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To extend agricultural productivity by knowledge-based breeding and tailoring varieties
to adapt to specific environmental conditions, it is imperative to improve our ability to
acquire the dynamic changes of the crop’s phenotype under field conditions. Canopy
leaf biomass (CLB) per ground area is one of the key crop phenotypic parameters
in plant breeding. The most promising technique for effectively monitoring CLB is the
hyperspectral vegetation index (VI). However, VI-based empirical models are limited by
their poor stability and extrapolation difficulties when used to assess complex dynamic
environments with different varieties, growth stages, and sites. It has been proven
difficult to calibrate and validate some VI-based models. To address this problem, eight
field experiments using eight wheat varieties were conducted during the period of 2003–
2011 at four sites, and continuous wavelet transform (CWT) was applied to estimate
CLB from large number of field experimental data. The analysis of 108 wavelet functions
from all 15 wavelet families revealed that the best wavelet features for CLB in terms of
wavelength (W) and scale (S) were observed in the near-infrared region and at high
scales (7 and 8). The best wavelet-based model was derived from the Daubechies
family (db), and was named db7 (W1197 nm, S8). The new model was more accurate
(R2

v = 0.67 and RRMSE = 27.26%) than a model obtained using the best existing VI
(R2

v = 0.54 and RRMSE = 34.71%). Furthermore, the stable performance of the optimal
db7 wavelet feature was confirmed by its limited variation among the different varieties,
growth stages, and sites, which confirmed the high stability of the CWT to estimate CLB
with hyperspectral data. This study highlighted the potential of precision phenotyping
to assess the dynamic genetics of complex traits, especially those not amenable to
traditional phenotyping.

Keywords: phenotypic parameter, canopy leaf biomass, continuous wavelet transform, optimal wavelet features,
hyperspectral reflectance, wheat
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INTRODUCTION

A key component to maintain or even increase agricultural
production is therefore the development of genotyping and
phenotyping technologies. Recently developed genomic
approaches promise to further increase progress by breeding,
while our ability to characterize the phenome of a plant has
changed little. That means genomics has been advancing
very rapidly, however, traditional plant phenotyping lags far
behind current genotyping technique (Houle et al., 2010). This
phenotyping bottleneck is of particular severity because many
traits of biological and agricultural importance developed under
a complex dynamic environment (Busemeyer et al., 2013). Many
scientists devoted to relieve this bottleneck. They successfully
developed the novel tool to represent the traditional phenotyping
with low cost and high efficiency in greenhouse, for example, the
high-throughput rice phenotyping facility (HRPF) (Yang et al.,
2014). However, these results from controlled environment are
far remove from the situation plants will experience in the field,
and field conditions are notoriously hetero generous and the
inability to control environmental factors makes results difficult
to interpret and therefore, are difficulty to extrapolate to the filed
(Araus and Cairns, 2014). Later, some novel field phenotyping
systems with multi-sensor were developed for extracting the crop
high-throughput phenotype properties (Bai et al., 2016; Pandey
et al., 2017).

Biomass is one of the important crop phenotype traits,
which are central to crop productivity. The commonly used
hyperspectral vegetation index (VI) approach has been widely
used to monitor crop canopy leaf biomass (CLB) at different
scales due to its simplicity (Dong et al., 2003; Hese et al.,
2005; Le Maire et al., 2008; Yan et al., 2013), but the non-
invasive monitoring of biomass using these VIs has so far
yielded only moderate prediction accuracies. For example, the
VI [(ρNIR/ρGreen)− 1], which is based on specific hyperspectral
bands, can predict the green leaf biomass in corn on the
ground (Gitelson et al., 2003), while the spectral reflectance
(SR) index (R900, R680) can predict aboveground biomass in
wheat (Serrano et al., 2000). Le Maire et al. (2008) used the
normalized difference vegetation index (NDVI) (R2160, R1540) to
monitor canopy foliar biomass in forests. Hansen and Schjoerring
(2003) used a VI (R708, R565) to predict green biomass. These
classical VIs, with a simple formulation, are very convenient
in practical applications. However, hyperspectral reflectance
spectroscopy has not commonly been used in plant breeding
now, a major limitation to the utility of hyperspectral data is
variability in environmental conditions during measurement and
the spectrum feature extraction of the crop phenotype traits
(Furbank and Tester, 2011). Despite the high accuracy, those VI-
based models have a weak stability due to the limited number of
wavebands they used. The wavebands in published hyperspectral
VIs are often selected through the mathematical optimization
of millions of waveband combinations that have non-casual
relationships with the absorption of dry matter (Curran, 1989;
Qi et al., 1995; Kokaly and Clark, 1999; Luo et al., 2013). While,
the underlying mechanism of the selected waveband features
is difficult to explain from the statistical results based on a

limited number of samples or a poor representation of growing
conditions (Noh et al., 2006; Perez-Marin et al., 2007; Atzberger
et al., 2010; Yi et al., 2010). An effective way to construct a
highly sensitive VI or predictive model would be to establish a
comprehensive database that could represent the large variability
in treatment conditions (Le Maire et al., 2008). Therefore, it is
often difficult to extrapolate CLB models over different growing
conditions including crop varieties, years, and ecological sites.
Consequently, it is necessary to adopt a new and effective analysis
method to select sensitive features from more comprehensive
samples for developing more stable CLB models.

A wavelet transform (WT), as a new emerging signal
processing method, has been recently used to characterize the
spectral information in the crop classification, estimation of
forest leaf area index (LAI) and ∗∗canopy closure (CC) structural
parameters, and the determination of leaf mass per unit area,
plant leaf water content, and chlorophyll content (Koger et al.,
2003; Pu and Gong, 2004; Cheng et al., 2010, 2011, 2014).
Some previous studies (Koger et al., 2003; Pu and Gong, 2004)
have focused on a discrete wavelet transform (DWT); however,
the continuous wavelet transform (CWT) method could be
accurately used to extract spectral features (Cheng et al., 2010,
2011, 2014). To date, the potential to undertake a wavelet analysis
of hyperspectral reflectance with CWT for the crop biomass
model has not been well documented. In addition, little is known
regarding the selection of appropriate spectral features using
the CWT method for crop biomass. Most existing studies have
selected the wavelet function and wavelet features based on
waveform similarity (Blackburn and Ferwerda, 2008; Bigerelle
et al., 2013) or have focused directly on the most commonly
used Mexican Hat wavelet function (Muraki, 1995; Torrence
and Compo, 1998; Cheng et al., 2010, 2011, 2014). Whether the
Mexican Hat is the best function for extracting hyperspectral
information for crop biomass remains unknown.

Here, 108 wavelet functions from 15 wavelet families were
investigated to select the sensitive wavelet features for CLB, which
were used to develop robust models with hyperspectral data.
These data were collected under different nitrogen rates, planting
densities, and varieties of winter wheat in eight field experiments
over 8 years at four sites. Such a comprehensive dataset has
the potential to produce a reliable model for the spectroscopic
estimation of CLB. To evaluate the performance of the new
model, we compared the accuracy and stability of the prediction
with the existing VI models under various growing conditions
with different partitioning strategies.

MATERIALS AND METHODS

Experimental Design
Eight field experiments were conducted for eight consecutive
years in this study. The experiment involved various nitrogen
levels and density measurements, and included eight varieties of
wheat grown at four sites. A randomized complete-block design
was used with three replications per plot. For all treatments,
sufficient Ca(H2PO4)2 and KCl were applied (150 kg ha−1)
prior to seeding. Crop management followed local standard
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TABLE 1 | Summary of the conditions used in the eight wheat growth experiments.

Exp. Site Sowing time Nitrogen rate (kg ha−1) Variety Sampling dates No. of samples Function

1 JAAS November 2, 2003 0, 75, 150, 225, 300 Ningmai 9 Huaimai 20
Yangmai 10 Xumai 26

April 8, April 20, May 4, May 17 127 Validation

2 JAAS October 31, 2004 0, 75, 150, 225, 300 Ningmai 9 Yumai 34
Yangmai 10

March 19, April 13, April 23, May 6,
May 19, May 25

219 Calibration

3 NAFB November 3, 2005 0, 90, 180, 270 Ningmai 9 Yumai 34 March 30, April 11, April 20, April 29,
May 19, May 24, June 2

136 Validation

4 JPF, NJAU November 1, 2007 0, 90, 180, 270 Ningmai 9 March 11, March 25, April 18, April
25, May 6, May 20

126 Calibration

5 YCY November 6, 2009 150, 225 Yangmai 16 Aikang 58 March 11, March 19, March 28, April
19, April 28, May 3, May 11, May 20

285 Calibration

6 YCY November 5, 2009 0, 90, 180, 270 Yangmai 16 March 10, March 19, April 9, April 15 203 Validation

7 YCY November 10, 2009 0, 75, 150, 225, 300 Ningmai 13 Yangmai 16 March 12, March 18, March 28, April
8, April 16, April 30

240 Calibration

8 YCY November 9, 2010 150, 225 Yangmai 16 February 23, March 4, March 10,
March 23, March 30, April 10, April
19, April 25, May 1, May 13, May 18

166 Calibration

The number after the variety indicates the time of breeding for the variety. JAAS, Jiangsu Academy of Agricultural Sciences (N32.03◦, E118.87◦); NAFB, Nanjing Agricultural
and Forestry Bureau (N32.05◦, E118.79◦); JPF, NJAU, Jiangpu farm, Nanjing Agricultural University (N32.03◦, E118.03◦); and YCY, Yizheng county in Yangzhou (N32.32◦,
E119.30◦).

TABLE 2 | Basic canopy leaf biomass (CLB) statistics for the eight experimental
data sets (kg/m2).

Exp. Min. Max. Mean Std. Dev. No. of samples

5 0.0096 0.240 0.088 0.0450 285

6 0.0154 0.190 0.098 0.0387 203

8 0.0184 0.301 0.105 0.0565 166

7 0.0185 0.298 0.107 0.0617 240

3 0.0278 0.290 0.109 0.0530 136

4 0.0349 0.218 0.113 0.0507 126

1 0.0537 0.330 0.164 0.0650 127

2 0.0507 0.327 0.183 0.0566 219

practices for wheat production. The detailed experimental design
is described in Table 1.

Measurements
Canopy Leaf Biomass
After each measurement of canopy SR, an area of 0.25 m2 (two
rows × 0.5 m long) of wheat plants from each plot was collected
for the determination of leaf dry biomass per unit ground area at
the canopy scale (CLB, g DW m−2). For each sample, all green
leaves were separated from the stems, oven-dried at 70◦C to a
constant weight, and then weighed.

Among the eight experiments, the average CLB values ranged
from 0.0096 to 0.330 kg/m2 with the lowest mean CLB being in
EXP.5 and the highest in EXP.2. All standard deviations were less
than 0.0650 kg/m2, and the variance of the CLB in intergroup
experiments was less than 0.05 kg/m2 (Table 2).

Canopy Hyperspectral Reflectance
All canopy hyperspectral measurements were made using an ASD
FieldSpec Pro spectrometer (Analytical Spectral Devices, Boulder,
CO, United States). This spectrometer is fitted with 25◦ field of

view fiber optics operating in the 350–2500 nm spectral region
with a sampling interval of 1.4 nm and spectral resolution of
3 nm between 350 and 1050 nm, and 2 and 10 nm, respectively,
between 1050 and 2500 nm. The measurements were conducted
at a height of 1.0 m above the vertical canopy (the height of wheat
was 75–90 cm at maturity) and with a 0.44 m view diameter under
clear sky conditions between 10:00 and 14:00 (Beijing local time).

Measurements of reflectance values were acquired at 10
sampling sites in each plot, with each sample observation
averaging 20 scans at the optimized integration time. The
resulting spectrum file contained a continuous SR at 1 nm steps
over the band region of 350–2500 nm. A white panel SR value
was taken before and after the vegetation measurement, with two
scans obtained each time. In each experiment, data were obtained
at several major growth stages, as detailed in the description of
the experimental method. The spectral regions 1350–1410, 1790–
1950, and 2471–2500 nm were excluded from the spectral analysis
due to the strong absorption of water in the atmosphere. Because
the CWT method requires a continuous spectrum, the reflectance
values in the above three regions were set to zero in this study to
avoid interference from noise.

Continuous Wavelet Decomposition of
Canopy Hyperspectral Spectra
Continuous Wavelet Transform (CWT)
Wavelets are mathematical functions that are used to dissect
data into different frequency components, with each component
having a resolution appropriate to its scale (Grinsted et al.,
2004). It is a gradual multiscale refinement of the signal
(function) through an expansion and shift operation (Mallat,
1989). A wavelet transform can be a discrete wavelet transform
(DWT) or continuous wavelets transform (CWT). DWT can
reduce the redundant information within a transformation, but
it may miss useful signal information, and the superiority of
continuous over discontinuous decomposition is possibly due to
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TABLE 3 | List of 15 wavelet families encompassing 108 wavelet functions used in this study.

Name of the wavelet family Short name Wavelet function in the family Number of
wavelet function

Reference

1. Haar Haar Haar 1 Daubechies, 1992

2. Daubechies Db db2, db3, . . ., dbN, . . ., db20 19

3. Symlets Sym sym2, sym3, . . ., symN, . . ., sym17 16

4. Coiflets Coif coif1, coif2, . . ., coifN, . . ., coif5 5

5. Biorthogonal Bior bior Nr.Nd (Nr = 1, Nd = 1, 3, 5; Nr = 2, Nd = 2,
4,6,8; Nr = 3, Nd = 1, 3, 5, 7, 9; Nr = 4, Nd = 4;
Nr = 5, Nd = 5; Nr = 6, Nd = 8)

15

6. Reverse Bior Rbio rbio Nr.Nd (Nr = 1, Nd = 1, 3, 5; Nr = 2, Nd = 2,
4,6,8; Nr = 3, Nd = 1, 3, 5, 7, 9; Nr = 4, Nd = 4;
Nr = 5, Nd = 5; Nr = 6, Nd = 8)

15

7. Meyer Meyer Meyr 1

8. Mexican hat Mexh Mexh 1

9. Morlet Morl Morl 1

10. Complex Gauusian Cgau cgau1, cgau2, . . ., cgauN, . . ., cgau8 8

11. Complex Shannon Shan shan Fb-Fc (Fb = 1, Fc = 0.1, 0.5, 1, 1.5; Fb = 2,
Fc = 3)

5 Teolis, 1998

12. Complex Frequency
B-Spline

Fbsp fbsp M-Fb-Fc (M = 1, Fb = 1, Fc = 0.5, 1, 1.5;
M = 2, Fb = 1, Fc = 0.1, 0.5, 1)

5

13. Complex Morlet Cmor cmor Fb-Fc (Fb = 1, Fc = 0.4, 0.5, 1, 1.5; Fb = 2,
Fc = 0.1, 0.5)

5

14. Dmeyer Dmey Dmey 1 Addison, 2002

15. Gaussian Gaus gaus1, gaus2, . . ., gausN, . . ., gaus8 8 Bernardino and Santos-Victor, 2005

the greater amount of spectral detail (variation with wavelength)
(Blackburn and Ferwerda, 2008). Hence, we used the CWT
method in this study. Equation (1) is the functional formula of
the wavelet coefficient of the CWT:

C(a, b; f (t), ϕ(t)) =
∫
+∞

−∞

f (t)
1
√
a
ϕ∗
(
t − b
a

)
dt (1)

In this study, C is the wavelet coefficient after transformation
that expresses the similarity between the original spectra and the
wavelet function under a specific scaling and translation; a is the
scaling factor (scale), we selected a power (a = 3, 4, 5..., 8, which
represents 23, 24, 25..., 28); b is the shifting factor (displacement);
f (t) represents the SR of each wavelength; ϕ (t) is the wavelet
basis function (wavelet mother function), depending on the
parameters of a and b, that contains 108 wavelet functions from
15 wavelet families (Table 3); and t represents each wavelength
(t = 350, 351, 352. . ., 2,500 nm). All of the wavelet coefficients
were used to estimate the CLB.

Determination of the Optimal Wavelet Function,
Wavelength, and Scale
Figure 2 displays the procedure for determining the optimal
wavelet function, the best wavelength, and scale. First, the wavelet
function was selected, and the CWT then proceeded to obtain
the wavelet coefficient. A linear regression model was then
established between the transformed wavelet coefficient and the
biomass. The top 1% of coefficient of determination (R2

c) values
were determined, The model was validated with the dependent
data, and we then defined the sensitive wavelength and scale for
the top 1% of R2

c and R2
v values (R2

c and R2
v are the coefficient of

determination for calibration and validation, respectively), and

the relative root mean square error (RRMSE). We repeated this
procedure for all 108 wavelet functions from the 15 families. After
systematically comparing the performance of the calibration and
validation, the best wavelet mother function was determined
using a box plot. A box plot was used in this study to select the
optimal wavelet function, in which the outliers can describe the
optimal and the poor wavelet functions (Grubbs, 1969; Pierce and
Chick, 2013).

Calibration and Validation of the Model
Calibration data from experiments 2, 4, 5, 7, and 8, including
information obtained from the various varieties, growth stages,
and sites, were selected to construct the CLB model, while
data from the remaining three experiments (1, 3, and 6) were
used to test the constructed model equation. This partitioning
strategy ensured a good representation of the entire data set
with calibration samples and an approximate ratio of 2:1 for
the number of calibration (n = 1036) and validation (n = 466)
samples.

In addition to R2
c and R2

v, the relative root mean square error
(RRMSE) and stand error (SE) were used to evaluate the fit
between the predicted and observed data along with a 1:1 plotting
of the two sets of values. The RRMSE was calculated using the
following equation (Yao et al., 2010):

RRMSE =

√√√√ 1
n
×

n∑
i=1

(Pi − Oi)2 ×
100%
Oi

(2)

where, Pi is the predicted biomass value of the model, Oi is
the biomass value of an observation, n is the sample number,
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FIGURE 1 | The study site and the location of the experiments.

FIGURE 2 | The procedure used for determining the optimum wavelet function, sensitive wavelength, and best scale. The dashed lines represent the same analysis
of 108 wavelet functions from 15 wavelet families.

and Oi is the mean of the validation biomass data. All of
these procedures were completed with self-programmed software
based on MATLAB 8.1 (The MathWorks, 2013) and SPSS 20.0
software.

RESULTS

Selection of the Optimal Wavelet
Function
To determine the best wavelet features [wavelength (W)
and scale (S)] for all 108 wavelet functions, the occurrence

score for every feature (W and S) was counted and is
shown in Figure 3. The maximum score was 33, while
the minimum score was nearly 0, which indicated that
not all the wavelet functions had the same features (W
and S), and different wavelet functions may have special
features for each optimum model. The best features were
mostly frequently observed at the scale of 7 and 8, and
the sensitive wavelength was found to be located in the
near-infrared region (780–1,350 nm). Therefore, when
estimating CLB based on CWT, a near-infrared wavelength
(780–1,350 nm) and at scale of 7 or 8 would be most
effective.
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FIGURE 3 | Occurrence score of all the wavelet functions under various wavelengths and scales.

FIGURE 4 | The coefficient of determination of calibration (R2
c ) values for the canopy leaf biomass (CLB) models for 15 wavelet families selected using a box plot. The

blue and red lines are the interval lines of the general performance of the wavelet function. The region above the red line is the optimum wavelet function and the
region below the blue line is the area of poor wavelet function.

Figure 4 shows that all of the coefficients of determination
(R2

c) for the CLB models from the 15 wavelet families were over
0.62 with the Daubechies (db) families being the highest (R2

c
from 0.707 to 0.747). Among the 108 wavelet functions, the best
functions were db7, db16, db17, db8, db6, db20, sym3, db3, gaus3,
and db4, and the worst were shan1-1, fbsp1-1-1.5, fbsp2-1-1,
cmor1-1, cmor-1.5, cgau4, cgau5, cgau6, cgau7, and cgau8. The
wavelet function with the highest R2 value was db7 (R2

c = 0.75
and SE = 0.032 kg/m2), while the commonly used mexh was 0.73
and 0.034 kg/m2, respectively.

Determination of the Optimal Wavelet
Features and Models
All the data for db7 were processed with CWT. Figure 5A
shows the correlation scalogram for the linear regression between
the CLB and db wavelet coefficient at the scale from 3 to 8
and at wavelengths from 350 to 2500 nm. The top 1–5% of
R2

c values were extracted and are shown in Figure 5B. Five
featured regions (1,099–1122 and 1,194–1,216 nm at scale 7; 724–
738, 878–905, and 1,173–1,210 nm at scale 8) were identified
using the calibration data, which were identified at higher scales
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FIGURE 5 | Correlation scalograms for the coefficient of determination (R2
c ) of the canopy leaf biomass (CLB) model under db7 with variable wavelength and scale

(A), and the top 1% to top 5% of R2
c values (B). The scale (3, 4, 5..., and 8) in Figure 5 represents 23, 24, 25..., and 28.

TABLE 4 | Assessment of the five best db7 wavelet features in the estimation of canopy leaf biomass (CLB).

Wavelet Feature Equation Calibration (N = 1036) Validation (N = 466)

R2
c SE (kg/m2) R2

v RRMSE (%)

db7 (W1197, S8) Y = 0.428x+0.070 0.75 0.032 0.67 27.26

db7 (W1206, S7) Y = 0.375x−0.002 0.69 0.036 0.68 23.86

db7 (W1111, S7) Y = −0.362x+0.033 0.69 0.036 0.68 23.13

db7 (W732, S8) Y = 0.292x+0.009 0.69 0.036 0.73 20.79

db7 (W894, S8) Y = −0.199x+0.017 0.68 0.036 0.72 20.91

(7 or 8) and in the near-infrared region, except for the range of
724–738 nm (Figure 5B, top 1%).

In this study, the wavelet feature was determined according
to the R2

c value and the absorption principle. Therefore, five
wavelet features [(W732, S8), (W894, S8), (W1111, S7), (W1197, S8),
and (W1206, S7)] were selected with db7 (W1197, S8) being the
optimum due to it having the highest R2

c and db7 (W894, S8) being
the worst (Table 4).

Furthermore, we used the control variable method to
qualitatively analyze which wavebands affected the wavelet
feature for db7 (W1197, S8) and the commonly used mexh
(W1412, S8). The convolution algorithm was used to transform
the original spectrum into the wavelet power on a specific wavelet
function. Therefore, the wavelet power would be influenced by
the wavelength, shape, and scale of a certain wavelet function.
As consequence, the wavelet feature could be impacted by the
neighboring region of the characteristic wavelength. We found

that the features of db7 (W1197, S8) were mainly affected by the
wavelengths of 995, 1187, and 1322 nm (Figure 6A). The features
of mexh (W1412, S8) were mainly affected by the wavelengths of
941, 1325, and 1538 nm (Figure 6B).

Considering the R2
c , SE, and the sensitive wavelength, the db

family with a wavelength of 1197 nm and at scale of 8, i.e., db7
(W1197, S8), was determined to be the optimal wavelet function
and feature for constructing the CLB model, and calibration and
validation of db7 (W1197, S8) are shown in Figure 7.

Comparison of the CLB Models With
Previous Models
To determine whether the new model was comparable to
previously reported CLB models for wheat, the data collected in
this present study were applied to compare the performance of
the model for db7 (W1197, S8) with its performance for mexh
(W1412, S8), NDVIBleaf, and RVIGBM (Table 5).
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FIGURE 6 | The original spectral reflectance, wavelet power, and sensitive wavelength’ wavelet power of db7 (W1197, S8) (A) and mexh (W1412, S8) (B).

FIGURE 7 | The relationship between canopy leaf biomass (CLB) and wavelet power for db7 (W1197, S8) (A), and the 1:1 relationship between the predicted and
observed CLB for db7 (W1197, S8) (B).

The results showed that the best model was db7 (W1197,
S8), which had a high accuracy and low predictive performance
(R2

c = 0.75, R2
v = 0.67 and RRMSE = 27.26%), that was slightly

higher than that of the commonly used mexh function (W1412, S8;
R2

c = 0.73, R2
v = 0.68 and RRMSE = 23.63%). It also had a better

performance than the existing indices NDVIBleaf (R2
c = 0.62,

R2
v = 0.54 and RRMSE = 34.71%) and VIGBM (R2

c = 0.50, R2
v = 0.36

and RRMSE = 34.38%) (Table 5).

DISCUSSION

Stability and Extrapolation of the New
CLB Model
In this study, 1502 comprehensive samples were used to compare
the stability and extrapolation of a newly developed CLB
model with an existing VI model (Table 6). The abundance of

Frontiers in Plant Science | www.frontiersin.org 8 September 2018 | Volume 9 | Article 1360

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01360 September 22, 2018 Time: 17:49 # 9

Yao et al. Estimation of Biomass in Wheat

TABLE 5 | Comparison of the model performance for db7 (W1197, S8) with its performance for the commonly used mexh (W1412, S8), NDVIBleaf, and RVIGBM.

Spectral feature Calibration (N = 1036) Validation (N = 466) Reference

R2
c SE (kg/m2) R2

v RRMSE (%)

Wavelet feature

db7 (W1197, S8) 0.75 0.032 0.67 27.26 This paper

Mexh (W1412, S8) 0.73 0.034 0.68 23.63 This paper

Spectral index

NDVIBleaf (R2160, R1540) 0.62 0.040 0.54 34.71 Le Maire et al., 2008

RVIGBM (R708, R565) 0.50 0.045 0.36 34.38 Qi et al., 1995

TABLE 6 | Comparison of the stability and extrapolation potential for models based on db7 and NDVIBleaf when categorizing samples using the growth stage, site∗,
variety, and year.

Grouping variable Sub-group Validation

Sample number Db7 NDVIBleaf NDVIBleaf

R2
v RRMSE (%) R2

v RRMSE (%)

Anthesis After 215 0.57 30.42 0.44 38.24

Before 251 0.76 23.51 0.63 31.46

Mean 0.66 26.97 0.53 34.85

Site Site 1 127 0.68 17.84 0.51 21.80

Site 2 136 0.64 34.77 0.45 45.64

Site 4 203 0.67 25.35 0.70 27.50

Mean 0.67 25.99 0.55 31.64

Variety Huaimai 20 41 0.60 21.81 0.52 22.70

Ningmai 9 108 0.74 25.43 0.54 35.66

Xumai 26 28 0.70 14.40 0.53 21.87

Yangmai 10 18 0.80 13.51 0.53 13.19

Yumai 34 68 0.67 36.40 0.50 48.24

Yangmai 16 203 0.67 25.35 0.70 27.50

Mean 0.70 22.82 0.55 28.19

Year 2003–2004 127 0.68 17.84 0.51 21.80

2005–2006 136 0.64 34.77 0.45 45.64

2009–2010 203 0.67 25.35 0.70 27.50

Mean 0.67 25.99 0.55 31.64

Total Mean 0.67 25.44 0.55 31.58

∗Site 1: JAAS; Site 2: NAFB; Site 4: YCY.

experimental data enabled an authoritative assessment of the CLB
model performance to be made. We categorized the samples into
four sub-groups (growth stages, sites, varieties, and years). In the
validation of the new model, the R2

v value was higher than that of
the existing VIs, while the RRMSE was lower than that of the VI-
derived models. This indicates that the new model based on db7
(W1197, S8) was very stable and could be effectively extrapolated
across a diverse range of growth stages, sites, varieties, and years.
The results were consistent with those of Cheng et al. (2014), who
also found that the transferability of the wavelet-based predictive
model to the entire measured database was either better than or
comparable to a VI-derived model.

In addition, we noticed that the performance of the new model
before anthesis was much better than in the stage after anthesis.
The reason for this may be that the canopy cover in the later
growth stage (after anthesis) was affected by panicle anthesis

or grain development, which may increase the background
noise. The model had a similar accuracy among sites and years
and therefore could be extrapolated to different sites or years.
However, there was less stability among the varieties and we
therefore speculated that the plant type or structure among
the different varieties influenced the reflectance. It should be
considered how to reduce the impact of this issue in the future
studies.

The Reason for the Higher Stability and
Extrapolation Potential
Sensitive Wavelengths for Monitoring CLB
Previous studies have constructed the following VIs: NDVI
(R2160, R1540) (Le Maire et al., 2008), [(ρNIR / ρGreen)-1] (Gitelson
et al., 2003), SR (R900, R680) (Serrano et al., 2000), and VIGBM
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FIGURE 8 | The wavelet coefficients of the Db function on S8. The areas between the two red vertical lines (the transparent shadow) represent the top 1% of R2
c

values in Figure 5B, and the green vertical lines represent the maximum R2
c value at the band position (Table 4).

(R708, R565) (Qi et al., 1995) to predict crop biomass. However,
the sensitive wavebands of 565, 680, 708, 900, 1540, and 2160 nm
are not the core wavelengths of absorption, with the exception
of 900 nm (the absorption band of protein) and 1540 nm (the
absorption band of starch and cellulose) (Curran, 1989). In this
study, the results show that db7 (W1197, S8) was mainly affected
by the wavelengths of 995, 1187, and 1322 nm. The wavelength of
995 nm induces bending of the O-H bond and is the absorption
peak of starch (Curran, 1989). In addition, 1187 and 1197 nm
are close to 1200 nm, which is the absorption wavelength of
water, cellulose, starch, and lignin (Curran, 1989; Qi et al., 1995;
Bernardino and Santos-Victor, 2005; Cheng et al., 2014). Each
of 1187, 1197, and 1322 nm are located in the near-infrared
region, which is sensitive to the LAI (Pu and Gong, 2000).
Therefore, db7 (W1197, S8) could provide information about LAI
and LB. Fortunately, CLB is equal to the product of LAI and LB.
Therefore, it is sensible to include the sensitive regions of both
LAI and LB when selecting the sensitive region of CLB.

Most studies have used the sensitive wavelength at which
the wavelet coefficient is at a maximum (peak) or minimum
(valley) (Koger et al., 2003). However, in this study the sensitive
wavelength region at the zero value of the wavelet coefficient was
found to be better than that of the peak or valley (Figure 8),
which was similar to the result reported by Cheng et al.
(2010). This would provide a new method to determine the
sensitive wavelength. Therefore, in the future we should pay more
attention to those wavelengths in which the wavelet coefficients
are close to zero.

Optimal Wavelet Function and Scales
Previous studies have commonly used the function of mexh, db,
haar, and bior to extract spectral features for mapping forest
LAI and CC (Pu and Gong, 2004), detecting insect damage
(Cheng et al., 2010), and plant leaf water content (Cheng et al.,
2011). In addition, they implied that predictive accuracy varied
according to the choice of wavelet function in some cases;
hence, a judicious choice of wavelet function may be necessary.
Our study confirmed this viewpoint. Figure 4 shows that the
choice of mother wavelet could greatly affect the efficacy of
the wavelet-based feature when changing the mother wavelet.
Blackburn and Ferwerda (2008) selected the optimal wavelet

function, and found that bior 1.3 and rbior 5.5 at scale 6 were the
best wavelet features when estimating chlorophyll concentration
using a CWT and DWT. However, they only focused on 53
individual wavelet functions at the scale of 0–8. In this study,
the best wavelet function and features for CLB were determined
based on the 108 individual wavelet functions at the scale of 23–
28.

Koger et al. (2003) set an accuracy threshold to select the
optimal mother wavelet function, and found that only Haar, db5,
db10, bior 2.2, bior 2.4, bior 2.6, bior 2.8, bior 6.8, sym2, and sym7
could qualify the accuracy, with the very simple Haar mother
wavelet being the best. However, in our study we determined that
the db7 families produced the best performance, which differed
from previous results. Therefore, the mother wavelet function
should first be applied when the CWA method is used, and the
application of commonly used mother wavelet functions should
not be taken for granted.

The analysis in this study incorporated many wavelet
functions. There were some similar performances between the
wavelets within each family, which may account for the lack
of a significant statistical difference. This has commonly been
the case in previous research. Therefore, it may be possible to
develop a new wavelet function specifically for this application,
and there are precedents for this approach (e.g., the MATLAB
wavelet toolbox) (Blackburn and Ferwerda, 2008). In addition,
it may be useful to decompose spectra using a group of
wavelet functions that perform well overall, deriving a series of
predictive regression models and obtaining an average value of
the estimated parameters.

CONCLUSION

A comprehensive analysis of 108 individual wavelet functions
from all 15 wavelet families revealed that the best wavelet features
for the CLB were mostly located in the near-infrared region
and at high scale (7 or 8). The best wavelet-based model was
derived from the db family and was named db7 (W1197 nm, S8).
It was affected by the neighboring wavelengths of 995, 1187, and
1322 nm. The new model had a better accuracy than that obtained
using the existing VIs. Furthermore, the more stable performance
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with the db7 wavelet feature was further confirmed by the lack
of variation in the R2

c and R2
v values across different varieties,

growth stages, sites, and years. The main outcomes of this
study were: (1) the use of 108 CWT methods to select the
wavelet function for crop biomass from the hyperspectral data,
(2) the identification of the wavelengths in the zero 38 region
of the wavelet coefficient, (3) the development of a more
stable and robust crop biomass model based on CWT, and
(4) the resolution of some of the problems associated with the
existing methods. The use of the CWT method would provide
theoretical and technical support for the monitoring of crop
growth parameters.

However, we only tested the one-dimensional wavelet
decomposition functions available in the MATLAB package due
to the limited amount of original data. In the future, two-
dimensional WTs should be studied to assess the suitability of
hyperspectral image data for extracting spatial information (such
as texture and shape). In addition, it should be determined
whether a CWT or DWT is a more accurate biomass estimation
method. Moreover, whether the same structure or physical
parameter would have a similar wavelet function and features for
vegetation should also be checked.
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