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During autumn perennial trees cease growth and form structures called buds in
order to protect meristems from the unfavorable environmental conditions, including
low temperature and desiccation. In addition to increased tolerance to these abiotic
stresses, reproductive buds modulate developmental programs leading to dormancy
induction to avoid premature growth resumption, and flowering pathways. Stress
tolerance, dormancy, and flowering processes are thus physically and temporarily
restricted to a bud, and consequently forced to interact at the regulatory level. We review
recent genomic, genetic, and molecular contributions to the knowledge of these three
processes in trees, highlighting the role of epigenetic modifications, phytohormones,
and common regulatory factors. Finally, we emphasize the utility of transcriptomic
approaches for the identification of key structural and regulatory genes involved in bud
processes, illustrated with our own experience using peach as a model.
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LIFE IN A BUD

Boreal and temperate tree species cope with harsh environmental conditions during autumn
and winter, including low and freezing temperatures, in a quiescent state named dormancy.
Dormancy has been originally defined as the absence of visible growth in a meristematic structure.
Traditionally, three types of dormancy have been distinguished according to physiological
cues leading to growth inhibition: endodormancy, when signals are intrinsic to the meristem;
paradormancy, imposed by another part of the plant; and ecodormancy, due to environmental
factors (Lang, 1987). More recently, dormancy has been reformulated as “the inability to initiate
growth from meristems under favorable conditions” (Singh et al., 2017). When applied to buds,
this general definition covers endodormancy, and axillary bud paradormancy imposed by apical
dominance, but not bud growth inhibition by environmental factors after fulfillment of chilling
requirements (ecodormancy). In this review, we use the term dormancy referring to this second
meaning.

Previously, prominent reviews have also addressed the known mechanisms of bud dormancy
control in perennial plants from a molecular perspective (Rohde and Bhalerao, 2007; Allona
et al., 2008; Anderson et al., 2010; Yamane, 2014; Maurya and Bhalerao, 2017; Singh et al., 2017).
Several of these studies have focused on the molecular control of growth arrest in apical vegetative
meristems. Growth cessation and dormancy induction in those meristems are regulated by
endogenous and environmental signals, being photoperiod shortening and temperature lowering
major determinants of dormancy setup in forest species and Rosaceae fruit trees, respectively
(Heide and Prestrud, 2005; Cooke et al., 2012). By contrast, the development of flower lateral
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meristems is usually determined by apical dominance and
other factors to overwinter in a differentiated immature stage,
preceding dormancy release, and growth resumption on next
season.

Even though diverse anatomical and physiological
particularities are found, differentiated vegetative and
reproductive meristems cease growth in a well defined
stage and form a bud surrounded by protective scales in a
similar fashion in different tree species. However, in spite
of growth cessation and dormancy, overwintering buds do
not remain in a completely inactive state, as verified by
extensive transcriptomic and hormonal changes observed
during bud development (Howe et al., 2015; Chao et al.,
2017). In fact, three major processes including dormancy, cold
acclimation, and flowering converge spatially and temporally
in a reproductive bud, where they play an active and relevant
role in bud dynamics and determine plant survival and growth
resumption under favorable conditions. These processes
determine bud phenology and development through their
reciprocal interaction, integrating temperature, and photoperiod
effects (Kurokura et al., 2013; Vitasse et al., 2014; Singh et al.,
2017). Since flowering development requires cell division
and expansion, and dormancy and cold acclimation are
essentially non-growing processes, the control of cell cycle and
growth is expected to influence the succession of the mutually
incompatible periods of flowering and dormancy (Horvath et al.,
2003).

The transition to reproductive growth starts around early
spring in Populus (Boes and Strauss, 1994) and summer in
many Rosaceae (Kurokura et al., 2013) when flower bud
induction occurs in axillary meristems. Then flower organ
differentiation starts and is substantially accomplished before
dormancy initiates. Growth arrest and seasonal dormancy are
induced specifically by either photoperiod or temperature in
different species (Cooke et al., 2012). In parallel, cold, freezing,
and desiccation tolerances are increased by an acclimation
mechanism (Welling and Palva, 2006). Subsequent production
of reproductive gametes and resumption of flower organ
growth requires dormancy release triggered by the quantitative
perception of chilling accumulated during the dormancy period
(Coville, 1920; Couvillon and Erez, 1985). After dormancy
release, buds remain cold-acclimated until a period of warm
temperatures results in deacclimation and bud break (Welling
and Palva, 2006). The whole succession of events from flower
bud induction to blooming can be interpreted as a trade-
off between defense factors leading to cold acclimation and
dormancy and growth factors leading to dormancy release and
flowering. In this context, photoperiod and temperature are
important environmental inputs acting occasionally on opposing
ways.

A more detailed review of recent progresses in the regulation
of dormancy, cold acclimation and flowering processes in
buds of temperate trees is shown below, with dormancy
and growth promoting pathways addressed in separated
sections. In addition, the utility of genomic approaches for
the identification of genes related to these processes is
illustrated with our own transcriptomic studies performed

in flower buds of peach (Prunus persica) across dormancy
release.

DORMANCY SETUP

Environmental Signals Leading to
Growth Cessation
Reduction in daylength below a critical value induces growth
cessation in several trees through the participation of orthologs of
well known elements of the photoperiodic control of flowering in
Arabidopsis, particularly photoreceptors and the circadian clock.
One of them is phytochrome A (PHYA) gene that codes for a
red/far-red light receptor and causes, respectively, impaired and
faster growth cessation responses to short-days in hybrid aspen
(Populus tremula × Populus tremuloides) plants overexpressing
and down-regulating the gene (Olsen et al., 1997; Kozarewa
et al., 2010). In addition, antisense inhibition of PHYA alters
the expression of clock components, suggesting a link with
circadian rhythms. This has been confirmed by down-regulating
the circadian clock genes LATE ELONGATED HYPOCOTYL1
(PttLHY1), PttLHY2, and TIMING OF CAB EXPRESSION
1 (PttTOC1) in hybrid aspen, leading to a reduced critical
daylength required for growth cessation and additional effects
on winter hardiness and bud burst (Ibáñez et al., 2010). The
regulatory module CONSTANS (CO)/FLOWERING LOCUS T
(FT), which mediates the effect of photoreceptors and circadian
clock on flowering initiation in Arabidopsis (Valverde et al.,
2004), has been also proposed to control growth cessation and
bud set in Populus trees (Böhlenius et al., 2006). In fact, two
paralogs of FT act coordinately to determine vegetative and
reproductive growth (Hsu et al., 2011); whereas FT1 induces the
reproductive onset, FT2 promotes vegetative growth and inhibits
bud formation under warm temperature and long photoperiod
conditions. Also the FT/TERMINAL FLOWER1-Like2 (PaFTL2)
gene induces bud set under transgenic inducible expression in
the conifer Norway spruce (Picea abies), resembling the FT-
antagonistic role of TERMINAL FLOWER1 (TFL1) in Arabidopsis
(Karlgren et al., 2013). Finally, further evidences of the functional
diversification of CO/FT module in flowering and dormancy
processes arise from the study of other components of the
pathway: the FT protein interactor gene FLOWERING LOCUS
D is involved in growth cessation and bud formation (Tylewicz
et al., 2015; Parmentier-Line and Coleman, 2016); and both
overexpression and RNAi studies show that a tree ortholog of
the flowering pathway integrator APETALA1 (AP1) mediates
photoperiod-dependent growth cessation in hybrid aspen (Azeez
et al., 2014).

Besides photoperiod, temperature also affects seasonal growth
arrest in many species and ecotypes, although signaling pathways
mediating temperature-dependent effects are far less known
(Heide and Prestrud, 2005; Heide, 2011; Rohde et al., 2011; Cooke
et al., 2012). According to Tanino et al. (2010), the existence of
independent short photoperiod and low temperature pathways
for growth cessation and dormancy induction ensures a higher
plasticity for adaptation to changing conditions. DORMANCY-
ASSOCIATED MADS-BOX (DAM) genes are known regulators
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of growth cessation and dormancy induction in many perennial
species (Bielenberg et al., 2008; Horvath et al., 2010; Sasaki
et al., 2011; Niu et al., 2016; Wu et al., 2017a). Low temperature
has been proposed to activate DAM promoters for dormancy
induction by direct binding of the cold-dependent C-Repeat
Binding Factor (CBF), as confirmed by yeast one-hybrid and
transient expression experiments in pear and Japanese apricot
(Saito et al., 2015; Niu et al., 2016; Zhao et al., 2018). DAM genes,
in turn, have been proposed to directly repress FT in pear (Pyrus
pyrifolia) and leafy spurge (Hao et al., 2015; Niu et al., 2016) and
activate a 9-cis-epoxycarotenoid dioxygenase gene (PpNCED3)
in pear (Tuan et al., 2017), providing specific mechanisms for
growth inhibition and abscisic acid (ABA) accumulation in
dormant buds. Low temperature mediates a transient increase
in ABA content in a photoperiod-independent manner (Welling
et al., 2002), however, ABA has been shown to affect dormancy
induction instead of growth arrest in hybrid aspen (Tylewicz
et al., 2018). Interestingly, winter temperatures and even short
treatments at 4◦C disrupt the circadian oscillations of CsTOC1
and CsLHY expression in chestnut (Castanea sativa) (Ramos
et al., 2005), and chilling treatments alter the expression
pattern of GIGANTEA (GI) in almond, a known mediator of
circadian effects on flowering in Arabidopsis (Barros et al.,
2017). Recently, GI has been postulated to regulate photoperiod-
dependent growth cessation in Populus through the activation
of FT2, in a protein complex with Flavin−binding, Kelch repeat,
F−BOX 1 (FKF1), and CYCLING DOF FACTOR (CDF) gene
products (Ding et al., 2018). These and other studies suggest
that temperature signals converge with photoperiod on circadian
clock elements to modulate seasonal growth cessation (Cooke
et al., 2012), although additional effects of temperature on carbon
metabolism and hormone signaling have been also proposed to
contribute to growth arrest (Wingler, 2015).

Cold Acclimation
Overwintering buds must deal with low and freezing
temperatures leading to different forms of physiological
and cellular injury. In addition to physical damage caused
by ice nucleation and propagation, a dehydration stress is
induced by changes in water potential due to the formation
of extracellular ice, and the water loss inherent to bud
dormancy progress. Plants may actively enhance their tolerance
to low temperatures and desiccation via gene expression
modification by a cold acclimation process (Wisniewski
et al., 2003). Several reviews describe in detail the molecular
and genetic control of cold acclimation in trees (Welling
and Palva, 2006; Preston and Sandve, 2013; Fennell, 2014;
Wisniewski et al., 2014), which is broadly similar to cold
acclimation mechanisms reported in herbaceous plants
(Thomashow, 1999; Thomashow, 2010; Knight and Knight,
2012).

Seasonal cold acclimation and bud dormancy are related
processes since both are induced by similar low temperature
and photoperiod conditions (Welling et al., 2002), and both
are incompatible with active plant growth, which suggests
the presence of common regulatory mechanisms. In fact,
impairment of the photoperiodic response by overexpression of

PHYA and down-regulation of clock LHY genes reduces the
critical daylength for growth cessation and also prevents cold
acclimation in hybrid aspen (Olsen et al., 1997; Ibáñez et al.,
2010). In addition, the effect of temperature on seasonal growth
cessation and cold acclimation invoke the same cold responsive
(COR) pathway (Wingler, 2015). However, cold deacclimation
and bud dormancy release are not concurrent events; winter
buds remain cold-acclimated after dormancy release under
appropriate low temperature conditions as long as meristem
growth is not resumed, after which deacclimation is not any
longer reversible (Kalberer et al., 2006).

In Arabidopsis, MYC transcription factors encoded by
INDUCER OF CBF EXPRESSION 1-2 (ICE1-2) are activated by
specific cold-dependent post-translational modifications, causing
up-regulation of CBF1-3 genes. Subsequently, CBFs regulate most
of cold responsive targets by binding to the C-repeat/drought-
responsive element (CRT/DRE) (Knight and Knight, 2012).
Although COR pathway has been essentially described in
Arabidopsis, COR components and functions are conserved
in perennials (Fennell, 2014; Wingler, 2015). The ectopic
expression of Arabidopsis CBF1 increases freezing tolerance in
poplar and induces transcriptomic changes overlapping with
Arabidopsis COR regulon (Benedict et al., 2006). On the other
side, constitutive expression of birch BpCBF1 increases freezing
tolerance and induces known targets of CBF genes in Arabidopsis
(Welling and Palva, 2008). Moreover, the ectopic expression
of a peach CBF gene in apple induces short-day dependent
dormancy, improves freezing tolerance, and delays bud break
in field studies (Wisniewski et al., 2011; Artlip et al., 2014).
Interestingly, this apple line overexpressing peach CBF causes
an altered expression of DAM-like and EBB-like genes in buds,
providing an explanation for its prolonged dormancy period
through the regulation of key transcription factors involved in
dormancy regulation (Wisniewski et al., 2015).

CBF-dependent cold acclimation response includes synthesis
of chaperones, dehydrins, and other protective proteins,
change in lipid composition of membranes, alteration of
sugars metabolism, and production of storage and antioxidant
compounds, among other responses aiming at alleviate cold,
drought, and oxidative stresses (Welling and Palva, 2006).
Dehydrins are abundant cold-responsive proteins belonging to
the late embryogenesis abundant (LEA) family that have been
proposed to protect cell structures and enzymes against freezing
and dehydration (Graether and Boddington, 2014). Seasonal
up-regulation of a dehydrin gene in bark tissue is lower and
restricted to a shorter period in the evergrowing (evg) mutant of
peach having a deletion in DAM genes, in concordance with its
lower cold tolerance (Arora et al., 1992; Arora and Wisniewski,
1994; Artlip et al., 1997). Diverse chitinases have been also
suggested to act as antifreeze, storage, and defense proteins
induced during the transition to dormancy in spruce (González
et al., 2015).

Soluble sugars and other compounds potentially able to
act as compatible solutes accumulate in dormant tissues in
order to confer tolerance to cold and desiccation stresses.
Low temperature up-regulates DUAL SPECIFICITY PROTEIN
PHOSPHATASE 4 (DSP4), most likely involved in starch
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dephosphorylation and degradation, to increase the synthesis of
oligosaccharides during winter dormancy in chestnut (Berrocal-
Lobo et al., 2011). Raffinose family oligosaccharides (RFOs)
including raffinose and stachyose are compatible solutes
synthesized in seeds and plant tissues undergoing abiotic stresses
(Sengupta et al., 2015). Genes coding for the enzyme galactinol
synthase (GolS) catalyzing the first step in the synthesis of
RFOs are up-regulated in dormant buds and other tissues of
woody perennials (Ko et al., 2011; Ibáñez et al., 2013), and apple
MdGolS2 gene confers tolerance to water deficit when expressed
in Arabidopsis (Falavigna et al., 2018).

Epigenetic mechanisms have been postulated to participate
in the control of both, bud phenology and cold acclimation
traits. In Norway spruce, the environmental temperature during
embryogenesis and seed maturation affects the duration and
intensity of bud dormancy and cold acclimation in the progeny,
by an “epigenetic memory” process (Johnsen et al., 2005).
This epigenetic mechanism has been proposed to modify the
expression of certain microRNAs and genes related to bud
break, such as EBB1, leading to different epitypes with the
same genotype (Yakovlev et al., 2010, 2011; Carneros et al.,
2017).

Cell Growth Control and Phytohormone
Pathways
The popular view of bud dormancy as a dynamic state
of meristems moving between phases with varying depth
during the low temperature period (Cooke et al., 2012)
suggests that environmental and intrinsic signals are constantly
interacting to determine such dormancy state, like a trade-
off between cell growth and quiescence factors. For that
reason, cell cycle and expansion pathways are hypothetical
targets of those factors modulating dormancy induction and
maintenance. In fact, Horvath et al. (2003) have brilliantly
reviewed bud dormancy regulation under the perspective of cell
cycle regulation and phytohormones action, substantiated on
transcriptomic studies and the Arabidopsis model. Few more
recent functional studies have provided new insights into that
picture. AINTEGUMENTALIKE1-4 (AIL1-AIL4) genes code for
transcription factors of the AP2 family in hybrid aspen that
mediate short-day dependent growth cessation (Karlberg et al.,
2011). This effect on growth has been explained by direct
regulation of cell cycle since AIL1 protein interacts with the
promoter of CYCD3.2, and AIL1 overexpression prevents down-
regulation of D-type cyclins under short-day treatment. In
addition, AIL genes are proposed to act downstream of FT
and AP1 genes in the photoperiodic pathway (Karlberg et al.,
2011; Azeez et al., 2014), providing an interesting link of
photoperiod perception with cell cycle control. More evidences
of this link have been obtained from the study of cell cycle
genes promoters. Populus plants transformed with the promoters
of Arabidopsis cell cycle genes CYC1 and CDC2a fused to
a reporter gene have shown that both promoters respond
to release of apical dominance by shoot decapitation, and
CYC1 promoter activity associates with daylength (Rohde et al.,
1997).

A recent reappraisal of public genomic data from buds of
Arabidopsis, grapevine, and Populus undergoing the growth to
dormancy transition has found a common regulatory network
that resembles the low energy syndrome (LES), a response
triggered under carbon starvation and energy limiting conditions
(Tarancón et al., 2017). LES is mediated by Sucrose Non-
Fermenting-1-Related Protein Kinase (SnRK1), which ultimately
results in cell division arrest and metabolic reprogramming
(Martín-Fontecha et al., 2018). This idea is in remarkable
agreement with the indirect theory of apical dominance
postulating that stem growth inhibits axillary bud outgrowth by
diverting sugars away from buds (Mason et al., 2014; Kebrom,
2017).

Also plant hormones play an important role in LES and the
growth-dormancy trade-off, with gibberellins (GAs) and auxins
acting as promoters of cell growth, whereas ABA associates with
dormancy maintenance. GA content in Prunus mume changes
across bud dormancy phases, in concordance with the expression
of biosynthetic GA20ox genes (Wen et al., 2016). Moreover,
application of exogenous active GA increases bud break in
Prunus mume (Zhuang et al., 2013), and induces shoot elongation
under short-days in Salix pentandra (Junttila and Jensen, 1988).
A set of transgenic Populus plants with altered GA metabolism
and signaling show faster growth cessation in response to
short photoperiod, early bud set and delayed bud break as
compared with the wild type (Zawaski et al., 2011; Zawaski
and Busov, 2014). On the contrary, hybrid aspen plants with
increased GA concentration by overexpression of AtGA20ox1
continue to grow under short-day conditions (Eriksson et al.,
2015). In addition to its role in apical dominance/paradormancy
induction, gene expression studies associate auxin signaling with
bud dormancy release and growth resumption (Anderson et al.,
2005; El Kayal et al., 2011; Noriega and Pérez, 2017). On the
other hand, modification of ABA signaling by overexpression and
down-regulation of a poplar ortholog of ABA INSENSITIVE 3
(ABI3) alters bud formation in response to short-days (Rohde
et al., 2002; Ruttink et al., 2007). Interestingly, ABI3 protein
interacts with FLOWERING LOCUS D 1 (FDL1), pointing to
an orchestrated control of bud development by photoperiodic
and ABA pathways (Tylewicz et al., 2015; Singh et al., 2017).
In addition, hybrid aspen plants with a reduced ABA response
by expressing the dominant allele abi1-1 of the ABA signaling
gene ABI1 show growth cessation and form buds under short
photoperiod, but remain in a non-dormant state, arguing for
a specific effect of ABA on dormancy induction (Tylewicz
et al., 2018). In grapevine, ABA has been postulated to affect
bud dormancy development through the modulation of the
expression of cell cycle genes (Vergara et al., 2017). Similarly to
ABI3 overexpressing lines, birch (Betula pendula) plants made
insensitive to ethylene by expressing the dominant mutation
etr1-1 of the ethylene receptor ETR1 show alterations in bud
formation (Ruonala et al., 2006). In the same study, etr1-1
plants fail to accumulate ABA in response to short-days, which
suggests an interplay of both hormones in bud development
mechanisms. The role of these hormones in bud dormancy
pathways have been largely supported by transcriptomic studies
in different species (Bai et al., 2013; Doğramaci et al., 2013;
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Howe et al., 2015) and metabolic profiling (Chao et al.,
2016).

GROWTH RESUMPTION AND
FLOWERING

A Molecular Calendar for Dormancy
Release
Bud dormancy release integrates cumulative chilling perception
into a molecular calendar mechanism that triggers growth
resumption after fulfillment of the specific chilling requirements
of a given species or genotype. Our current knowledge about
both seasonal temperature sensing and calendar mechanisms
is still scarce and fragmentary, although some common and
specific elements of these regulatory circuits have been already
described in different species. FT gene and the growth-promoting
hormones GAs have been postulated as main factors leading to
bud dormancy release in trees (Brunner et al., 2014; Maurya and
Bhalerao, 2017; Singh et al., 2017). Exposure to seasonal low
temperature leads to up-regulation of GA biosynthetic genes and
down-regulation of GA catabolic genes during the dormancy-
activity transition in hybrid aspen (Karlberg et al., 2010), and
up-regulation of FT1 gene in poplar (Hsu et al., 2011; Rinne et al.,
2011). Furthermore, seasonal chilling induces the GA-dependent
expression of 1,3-β-D-glucanase genes, involved in removal
of callose sphincters on plasmodesmata and the subsequent
reopening of cell-to-cell communication in meristematic cells
(Rinne et al., 2001; Rinne et al., 2011). The key role of
cell-to-cell communication closure in dormancy induction has
been recently confirmed by studying hybrid aspen plants with
altered sensitivity to ABA (Tylewicz et al., 2018). Mobile
peptides such as FT and CENTRORADIALIS (CEN) are possible
candidates moving through those open plasmodesmata to control
cell proliferation (Rinne et al., 2011; Tylewicz et al., 2018).
Poplar transgenic plants overexpressing CEN1 gene require an
extended chilling time for bud break (Mohamed et al., 2010),
suggesting that CEN1 counteracts the flowering promoting effect
of FT1 gene, and that relative levels of FT1 and CEN1 could
determine dormancy release (Brunner et al., 2014). Similar
results have been obtained in kiwifruit (Varkonyi-Gasic et al.,
2013).

Besides, the EARLY BUD-BREAK 1 (EBB1) gene codes for an
AP2 type transcription factor that has been associated with bud
break events in different species. EBB1 has been identified as
the tagged gene in a dominant mutant of poplar showing early
bud break, whereas down-regulation of EBB1 delays bud break
(Yordanov et al., 2014). EBB1 sequence and expression profile
is conserved in other perennials, which suggests its positive
participation in bud break across a wide range of tree species
(Busov et al., 2016). In fact, Japanese pear PpEBB gene is up-
regulated during the rapid enlargement stage in ecodormant buds
prior to bud break events and induces the expression of several
cyclin PpCYCD3 genes in transient expression assays, providing
a link with cell division mechanisms required for bud break and
blooming (Tuan et al., 2016).

In Rosaceae species and leafy spurge (Euphorbia esula),
DAM genes are also considered major chilling-dependent
regulators of bud dormancy, and thus are also putative
components of their respective molecular calendars. The evg
mutant of peach, showing a non-dormant phenotype, contains
a partial deletion of a tandemly repeated family of DAM genes
(Bielenberg et al., 2008). DAM genes are specifically expressed in
dormant vegetative and reproductive buds, and down-regulated
concomitantly with dormancy release events, although several
DAM family members show gene expression particularities (Li
et al., 2009; Jiménez et al., 2010b; Yamane et al., 2011; Kitamura
et al., 2016). Other MADS-box domain genes (i.e., FLOWERING
LOCUS C-like and SHORT VEGETATIVE PHASE-like) have been
related to chilling requirements and dormancy release in apple
(Malus × domestica) and kiwifruit (Actinidia deliciosa) among
other species (Porto et al., 2015; Wu et al., 2017a,b).

Resembling the vernalization-dependent flowering in
Arabidopsis, epigenetic modifications including chromatin
histone methylation and acetylation, DNA methylation and
small RNA regulation have been postulated to mediate chilling
dependent release of dormancy (Horvath et al., 2003; Ríos
et al., 2014). Concomitantly with cold accumulation and
gene down-regulation, the chromatin in regulatory regions
of DAM genes in leafy spurge and peach show a decrease
in trimethylation of histone H3 at lysine 4 (H3K4me3) and
an increase of trimethylated H3 at lysine 27 (H3K27me3),
which are modifications associated with gene repression and
silencing (Horvath et al., 2010; Leida et al., 2012a). However,
additional functional approaches are required in order to
state a role of these chromatin marks in DAM-dependent
regulation of dormancy release by chilling. Down-regulation
of the chromodomain/helicase/DNA-binding domain (CHD3)
PICKLE, a known antagonist of H3K27me3 modification in
Arabidopsis (Aichinger et al., 2009), restores plasmodesmata
closure and photoperiod-dependent bud dormancy in ABA
response defective plants, suggesting that ABA promotes bud
dormancy by repressing PICKLE (Tylewicz et al., 2018). Also,
methylation of DNA affects chromatin structure and gene-
specific expression, and thus it may potentially account for
large transcriptomic rearrangements observed in developmental
transitions. In effect, global and specific levels of genomic
DNA cytosine methylation change during bud development
in chestnut (Santamaría et al., 2009) and apple (Kumar et al.,
2016), and recent functional studies reveal the important role
of DNA methylation enzymes in seasonal dormancy regulation:
overexpression of a chestnut DEMETER-like (CsDML) DNA
demethylase accelerates photoperiodic-dependent bud formation
(Conde et al., 2017b), whereas down-regulation of poplar
DEMETER-like (PtaDML10) delays bud break (Conde et al.,
2017a) in poplar. In sweet cherry (Prunus avium), specific
DNA methylations and siRNAs are associated with silencing
of the DAM-like gene PavMADS1 during dormancy release
(Rothkegel et al., 2017). Modification of transcript stability by
microRNA action has been also hypothesized to participate in
bud dormancy regulation. The aspen microRNA ptr-MIR169
represses the expression of Heme Activator Protein 2 (ptrHAP2)
in dormant buds (Potkar et al., 2013), a component of nuclear
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factor Y (NF-Y) complexes involved in regulation of flowering
in Arabidopsis by modulating the epigenetic state of target
genes (Hou et al., 2014), which provides a potential way for
regulation of FT. In pear, DAM transcripts are targeted and
degraded by miR6390 microRNA, thus contributing to DAM
down-regulation in the bud dormancy release transition (Niu
et al., 2016).

Flowering Pathways
Flowering pathways and genes are broadly conserved between
herbaceous and perennial plants, in spite of their evident
phenological particularities. In perennials, a period of seasonal
dormancy usually interposes between flower induction and
blooming (Boes and Strauss, 1994; Kurokura et al., 2013), which
forces the mutual coordination of flowering, dormancy and
cold acclimation processes. Under these circumstances, pre-
existing components of flowering pathways have apparently
evolved to acquire new functionalities adapted to the growth
of perennials in temperate climates. The proposed functions
of FT1 in flower induction and dormancy release and FT2
in the regulation of photoperiodic growth cessation in poplar
constitute a paradigmatic case of neo-functionalization after a
gene duplication event in trees, in contrast to the main role of
FT in the transition to flowering in Arabidopsis (Pin and Nilsson,
2012). A role for FT and the similar but functionally antagonist
TFL genes in flower induction has been also postulated in other
perennial species different from poplar, based on expression and
transgenic studies (Kotoda and Wada, 2005; Jones et al., 2011; Ziv
et al., 2014; Bai et al., 2017; Reig et al., 2017). Similarly, orthologs
of Arabidopsis flowering genes LEAFY (LFY) and AP1 perform
a function related to flowering transition in perennial species.
LFY-like genes from trees are preferentially expressed during
flower induction and accelerate flowering when ectopically
expressed in Arabidopsis, however no evidences of their flowering
promoting effect have been observed when overexpressed in
poplar (Rottmann et al., 2000). On the contrary, RNAi of PtLFY
induces sterility and delays bud break in poplar (Klocko et al.,
2016). On the other hand, a dominant negative mutation of AP1
from Arabidopsis modifies the regulation of flowering related
genes in poplar (Chen et al., 2015), and overexpression of AP1-
like gene from Salix integra induces early flowering in haploid
poplar (Yang et al., 2018). In addition to homologs of known
flowering genes, miRNAs and hormone signaling pathways have
been proposed to integrate developmental and environmental
cues affecting flower induction (Xing et al., 2015; Guo et al.,
2017).

The reproductive development in perennials is closely
associated with phenology. Following flower induction,
reproductive organs differentiate and continue growing until
a given developmental stage is reached before the dormancy
period. In peach and apricot, dormant anthers are arrested in
the form of sporogenous tissue (Julian et al., 2011; Ríos et al.,
2013). Then after dormancy release, pollen mother cells undergo
meiosis followed by pollen development and maturation, and
ovaries start to form ovules (Luna et al., 1990; Julian et al., 2011).
The harmful effect of cold and other environmental stresses
on microsporogenesis, leading to ploidy alterations in male

gametes and sterility (De Storme and Geelen, 2014), suggests
that dormancy arrest in a pre-meiosis stage may serve to ensure
a proper production of male gametes under more favorable
environmental conditions.

A Peach Transcriptomic Model for Bud
Studies
Over the last few years, a pleiad of transcriptomic studies
have provided abundant data about gene expression across
bud development in white spruce (El Kayal et al., 2011),
poplar (Ruttink et al., 2007), oak (Ueno et al., 2013), raspberry
(Mazzitelli et al., 2007), apple (Falavigna et al., 2014), pear (Bai
et al., 2013), Japanese apricot (Habu et al., 2014), peach (Jiménez
et al., 2010a), Vitis riparia (Mathiason et al., 2009), and leafy
spurge (Horvath et al., 2008) among other perennial species. In
our laboratory, we have initiated a transcriptomic approach using
flower buds of peach at different dormancy stages and cultivars
with different chilling requirements (Leida et al., 2010). The
systematic study of differentially expressed transcripts identified
in this study has provided a dynamic snapshot of biological
processes taking place in a flower bud across dormancy release,
including regulation of dormancy release, tolerance to abiotic
stresses and flower development (Figure 1).

Dormancy-associated genes DAM1, 4, 5, and 6, belonging to
the family of 6 tandemly arrayed DAM genes, have been found
down-regulated in flower buds of peach following dormancy
release, and differentially expressed in cultivars with different
chilling requirements (Leida et al., 2010, 2012a). These genes
share a common chromatin modification involving H3K27me3
enrichment after dormancy release (de la Fuente et al., 2015),
suggesting thus a putative mechanism for gene silencing similar
to the epigenetic regulation of the vernalization-responsive FLC
gene in Arabidopsis (Ríos et al., 2014). H3K27me3 epigenetic
mark in peach buds is associated with genomic (GA)n repeats,
in concordance with the role of (GA)n binding proteins in
recruiting the Polycomb repressive complex 2 (PRC2) involved
in trimethylation at H3K27 in Arabidopsis (Xiao et al., 2017). FT-
like gene is up-regulated in dormancy-released buds in peach,
following an opposite pattern to DAM6 (Leida et al., 2012b),
which resembles down-regulation of FT by DAM genes found
in other species (Hao et al., 2015), and provides a mechanism
by which DAM genes might mediate growth and dormancy
responses.

In addition to DAM, many other genes are differentially
enriched in the H3K27me3 mark in buds undergoing dormancy
release. Among them, PpeS6PDH codifies a sorbitol-6-phosphate
dehydrogenase involved in sorbitol synthesis that is expressed
in dormant buds and down-regulated in dormancy released
buds concomitantly with an increase in H3K27me3 modification
(Lloret et al., 2017b). This correlates with sorbitol accumulation
in dormant buds, and has prompted us to postulate a role
of PpeS6PDH and sorbitol in protection against cold and
hydric stresses (Figure 1). In that case, it would mean that
bud dormancy and stress tolerance share common regulatory
epigenetic mechanisms, which are apparently independent from
the well known cold acclimation pathway since the H3K27me3
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FIGURE 1 | An overview of main processes converging in a flower bud of peach: dormancy (blue background), stress tolerance (green), and flowering (pink).
Dormancy-Associated MADS-box 6 (DAM6) favors dormancy maintenance while repressing growth resumption and flowering. Sorbitol-6-phosphate dehydrogenase
(S6PDH) enzyme synthesizes sorbitol in dormant buds, performing a putative role as cryoprotectant and compatible solute. Polycomb Repressive Complex 2 (PRC2)
has been proposed to repress DAM6 and PpeS6PDH genes by H3K27me3 modification of a chromatin stretch enriched in GA repeats. Stress associated protein 1
(SAP1) is a regulatory protein with ubiquitin binding ability that modulates water loss and cell growth. This last function could be partially mediated by down-regulation
of cell growth regulatory (TOR-like) and vacuolar aquaporin (TIP-like) genes. FLOWERING LOCUS T (FT )-like is a main regulator of growth and flowering processes,
and hypothetically integrates environmental and physiological signals. Other flowering related genes, such as the ones involved in sporopollenin biosynthesis and
pollen maturation are also linked to dormancy release and growth resumption events. Arrows indicate genetic or biochemical activation while lines ending in a bar
indicate repression. Transcriptional interactions are depicted with discontinuous lines. Question marks tag the relations that have not been confirmed yet.

mark is concurrently established in DAM6 and PpeS6PDH, linked
to the dormancy stage instead of the environmental temperature.

The study of gene expression in flower buds also has served
to identify a stress associated protein (SAP)-like gene (PpSAP1)
expressed in dormant buds and down-regulated concomitantly
with dormancy release (Lloret et al., 2017a). SAP-like proteins
containing Zn-finger domains A20 and AN1 have been found
to regulate the abiotic stress response in different especies (Giri
et al., 2013), most likely by an ubiquitin-related mechanism.
The ectopic expression of PpSAP1 in plum alters water loss
and leaf morphology, suggesting that has a dual role in stress
tolerance and cell growth (Figure 1). This effect on cell growth
could be mediated by down-regulation of target of rapamycin
(TOR)-like, a key regulator of cell growth and metabolism
in eukaryotic cells, and tonoplast intrinsic protein (TIP)-like,
a tonoplast aquaporin affecting water permeability and cell
turgor. This makes tempting to speculate that PpSAP1 might
coordinate both growth inhibition and stress tolerance in
dormant buds.

Finally, we have identified several genes transiently up-
regulated after dormancy release that are specifically expressed
in anthers (Ríos et al., 2013). Among these genes we
have found some orthologs of Arabidopsis genes involved in
synthesis of sporopollenin (a pollen cell wall component) and
pollen maturation, which provides a molecular framework to
characterize the mechanisms acting in growth resumption of
reproductive organs and microsporogenesis initiated shortly
after dormancy release. Altogether, the data obtained in these
studies has contributed to outline a landscape of concerted cross-
regulation of dormancy, stress response and flowering processes
converging in a flower bud.

PERSPECTIVES

In trees from temperate climates, dormancy is a process required
for survival during winter, but the molecular pathways that
regulate it are poorly known. A better understanding of the
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molecular bases of bud dormancy will strongly facilitate plant
breeding tasks aimed at assessing the potential for environmental
adaptability of particular genotypes, and studies led to evaluate
the impact of climate change on crop yields. In our opinion,
as a result of our experience in the peach model, this will be
better achieved by approaches involving the coordinate study
of dormancy, flowering and stress pathways in buds, hence
providing an added value to the molecular characterization
of these processes separately. Moreover, integrating approaches
will help to identify common regulatory mechanisms, thus
contributing to decipher the time and spatial fitting of these
processes.

According to the profuse literature mentioned in this review,
numerous environmental inputs transmitting temperature and
light data are found in different nodes of regulatory networks,
ensuring a precise tuning of phenological transitions. On the
other side, quantitative and delayed responses seem to be
mediated by the epigenetic machinery, which employs common
chromatin labels for dormancy release, stress acclimation

and flowering induction in different species. In our opinion,
epigenetic modifiers will become central to most molecular
dormancy studies in the immediate future, with an increasingly
important impact on development and environmental adaptation
fields.
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