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Tomato (Solanum lycopersicum) is a model crop for studying development regulation
and ripening in flesh fruits and vegetables. Supplementary light to maintain the optimal
light environment can lead to the stable growth of tomatoes in greenhouses and areas
without sufficient daily light integral. Technological advances in genome-wide molecular
phenotyping have dramatically enhanced our understanding of metabolic shifts in the
plant metabolism across tomato fruit development. However, comprehensive metabolic
and transcriptional behaviors along the developmental process under supplementary
light provided by light-emitting diodes (LEDs) remain to be fully elucidated. We present
integrative omic approaches to identify the impact on the metabolism of a single
tomato plant leaf exposed to monochromatic red LEDs of different intensities during
the fruit development stage. Our special light delivery system, the “simplified source-
sink model,” involves the exposure of a single leaf below the second truss to red LED
light of different intensities. We evaluated fruit-size- and fruit-shape variations elicited
by different light intensities. Our findings suggest that more than high-light treatment
(500 µmol m−2 s−1) with the red LED light is required to accelerate fruit growth for 2
weeks after anthesis. To investigate transcriptomic and metabolomic changes in leaf-
and fruit samples we used microarray-, RNA sequencing-, and gas chromatography-
mass spectrometry techniques. We found that metabolic shifts in the carbohydrate
metabolism and in several key pathways contributed to fruit development, including
ripening and cell-wall modification. Our findings suggest that the proposed workflow
aids in the identification of key metabolites in the central metabolism that respond to
monochromatic red-LED treatment and contribute to increase the fruit size of tomato
plants. This study expands our understanding of systems-level responses mediated by
low-, appropriate-, and high levels of red light irradiation in the fruit growth of tomato
plants.
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development
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INTRODUCTION

Tomato (Solanum lycopersicum), a member of the Solanaceae
family, is the leading vegetable crop. Supplementary lighting
[e.g., fluorescent- and high-pressure sodium lamps, and light-
emitting diodes (LEDs)] is used for tomato production in
Northern Europe and Canada (for example, see Heuvelink et al.,
2006). It can compensate for low rates of photosynthesis and
increases both the growth and yield of tomato plants when
compared to natural light (Gosselin et al., 1996; Gunnlaugsson
and Adalsteinsson, 2006). Most greenhouses and areas without
sufficient daily light integral (DLI) require such supplementary
lights to maintain the optimal light environment for the stable
growth of tomato plants. A seasonal effect of supplementary
light was observed throughout the year (except from June to
August); it resulted in increases in the tomato yield (Heuvelink
et al., 2006). Others documented that supplementary lighting
had no- or negative effects (Gunnlaugsson and Adalsteinsson,
2006; Trouwborst et al., 2010). These observations suggest that
DLI from natural and supplemental lighting per plant, the light
source, and/or the cultivar play an important role in determining
fruit growth rates and yield. Also, depending on the crop species
and several growth factors (e.g., temperature, CO2, and air
humidity), the light intensity [photosynthetic photon flux (PPF
in µmol m−2 s−1)] should be optimized to provide sufficient
supplementary lighting without eliciting leaf stress and associated
leaf disorders (Moe et al., 2006; Darko et al., 2014).

Several tomato fruit characteristics, mainly the result of
dramatic metabolic shifts during development and ripening,
result in a complex system (Carrari and Fernie, 2006; Bovy
et al., 2007). Increasing the fruit yield per plant is important
but challenging as the molecular mechanism of the source-
to-sink balance, a key step toward fruit development, remains
largely unclear. The translocation of carbohydrates like sucrose
and other nutrients from source to sink is a major determinant
of plant growth (Nguyen-Quoc and Foyer, 2001; Paul et al.,
2001; Ruan, 2014). Plants strictly regulate the production of
photoassimilates and the source-to-sink response to changing
environments (Lemoine et al., 2013; Osorio et al., 2014).
Of these, sucrose contributes to translocation as a main
carbon source in phloem. Tomato plants overexpressing sucrose
phosphate synthase (SPS), a key enzyme in the sucrose
metabolism, exhibited substantially altered carbon allocation in
photosynthetic leaves (Galtier et al., 1993, 1995; Micallef et al.,
1995). A reduction in the activity of sucrose synthase (SuSy),
which catalyzes the sucrose cleavage in tomato fruit, considerably
reduced its sucrose unloading capacity (D’Aoust et al., 1999).
A comprehensive and quantitative molecular understanding of
the tightly coupled coordination of photosynthesis and sink
capacity is important. With respect to the quality of tomato fruit,
these systems are closely associated with the phloem loading of
sucrose in the source and with unloading in sink tissues via the
central carbon metabolism, although generally, photosynthesis in
fruit is not essential (Kahlau and Bock, 2008; Lytovchenko et al.,
2011).

Transcriptome analysis with microarrays and RNA-
sequencing (RNA-Seq) revealed important key factors involved

in fruit ripening (Lin et al., 2008; Chung et al., 2010; Nakano
et al., 2012; Fujisawa et al., 2014; Nguyen et al., 2014). The
integration of transcriptomic and metabolomic approaches
demonstrated that the detected primary metabolites, cell wall-
related metabolites, and pigments were not strongly correlated
with known key genes involved in ripening, but implied a
causal relationship between tricarboxylic acid (TCA) cycle
intermediates and fruit ripening (Alba et al., 2005; Carrari
et al., 2006; Mounet et al., 2009; Osorio et al., 2011). Despite
the agricultural importance of the developmental process
under supplementary lighting, the comprehensive metabolic
and transcriptional behaviors along the developmental period
remain to be fully elucidated. Also, their role under artificial
supplementary lighting with LEDs (Goto, 2003; Darko et al.,
2014) in the regulation of flowering and early fruit development
(rather than fruit ripening) remains to be identified quantitatively
and systematically.

We present integrative omics approaches to elucidate the
metabolomic impact of red LED light of different intensities
on single leaves during the early fruit development of
tomato plants. We set up a special light-irradiation system,
our “simplified source-sink model,” which involves a single
tomato leaf, a fruit truss, and monochromatic red-LED light
delivered during early fruit development; red light is widely
used for supplemental lighting. Our findings suggest that
the proposed workflow promises to aid in the discovery of
key pathways that contribute to increasing the fruit size of
tomatoes.

MATERIALS AND METHODS

Plant Material and Growth Conditions
Seeds from tomato (Solanum lycopersicum ‘Reiyo’) were sown
in 72-cell trays (Takii Seed, Kyoto, Japan) and grown in a soil
mix (Napura Soil Mixes, Yanmar, Osaka, Japan) for 2 weeks in
a growth chamber (MKV DREAM, Tokyo, Japan) at 25◦C/20◦C
(light/dark, Japan) and 900 µL L−1 CO2 concentration. The
light/dark cycle was 16 h/8 h for 2 weeks. Then the seedlings
were transferred to 2.4 l pots and grown in a growth chamber
(Asahi Kogyosha, Tokyo, Japan); the PPF level was adjusted
to 450–500 µmol m−2 s−1 when measurements were at the
meristem of each tomato plant (light source: ceramic metal
halide lamps). S. lycopersicum cv. ‘Moneymaker’ was also used
and exposed to the same conditions of cv. ‘Reiyo’ for fruit
measurements. The experiments were performed at Chiba
University, Japan.

For LED irradiation, we exposed single leaves for 4 weeks
to a red LED panel (23 cm × 12 cm, 18 W, Shibasaki,
Saitama, Japan); the peak wavelength was 660 nm (Showa Denko
K. K., Tokyo, Japan). To remove the effects of supplemental
light from other factors, we removed all leaves and trusses
except for the flowers on the second truss, the leaf just
below the second truss, and the apical portions of the main
shoot at the anthesis stage of the second truss (Hikosaka
et al., 2013) (Supplementary Figure S1). Each plant was
trimmed to bear a single leaf and a truss with three flowers
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(Supplementary Figure S1B). We used four light intensities
at PPF 0-, 200-, 500-, and 1,000 µmol m−2 s−1 (P0, P200,
P500, P1000). Different PPFs were applied to post-anthesis
tomato plants for 2 weeks after anthesis (WAA), corresponding
to 14 days after anthesis (DAA). Leaf and fruit samples were
harvested 0-, 1-, and 2 WAA at the same hour 1600 (JST,
Japan Standard Time), corresponding to midday in the growth
chamber.

Fruit Measurements
It is known that the fresh weight (FW, in g) of tomato
fruit can be estimated from the fruit length, diameter, and
height (for example, see Mutschler et al., 1986). Therefore, fruit
measurements were taken every week with a digital caliper and
recorded as the estimated FW of each fruit. Biological replicates,
n = 3.

RNA Isolation
Total RNA was isolated using the RNeasy Plant Mini kit
(Qiagen, Hilden, Germany) according to the manufacturer’s
instructions. The concentration, integrity, and extent of
contamination by ribosomal RNA were monitored using
an ND-1000 spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, United States) and a Bioanalyzer 2100 (Agilent
Technologies, Santa Clara, CA, United States).

cDNA Library Construction and
RNA-Sequencing
Beads with oligo(dT) were used to isolate poly(A) mRNA
after total RNA was collected from tomato tissues, leaves, and
fruits. Fragmentation buffer was added to cut mRNA into short
fragments to serve as templates; random hexamer primer was
used to synthesize first-strand cDNA. Second-strand cDNA was
synthesized using buffer, dNTPs, RNaseH, and DNA polymerase
I. Short fragments were purified with the QiaQuick PCR
extraction kit and resolved with EB buffer for end repair and
for adding poly(A). The short fragments were connected with
sequencing adapters. After agarose gel electrophoresis, suitable
fragments were selected as templates for polymerase chain
reaction (PCR) amplification. Lastly, the library was sequenced
using Illumina HiSeqTM 2000. We complementary analyzed same
samples used for microarray analysis per condition (n = 1 each).

Sequence Processing, Mapping Reads to
a Reference, and Differential Expressions
After Illumina reads were quality-checked, demultiplexed and
trimmed, they were clustered per library using RobiNA (Lohse
et al., 2012). The remaining short reads used for assembly were
aligned to the CDS sequences with Bowtie (Langmead et al., 2009)
to identify rRNA contamination; two mismatches were allowed.
The ribosomal filtered reads were then aligned against tomato
genome sequence SL2.40 (ITAG2.3) (Tomato Genome, 2012).
Differentially expressed genes (DEGs) were identified using the
DESeq (Anders and Huber, 2010) with default parameters. The
level of significance was set at a false discovery rate (FDR) < 0.05
(Benjamini and Hochberg, 1995). We used BiNGO (Maere et al.,

2005) to analyze significantly over-represented gene ontology
(GO) categories in the DEGs (FDR < 0.05).

Metabolite Profiling
Metabolite profiling by gas chromatography-time-of-flight mass
spectrometry (GC-TOF-MS) was performed essentially as
described (Kusano et al., 2007a,b, 2011a) but with tomato-specific
modifications [see our meta-data (accession no. MTBLS699)
in MetaboLights (Kale et al., 2016)]. Briefly, all raw data in
netCDF format were pre-processed by hyphenated data analysis
(HDA) (Jonsson et al., 2005, 2006) and the obtained data matrix
was normalized and summarized using the cross-contribution
compensating multiple standard normalization (CCMN) method
(Redestig et al., 2009). For metabolite identification, we cross-
referenced the obtained mass spectra with gas chromatography
with electron impact mass spectrometry (GC-EI-MS) and
retention index libraries (Schauer et al., 2005) in the Golm
Metabolome database (Kopka et al., 2005) and our own in-
house libraries. According to the recommendation (Fernie et al.,
2011), detailed information on metabolite identification was
shown in Supplementary Tables S2A,B. The metabolite profile
data (processed data) with our experimental design (phenodata)
are also included in Supplementary Tables S2G,H. We
compared the metabolite responses: (1) treatment comparison,
i.e., highlight vs. lowlight treatment and (2) developmental
comparison, e.g., 2 WAA vs. 1 WAA under LED irradiation at
P1000. The control condition of comparison (1) was P200 red
light, whereas 1 WAA was used as control condition in the case of
(2). Each sample point was analyzed with six biological replicates.

Statistical Data Analyses for Transcript
Profiling by Microarrays and Metabolite
Profiling
We used same microarray data that were analyzed in our previous
study (Fukushima et al., 2012) [accession#: GSE35020 in NCBI
GEO (Barrett et al., 2013)]. We re-analyzed the total of 18
samples (12 leaf- and 6 fruit samples); three biological replicates
per sample were used. Data normalization, visualization,
and correlation analysis based on Pearson’s correlation were
performed using R1 and Bioconductor (Gentleman et al., 2004).
DEGs and differentially accumulated metabolites were identified
using the LIMMA method, which is based on linear model fitting
(Smyth, 2004). The level of significance was set at FDR < 0.05
(Benjamini and Hochberg, 1995). Principal component analysis
(PCA) was performed using the pcaMethods package (Stacklies
et al., 2007), with log-transformation and unit variance scaling.
To visualize the global transcript responses of gene regulatory
networks and metabolic pathways of fruit- and leaf samples,
we used MapMan software (v3.5.1R2) (Usadel et al., 2005).
Genes were classified into different functional categories based
on MapMan BIN from the ITAG2.4 annotation. We used BiNGO
(Maere et al., 2005) to analyze significantly over-represented GO
terms in the DEGs. The level of significance was set at FDR < 0.05
(Benjamini and Hochberg, 1995).

1http://www.r-project.org
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RESULTS

Scope of the Study and Its Systematic
Experimental Design
In preliminary experiments, we studied the fruit weight and leaf
area of whole Solanum lycopersicum L., ‘Reiyo’ plants exposed
or not exposed to red LED irradiation. We first recorded the
fruit weight along the developmental stages 1-, 2-, 3-, and
4 WAA of plants grown without supplemental LED lighting
(Supplementary Figure S2A). Under normal light (average
P500, metal halide lamp without supplemental LED light), we
observed a remarkable increase in the fruit weight between
1- and 2 WAA, suggesting that the period was critical for
early fruit development and the time of cell expansion. When
we recorded the fruit weight and leaf area of whole plants
grown under supplemental red LED light (P1000), we detected
no effect on the fruit biomass at 2 WAA (Supplementary
Figure S2B).

Based on these preliminary findings we focused on 2 WAA
and developed a custom LED light system to gain insights into
molecular regulation governing early tomato fruit development
and biologically relevant changes in the storage pattern and
translocation under different light conditions. Our “simplified
source-sink model” (Hikosaka et al., 2013) is comprised of a
single tomato leaf and fruit truss (Supplementary Figure S1)
and can be used to deliver red or other color light irradiation in
greenhouses or under closed growth conditions, e.g., in climate
chambers. Although we delivered 100% of red LED light to the
plants, leaves exhibited few stress signs under the P200 condition.
However, after P500 and P1000 high light (HL) exposure, they
manifested stress signs and accompanying disorders, including
leaf curling and senescence (Supplementary Figure S3), due
mainly to high light intensity and seemingly enhancement of
translocation.

Enhanced Light Intensity Strongly
Affects Leaf and Fruit Growth in Tomato
Using our simplified source-sink model we next assessed
variations in the fruit size and shape due to different light
intensities. Figure 1A shows a representative fruit shape
developed under red LED irradiation (P200, P500, and P1000) in
2 WAA. Although the tomato plants were grown simultaneously
in a controlled growth chamber under artificial conditions, there
were variations in the fruit morphology due to uncontrollable
factors affecting fruit set (Supplementary Table S1). For example,
the developmental stage at P1000 irradiation in 4 WAA can
correspond to breaker (in some case, it corresponds to red ripe).
In the case of P500 in 4 WAA, the stage corresponds to mature
green. The mean weight, height, and width were statistically
greater after HL- than P200 treatment (p < 0.05, Welch’s t-test)
(Figure 1B). We also evaluated variations in the fruit size
and shape obtained under the same conditions in a different
year (i.e., independent S. lycopersicum L. ‘Reiyo’ experiments)
(Supplementary Figure S4). S. lycopersicum cv., ‘Moneymaker,’
exposed to the same conditions also exhibited this tendency
(Supplementary Figure S5). Our findings suggest that treatment

with red LED light exceeding P500 is sufficient for fruit growth in
tomato plants grown under our artificial conditions.

Overview of Metabolite and Transcript
Responses to High Light Irradiation
To study small-molecule metabolites and gene expressions
during early fruit development under red LED light with different
light intensities, we performed global metabolite and transcript
profiling using the experimental designs of an established GC-
MS method (Kusano et al., 2007a,b), Illumina-based RNA-Seq,
and previously reported microarrays (Fukushima et al., 2012)
(Supplementary Figures S6–S8). To visualize the extent of
metabolomic and transcriptomic changes elicited by different
light intensities, we performed PCA and applied the data
matrices of the metabolite- and transcript profiles separately.
The PCA score scatter plot revealed that the strong impact on
metabolite levels in accordance with observance of the presence
or absence of light along with PC1 (Figures 2A,B). RNA-Seq
data (Supplementary Figure S9) also showed different clustering
groups based on tissue-dependent differences in the PC1 axis,
while growth stages with PC2 (Figure 2C). When we focused
on light intensity-dependent metabolomic changes in fruits, we
found that samples exposed to HL conditions were clustered,
while samples with light treatments were clearly separated from
dark samples (P0). These observations suggest that while our
HL condition strongly affected the metabolite accumulation in
tomato plants, its effect on developing fruit was not as large.

Comparative Analyses of Metabolite
Profiling of Tomato Fruit- and Leaf
Samples Under Different Light Intensities
Our broad-range metabolite analysis identified HL-responsive
metabolites and revealed changes in metabolite levels throughout
the early fruit-development stage (Figure 3). We first focused
on metabolites that exhibited a statistically significant difference
when the plants were grown under HL and under control
conditions (Table 1 and Supplementary Table S2). When we
compared between P1000 and P200 light intensities, we found
that at P1000, sugars including glucose, fructose, and trehalose
and cell wall related metabolites like xylose and mannose
markedly increased in 1 WAA fruits while aromatic amino acids
such as phenylalanine, tryptophan, and tyrosine, were decreased.
There were fewer HL-responsive metabolites in 2 WAA than 1
WAA fruits, resulting in 10 significantly changed metabolites.
Inverse changes were observed in the metabolite levels, for
example, phenylalanine and tyrosine were increased in response
to HL.

Except at 2 WAA, the trend observed in P500 and P1000
fruits was similar. Fruits examined in 2 WAA did not show
a significant increase in metabolites; mainly polyol and some
hydroxyl acids were decreased. Sucrose, glucose, and xylose
increased in response to HL. The significantly increased organic
acids in 1- and 2 WAA leaves exposed to HL were citrate, malate,
succinate, quinate, and glycerate. Methionine levels in young
leaves dramatically decreased in response to HL. In 1 WAA
leaves, P500 HL largely affected the metabolome; the number of
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FIGURE 1 | Fruit size and shape variations elicited by different light intensities. (A) A representative fruit shape developed under red LED panels (P200, P500, and
P1000) in 2 WAA. Scale bar: 5 cm. (B) Measured tomato fruit sizes. Statistically significant differences between fruits exposed to light intensities at P200, P500, and
P1000. We used a box and whisker plot, a graphical summary of a distribution. This plot can visualize the minimum, lower and upper quartiles (25% and 75%),
median, and maximum of data. Regarding extreme values, outliers may be displayed as open circles. Data show the mean of the total weight, height, and width
calculated with the Welch t-test. Differences of ∗p < 0.05 were considered statistically significant. The samples were used for metabolite profiling. The results indicate
that treatment with higher than P500 red LEDs is sufficient for fruit growth under our artificial conditions. Biological replicates, n = 3. WAA, week after anthesis.

Frontiers in Plant Science | www.frontiersin.org 5 October 2018 | Volume 9 | Article 1439

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01439 October 5, 2018 Time: 17:17 # 6

Fukushima et al. Tomato Fruits Under Different LEDs

FIGURE 2 | Overview of the transcript and metabolite responses. Score
scatter plots of the fruit metabolome (A), and the leaf metabolome (B)
obtained by GC-TOF-MS, and of the transcriptome obtained by
Illumina-based RNA-Seq (C). We observed changes in the metabolite
composition of fruits and leaves in the presence or absence of light (PC1).
RNA-Seq data also revealed different cluster groups according to
tissue-dependent differences in the PC1 axis. The recorded changes in the
growth stages were observed under PC2. Biological replicates, n = 5–6 for
metabolite profiling and n = 1 for transcript profiling obtained by RNA-Seq
analysis.

significantly accumulated metabolites was higher than at P1000
HL although we observed a similar tendency at P500 and P1000.

Comparison of 1- and 2 WAA fruits showed that sucrose
decreased under HL while glucose and fructose increased in
an essentially linear manner during fruit development and in
response to HL (Figure 3 and Supplementary Table S2E). Cell-
wall related metabolites like xylose, mannose, and arabinose

increased during fruit development. Irrespective of the light
intensity, the level of most sugars, sugar phosphates, and some
organic acids like citrate and aconitate was higher in fruits than
leaves (Supplementary Table S2F). Most highly accumulated
amino acids in fruits were γ-amino butyrate (GABA), glutamine,
asparagine, branched chain amino acids (valine, leucine, and
isoleucine), beta-alanine, and methionine.

Genome-Wide Transcript Profiling
Revealed a Wide Range of Variations in
Gene Expression and Reflected Changes
in Regulatory Networks Under High Light
Treatment
We assessed the comprehensive transcript abundance using
microarrays and RNA-Seq (Supplementary Tables S3, S4). To
mitigate issues associated with the coverage of gene annotation
in microarrays we also performed RNA-Seq with the Illumina-
based platform (Supplementary Figure S9). Using both datasets
we identified DEGs. At P1000 and P200, microarray-based
approaches detected 137 up- and 252 down-regulated genes,
respectively, in fruits (Figure 4A and Supplementary Table S5).
GO enrichment analysis in “Biological Process” showed that the
137 up-regulated genes were significantly enriched in “ripening
(FDR = 3.2E-3)” and “cell wall modification (FDR = 3.2E-
3),” whereas the 252 down-regulated genes were related to,
for example, “cell division (FDR = 1.8E-2)” and “microtubule-
based process (FDR = 1.4E-2).” Ripening-related genes encoded
pectin methylesterase PME2.1 (probeset ID = Les.3630.1.S1_at),
expansin 1 (probeset ID = Les.191.1.S1_at), and PME1.9
(3 probeset IDs: Les.3122.1.S1_a_at, Les.3122.2.A1_at, and
Les.3122.2.A1_a_at). The RNA-Seq-based approach identified 60
up- and 340 down-regulated genes between P1000 and P200
treatments in tomato fruit (Figure 4B and Supplementary Table
S5B). GO enrichment analysis using DEGs obtained by RNA-
Seq indicated that the 60 up-regulated genes were involved in
the “cell wall macromolecule catabolic and metabolic process
(FDR = 5.1E-4)” and in lipid localization/transport (FDR = 0.047)
(Figure 4B). The 340 down-regulates genes were related to
“proteolysis (FDR = 1.1E-11)” and “negative regulation of
molecular function (FDR = 9.3E-7).”

RNA-Seq of 1 WAA leaves also revealed that DEGs that were
up-regulated at P1000 and were related to biological processes
like “regulation of transcription (FDR = 1.2E-4)” included genes
that encode MYB-related transcription factor, WRKY-like MYB-
related transcription factor, and heat-shock factor protein. Our
microarray data supported this observation (Supplementary
Table S5). The number of down-regulated DEGs was larger than
of up-regulated DEGs in P1000 2 WAA leaves; we only observed
eight up-regulated DEGs. Our analysis for down-regulated
genes significantly over-represented “glycerol metabolic process
(FDR = 7.2E-4),” “alditol metabolic process (FDR = 7.2E-4),”
and “polyol metabolic process (FDR = 1.3E-2).” Together, the
results of our global transcript analysis suggest the presence
of highly complex transcription dynamics in tomato fruits and
leaves exposed to P1000 and P200 and examined at different
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FIGURE 3 | Continued
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FIGURE 3 | Comparative analyses of metabolite profiling of fruit- and leaf samples of tomato plants grown under different light intensities (P0, P200, P500, and
P1000). To summarize metabolite profile data, we used a box and whisker plot, a graphical summary of a distribution. This plot can visualize the minimum, lower and
upper quartiles (25% and 75%), median, and maximum of each metabolite data. Regarding extreme values, outliers may be displayed as open circles. In each
boxplot, the investigated time-points are 1 WAA and 2 WAA (X-axis). The relative abundance on the Y-axis shows the normalized responses of the metabolite peaks
obtained by GC-TOF-MS. Typical metabolite classes such as sugars, sugar alcohols, and amino- and organic acids are shown. Magenta- and green boxes
represent samples from fruit and leaves, respectively. Biological replicates, n = 5–6. WAA, week after anthesis.

developmental stages. These findings are reflected as the systems-
level response to HL under artificial condition using red LEDs.

Tomato Leaf and Fruit Samples Exhibited
Inverse Changes in the Expression
Patterns Involved in Light Reactions,
Secondary Metabolism, and Cell-Wall
Biosynthesis
For a comprehensive study of transcript level changes in
metabolic pathways, we visualized our RNA-Seq data using
MAPMAN (Thimm et al., 2004; Usadel et al., 2005). Figure 5
presents an overview of the transcript profiles of 2 WAA fruit-

and leaf samples exposed to P1000- or P200 light treatment
(Supplementary Figure S10). MapMan analysis demonstrated
that, as a whole, changes in the expression patterns involved
in light reactions, the secondary metabolism, and cell-wall
biosynthesis exhibited an inverse tendency in fruit- and leaf
samples. The marked up-regulation in the transcript level of
P1000 fruits was associated with light reactions; in leaves those
genes were down-regulated in response to HL. In leaves, genes
involved in cell-wall biosynthesis and secondary metabolism were
up-regulated, in fruits they were down-regulated.

To shift our focus onto dissecting the metabolic balance
in fruit- and leaf samples as a whole plant system, we used
Spearman’s correlation (p < 0.05) to identify metabolites that
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TABLE 1 | Metabolite responses of tomato fruits to high light treatment.

Log2FC FDR

Fruit 1 WAA, P1000/P200

Trehalose 4.8 1.10E-02

Mannose 4.3 2.90E-03

Fructose 3.8 8.70E-05

Glucose 2.5 2.30E-05

Xylose 2.2 3.10E-04

Butyro-1,4-lactam 2.1 9.70E-04

GABA 2 1.70E-03

Aconitate 1.9 2.70E-02

Dihydrouracil 1.5 7.90E-03

Threonate 1.4 2.90E-02

Aspartate −1.7 7.50E-05

Lysine −1.9 3.90E-02

Asparagine −2.2 5.90E-04

Tryptophan −2.4 4.60E-03

Alpha-tocopherol −2.7 1.60E-02

Phenylalanine −2.8 4.70E-04

Tyrosine −3 2.70E-02

Xylobiose −5.9 9.60E-04

Fruit 2 WAA, P1000/P200

Tyrosine 3.3 2.50E-02

Phenylalanine 1.9 3.00E-02

Isoleucine 1.5 4.10E-02

Arabinose 1.4 3.00E-02

Threonine 1.1 4.10E-02

Succinate −1.2 9.00E-03

Shikimate −1.6 9.00E-03

Threonate −2 6.20E-03

Dihydrouracil −2.1 4.10E-04

Galacturonate −6.3 2.00E-02

The listed metabolites exhibited a statistically significant difference under HL and
control conditions at 1- and 2 WAA [LIMMA (Smyth, 2004); |log2FC| ≥ 1, false
discovery rate (FDR) < 0.05]. Log2FC means logarithmically transformed values
of fold-changes (e.g., P1000/P200). See also Supplementary Table S1. HL, high
light; FC, fold-change.

exhibited a significant correlation in fruit and leaf samples across
time. We found that fumarate showed a negative correlation
between fruit and leaf samples, while 2-oxoglutarate exhibited a
positive correlation (Figure 6).

DISCUSSION

To enhance the growth/yield and to improve the fruit quality of
tomato plants, a physiological understanding of their metabolic
and transcriptional responses during fruit development under
artificial supplementary LED light is necessary. In our “simplified
source-sink model” (Hikosaka et al., 2013) (Supplementary
Figure S1), each tomato plant is pruned to have a single leaf
and one fruit truss. To gain insights into the storage patterns
and translocation in developing tomato fruits in response
to environmental perturbation by HL irradiation (Figure 1),
we performed sophisticated molecular phenotyping of samples
exposed to red-LED lighting (660 nm peak). Metabolite and

transcript analysis using GC-MS and RNA-Seq/microarrays
enhanced our understanding of the cellular response of the fruit
storage metabolism associated with primed fruit ripening and
cell-wall biosynthesis, the stress response, and photosynthesis
in response to the light wavelength and to HL stress imposed
by our artificial irradiation system (Figure 2). Our findings
emphasize the tightly coupled coordination of photosynthesis
and sink capacity and provide an important list of the candidate
metabolites, transcripts, and key pathways that contribute to the
cellular metabolic shift in the course of early fruit development.

Our “simplified source-sink model” is appropriable because
it removes as many unwanted variations due to unstable
greenhouse conditions as possible. We used this experimental
system in our earlier co-expression network analysis to infer
candidate functional genes in tomato plants (Fukushima et al.,
2012). Applying the experimental system also enabled to compare
the extent of changes of light intensity, the photosynthesis rate,
and fruit growth in tomato plants grown under two types of
supplementary LED lighting methods (Hikosaka et al., 2013).
First, they assessed the effects of LED light intensity on the
fruit set, dry weight, dry mass ratio of a tomato fruit, and the
net photosynthetic rate of a center leaflet, i.e., by applying the
same method presented in the study. The second experiments
in the study assessed whether number of leaves irradiated by
supplemental lighting made effects on the photosynthetic rate
of a whole tomato plant. As the light irradiation per leaf
could increase photosynthetic rate in both experiments, the
present study performed comprehensive molecular phenotyping
of samples collected under different light intensities by applying
the simplified experimental design.

An artificial environment can cause plant developmental
and morphological differences, and their responses can mask
essential traits. The plant response to a combination of multiple
abiotic stresses in the field condition cannot be directly
extrapolated from that to each stress exposed individually
(Mittler, 2006; Mishra et al., 2012). In addition, we notice
an emerging area, so-called ‘Field Omics’ (Alexandersson
et al., 2014), trying to monitor and analyze different
molecular behavior of samples harvested from crop field
trials. The current field-omics approaches face a difficult and
fundamental problem causing from high variance influenced
by temporal and spatial differences in field trials. Such
intrinsic heterogeneity in each field overwhelms effect of
the experimental perturbations. At least partially, our data
can be used as one of references to learn about the differences
in molecular mechanisms between field- and laboratory
tests, although our system greatly differs from the field
trials.

To increase and improve light distribution, supplementary
lighting is widely used as it can promote a good photosynthetic
response and fruit growth in the lower plant layers. Others
(Gosselin et al., 1996; Hovi et al., 2004; Gunnlaugsson
and Adalsteinsson, 2006; Hovi-Pekkanen and Tahvonen,
2008; Pettersen et al., 2010) reported the positive effects of
supplemental lighting on fruit growth and yield. Based on our
evaluation of the tomato fruit size and of shape variations,
exposure to around P500 red LED light is sufficient for fruit
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FIGURE 4 | Gene ontology term enrichment analysis for HL-responsive genes in tomato fruits (2 WAA, P1000 vs. P200). We used microarray (A) and RNA-Seq data
(B). BH FDR < 0.05, |log2FC| ≥ 1. WAA, week after anthesis.
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FIGURE 5 | Overview of the transcript profiles based on Illumina-based RNA-Seq. The RNA-Seq data from (A) fruit- and (B) leaf samples were obtained with
MAPMAN software (http://mapman.gabipd.org/web/guest/mapman) (Thimm et al., 2004; Usadel et al., 2005). The fold-changes are presented in different colors
where red = up-regulated and blue = down-regulated by P1000 treatment. The results show that the changes in the expression patterns involved in light reactions,
the secondary metabolism, and in cell-wall biosynthesis were inverse in fruit- and leaf samples (green rectangles). WAA, weeks after anthesis.
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growth not only with respect to S. lycopersicum L. ‘Reiyo’
but also S. lycopersicum cv. ‘Moneymaker’ (Supplementary
Figures S3–S5). To confirm whether this observation is cultivar-
dependent or independent, a larger number of samples and
cultivars should be needed in a future study. As we used only
monochromatic red LED panel in this study, future studies
will also focus on other light quality treatments (e.g., blue and
mixture of red and blue).

Our study highlighted metabolic shifts in the carbohydrate
metabolism and in several key pathways that may contribute
to early fruit development under HL condition (Figures 2–4).
A wide range of plant metabolic responses to various stresses has
been studied by metabolomic- and transcriptomic approaches
(Shulaev et al., 2008; Urano et al., 2010; Obata and Fernie,
2012; Nakabayashi and Saito, 2015; Noctor et al., 2015). While
plants need light for photosynthesis and their healthy growth,
it can damage plant cells; strong light irradiance is an abiotic
stress factor. Genome-wide analyses can be used to characterize
plant stress responses to high (excess) light stress and it can
contribute to enhancing our understanding of stress-signaling
pathways and the central metabolism including glycolysis, the
TCA cycle, and photorespiratory pathways (Obata and Fernie,
2012). Besides identifying HL stress-responsive metabolites like
sucrose, inositol, and GABA in tomato leaves, we found that
HL stress (both P1000 and P500) led to dramatic decreases in
aromatic amino acids in fruits at the early developmental stage
(Table 1 and Supplementary Table S1). We also showed that the
expression patterns associated with light reactions, the secondary
metabolism, and cell-wall biosynthesis exhibited inverse changes
when we compared fruit- and leaf samples (Figure 5). The
coordinated expressions associated with light reactions indicate
functional photosynthesis in immature green fruit of tomato
plants, which is consistent with early reports (Piechulla et al.,

1987; Wanner and Gruissem, 1991; Schaffer and Petreikov, 1997;
Alba et al., 2004; Kahlau and Bock, 2008; Lytovchenko et al.,
2011). In fruits, down-regulated genes were involved in cell
wall degradation. For example, there were down-regulated genes
encoding a polygalacturonase and a pectate lyase. Both genes are
known to be up-regulated and their activities become dominant
during tomato fruit ripening (Cheng and Huber, 1997). In leaves,
the coordinated expressions involved in phenylpropanoid- and
flavonoid biosynthesis included up-regulated genes encoding
chalcone synthase (CHS) and dihydroflavonol 4-reductase
(DFR). This implies that the both early flavonoid biosynthetic
pathway- and the more anthocyanin-specific genes response to
mitigate high light stress (Wulff-Zottele et al., 2010; Caldana et al.,
2011; Kusano et al., 2011b).

We observed positive correlation relationships of 2-
oxoglutarate between fruit and leaf samples (Figure 6).
Recent works based on metabolite flux analysis and metabolic
network models demonstrated that metabolite provision
via TCA cycle has been operated in response to demand
of physiological status in the cell (Sweetlove et al., 2010).
Among the intermediates in TCA cycle, 2-oxoglutarate is a key
compound relating to carbon-nitrogen metabolism (Hodges,
2002; Foyer et al., 2011; Araujo et al., 2014). Antisense of
2-oxoglutarate dehydrogenase complex, involving in enzyme
reaction of 2-oxoglutarate as a substrate, exhibited reduction
of tomato fruit biomass (Araujo et al., 2012). After inhibiting
2-oxoglutarate dehydrogenase complex in potato tuber, there
was the significant decrease in the level of 2-oxoglutarate,
while fumarate level was unchanged (Araujo et al., 2008).
These observations imply that at least 2-oxoglutalate level
and biomass of reproductive/storage organs are likely to be
positively coordinated in Solanaceae such as tomato and
potato.

FIGURE 6 | Metabolites that were significantly correlated between fruit- and leaf samples across the examined time points. Circles represent the mean level of
metabolites obtained at each time point for plants exposed to different light intensities.
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FIGURE 7 | Schematic summary of the metabolic and transcriptional responses to high light treatment in ‘trimmed tomatoes’ grown under artificial light. Transcript
profiling performed with microarrays and RNA-Seq showed that the expression patterns involved in light reactions, the secondary metabolism, and in cell-wall
biosynthesis exhibited changes that tended to be inverse between fruit- and leaf samples. Metabolite profiling revealed that sugars and some organic acids, citrate,
aconitate, and malate increased along the developmental stages in fruits. Amino acids like Gln, Val, Leu, Ile, and beta-alanine were abundant in fruits and tended to
increase in the course of fruit development.

Attention has long been focused on striking shifts in cell-wall
composition and pigments (Rose et al., 2004), the strict control
of climacteric fruit ripening by phytohormones (Alba et al., 2005;
Barry et al., 2005), source-sink regulation (Do et al., 2010), and
the physiological transition during the parallel differentiation
of photosynthetically active chloroplasts into chromoplasts, (for
example, see Klee and Giovannoni, 2011; Pesaresi et al., 2014)
that occur during development and ripening of tomato plants.
Comprehensive molecular phenotyping using transcript and
metabolite profiling showed that Aux/IAA and ARF genes play
an important role in triggering the fruit set program (Wang
et al., 2005; Rohrmann et al., 2011). Critical aspects of metabolic
regulatory mechanisms, especially the central metabolism that
controls fruit development in tomato plants, have been studied
(Carrari et al., 2006; Osorio et al., 2011). Steinhauser et al. (2010)

used a near-isogenic line population derived from a cross
between S. lycopersicum ‘M82’ and S. pennellii to compare
changes in the enzyme activity levels that can affect the plant
metabolism during fruit development. The studies stressed that
the plant metabolism and source-sink interaction can be strongly
affected by genetic and environmental perturbations and their
interactions.

Broad metabolite profiling that combines the use of multiple
analytical platforms and our proposed system is required for
assessing the plant secondary or specialized metabolism because,
in response to artificial LED, changes in the protectants,
antioxidants, and other pigments/nutrients like lycopene are
largely unclear. A significant difference between our- and
earlier studies is the use of LEDs to inspect and capture
the precise responses to HL treatment of tomato leaves and
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fruits. Specific wavelengths and bandwidths generated by our
red LEDs yield the specific red spectrum more efficiently
than red filters combined with other light sources and elicit
specific plant growth. The light spectrum strongly affects plant
growth and development (Goto, 2003; Darko et al., 2014;
Kitazaki et al., 2018) and the blue light spectrum near UV
may increase the level of polyphenols such as anthocyanin as
protectants and/or antioxidants (Seyoum et al., 2006). Massa
(2008) suggested that certain light wavelengths may help to
protect plants from attacks by insects and pathogens that elicit
plant diseases.

Finally, under strictly controlled systems and LEDs,
tomato plants exhibited system-level dynamic behaviors in
the metabolism (Figure 7). This was a precise plant response
to the supplemental light source, i.e., red LED light, we used,
and yielded new insights that differed from findings made
when conventional filters were applied to broad-spectrum
light. Our approaches avoid direct, unwanted large-scale effects
resulting from unstable greenhouse conditions and different
light intensities. Our strategy helps to deepen our understanding
of systems-level responses during the growth of tomato fruit
and provides fundamental resources for further studies to
investigate the molecular basis of the high plasticity of the plant
metabolism.
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FIGURE S1 | Simplified source-sink model and overall experimental design. (A)
Schematic representation of red LED lighting in this study, named “simplified
source-sink model.” We removed all the leaves and trusses except for the flowers
of the second truss, the leaf just below the second truss, and the apical portions
of the main shoot at the anthesis stage of the second truss. (B) Tomato plant
cultivation with our systems under three types of light intensities (P200, P500, and
P1000).

FIGURE S2 | Fruit weight and leaf area under LED light irradiation in Solanum
lycopersicum L., ‘Reiyo’ – a whole plant. (A) Fruit weight comparison along
developmental stages under normal light condition (average PPF 500, metal halide
lamp as ‘Control’) without supplemental LED lighting. Biological replicates, n = 3.
(B) Measurement of fruit weight and leaf area under LED lighting (PPF 1000, red
LED) at 14 days. A whole plant and a red LED panel were set in a semi-closed
assimilation chamber. The leaf just below the second truss was irradiated by LED.
The bar graph indicates mean and standard deviation. Biological replicates, n = 6.
WAA, week after anthesis.

FIGURE S3 | Tomato plants and leaf morphology on exposure to different light
intensities of red LED at 2 WAA. (A) Leaf and fruit growth of tomato plants. (B)
Leaf morphology. Few stress signs in the leaf were visible under P200 condition.
The leaves indicated stress signs and accompanying disorders after P500 and
P1000 high light treatments. Scale bars represent 10 cm.

FIGURE S4 | Fruit size and shape variation under different light intensities in
Solanum lycopersicum L., ‘Reiyo’ using “simplified source-sink model.”
Measurement of fruit sizes (A) and leaf area (B). WAA, week after anthesis. The
bar graph indicates mean and standard deviation. Biological replicates, n = 1–6 for
fruits and n = 3–6 for leaves.

FIGURE S5 | Fruit size under different light intensities in Solanum lycopersicum L.,
‘Moneymaker’ using “simplified source-sink model.” Measurement of fruit fresh
weight (A) and dry weight (B). Three fruits per plant/treatment. We used a box
and whisker plot, a graphical summary of a distribution. This plot can visualize the
minimum, lower and upper quartiles (25% and 75%), median, and maximum of
data. Regarding extreme values, outliers may be displayed as open circles.
Biological replicates, n = 3.

FIGURE S6 | Experimental design for metabolite profiling. WAA, weeks after
anthesis.

FIGURE S7 | Experimental design for RNA-Seq analysis. WAA, weeks after
anthesis.
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FIGURE S8 | Experimental design for microarray analysis. See in details,
(Fukushima et al., 2012). WAA, weeks after anthesis.

FIGURE S9 | (A,B) Statistics for sequenced short reads and mapping results of
Illumina-based RNA-Seq. WAA, weeks after anthesis.

FIGURE S10 | Overview of transcript profile based on Illumina-based RNA-Seq.
The RNA-Seq data from leaf-samples (1 WAA) was described using MAPMAN
software (http://mapman.gabipd.org/web/guest/mapman) (Thimm et al., 2004;
Usadel et al., 2005). The fold change is visualized by pseudo-color: red,
up-regulated by P1000 treatment; blue, down-regulated by P1000 treatment.
The results show that expression patterns involved in light reactions, secondary
metabolism, and the biosynthesis of cell wall exhibit opposite alteration tendency
between fruit- and leaf samples (green rectangles). WAA, weeks after anthesis.

TABLE S1 | Fruit developmental stages used for the study.

TABLE S2 | Reporting metabolite data by GC-TOF-MS in this study.
(A) Metabolite reporting checklist. (B) Summary of values for detected
metabolites. This table is based on reporting suggestions (Fernie et al., 2011).

Significantly changed metabolites, processed data matrix, and sample information
are as follows. (C) Tomato fruits. Metabolite responses during the developmental
stages. (D) Leaves. Metabolite responses to high light treatment. (E) Tomato
fruits. Metabolite responses during the developmental stages. (F) Leaves.
Metabolite responses during the developmental stages. (G) Summary of
metabolome data matrix, and statistical data analysis. (H) Sample information.

TABLE S3 | Summarized transcriptome data matrix and significantly changed
transcripts obtained by microarrays. FC, fold change; FDR, false discovery
rate.

TABLE S4 | Summarized transcriptome data matrix and significantly changed
transcripts obtained by RNA-Seq. FC, fold change; FDR, false discovery rate.

TABLE S5 | Results of enrichment analysis. The top five gene ontology (GO) terms
(full) that were significantly enriched (hypergeometric test with Benjamini and
Hochberg FDR correction, FDR < 0.05) among differentially expressed genes
(DEGs) whose expression differed significantly in response to HL (LIMMA,
FDR < 0.05 and |log2FC| ≥ 1) based on microarray (A) and RNA-Seq (B)
analysis. FDR, false discovery rate; NS, not significant.
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