCES
Abrahamsson, M., Valladares, S., Merino, I., Larsson, E., and von Arnold, S. (2017).

Degeneration pattern in somatic embryos of Pinus sylvestris L. In Vitro Cell Dev.
Plant 53, 86–96. doi: 10.1007/s11627-016-9797-y

Alinsug, M. V., Yu, C. W., and Wu, K. (2009). Phylogenetic analysis,
subcellular localization, and expression patterns of RPD3/HDA1 family histone
deacetylases in plants. BMC Plant Biol. 9:37. doi: 10.1186/1471-2229-9-37

Bai, B., Su, Y. H., Yuan, J., and Zhang, X. S. (2013). Induction of somatic embryos
in Arabidopsis requires local YUCCA expression mediated by the down-
regulation of ethylene biosynthesis. Mol. Plant 6, 1247–1260. doi: 10.1093/mp/
sss154

Barthole, G., To, A., Marchive, C., Brunaud, V., Soubigou-Taconnat, L., Berger, N.,
et al. (2014). MYB118 represses endosperm maturation in seeds of Arabidopsis.
Plant Cell 26, 3519–3537. doi: 10.1105/tpc.114.130021

Beigh, S. A., Ahad, W. A., Bhat, R. A., Nabi, N., Ahmed, T., Reshi, M., et al. (2017).
Role of trichostatin A as reprogramming enhancer on in vitro development
of cloned embryos: a review. Int. J. Curr. Microbiol. Appl. Sci. 6, 1055–1058.
doi: 10.20546/ijcmas.2017.611.123

Belide, S., Zhou, X. R., Kennedy, Y., Lester, G., Shrestha, P., Petrie,
J. R., et al. (2013). Rapid expression and validation of seed-specific
constructs in transgenic LEC2 induced somatic embryos of Brassica napus.
Plant Cell Tissue Organ. Cult. 113, 543–553. doi: 10.1007/s11240-013-
0295-1

Frontiers in Plant Science | www.frontiersin.org 15 September 2018 | Volume 9 | Article 1353

https://www.frontiersin.org/articles/10.3389/fpls.2018.01353/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2018.01353/full#supplementary-material
https://doi.org/10.1007/s11627-016-9797-y
https://doi.org/10.1186/1471-2229-9-37
https://doi.org/10.1093/mp/sss154
https://doi.org/10.1093/mp/sss154
https://doi.org/10.1105/tpc.114.130021
https://doi.org/10.20546/ijcmas.2017.611.123
https://doi.org/10.1007/s11240-013-0295-1
https://doi.org/10.1007/s11240-013-0295-1
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01353 September 11, 2018 Time: 18:49 # 16

Wójcikowska et al. TSA Triggers an Embryogenic Transition

Birnbaum, K. D., and Roudier, F. (2017). Epigenetic memory and cell
fate reprogramming in plants. Regeneration 4, 15–20. doi: 10.1002/
reg2.73

Boulard, C., Fatihi, A., Lepiniec, L., and Dubreucq, B. (2017). Regulation and
evolution of the interaction of the seed B3 transcription factors with NF-Y
subunits. Biochim. Biophys. Acta 1860, 1069–1078. doi: 10.1016/j.bbagrm.2017.
08.008

Boutilier, K., Offringa, R., Sharma, V. K., Kieft, H., Ouellet, T., Zhang, L.,
et al. (2002). Ectopic expression of BABY BOOM triggers a conversion from
vegetative to embryonic growth. Plant Cell 14, 1737–1749. doi: 10.1105/tpc.
001941

Boycheva, I., Vassileva, V., and Iantcheva, A. (2014). Histone acetyltransferases
in plant development and plasticity. Curr. Genomics 15, 28–37. doi: 10.2174/
138920291501140306112742

Bric, J. M., Bostock, R. M., and Silverstonet, S. E. (1991). Rapid in situ assay
for indoleacetic acid production by bacteria immobilized on a nitrocellulose
membrane. Appl. Environ. Microbiol. 57, 535–538.

Brosch, G., Lusser, A., Goralik-Schramel, M., and Loidl, P. (1996). Purification and
characterization of a high molecular weight histone deacetylase complex (HD2)
of maize embryos. Biochemistry 35, 15907–15914. doi: 10.1021/bi961294x

Brundrett, M. C., Kendrick, B., and Peterson, C. A. (1991). Efficient lipid staining in
plant material with Sudan Red 7B or Fluoral Yellow 088 in polyethylene glycol-
glycerol. Biotech. Histochem. 66, 111–116. doi: 10.3109/10520299109110562
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Kurczyńska, E. U., Gaj, M. D., Ujczak, A., and Mazur, E. (2007). Histological
analysis of direct somatic embryogenesis in Arabidopsis thaliana (L.) Heynh.
Planta 226, 619–628. doi: 10.1007/s00425-007-0510-6

Lauria, M., and Rossi, V. (2011). Epigenetic control of gene regulation in plants.
Biochim. Biophys. Acta 1809, 369–378. doi: 10.1016/j.bbagrm.2011.03.002

Lee, K., Park, O. S., Jung, S. J., and Seo, P. J. (2016). Histone deacetylation-
mediated cellular dedifferentiation in Arabidopsis. J. Plant Physiol. 191, 95–100.
doi: 10.1016/j.jplph.2015.12.006
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