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Understanding the mechanisms that determine plant distribution range is crucial for
predicting climate-driven range shifts. Compared to altitudinal gradients, less attention
has been paid to the mechanisms that determine latitudinal range limit. To test whether
intrinsic resource limitation contributes to latitudinal range limits of woody species, we
investigated the latitudinal variation in non-structural carbohydrates (NSC; i.e., total
soluble sugar plus starch) and nutrients (nitrogen and phosphorus) in mature and juvenile
Chinese cork oak (Quercus variabilis Blume) along a 1500 km north-south transect in
China. During the growing season and dormant season, leaves, branches, and fine
roots were collected from both mature and juvenile oaks in seven sites along the
transect. Tissue concentration of NSCs, N, and P did not decrease with increasing
latitude irrespective of sampling season and ontogenetic stage. Furthermore, higher
levels of NSCs and N in tissues of juveniles relative to mature trees were found during
the dormant season. Partial correlation analysis also revealed that during the dormant
season, soluble sugar, NSC, the ratio of soluble sugar to starch, and tissue nitrogen
concentration were correlated positively with latitude but negatively with precipitation
and mean temperature of dormant season. Our results suggest that carbon or nutrient
availability may not be the driving factors of the latitudinal range limit of the studied
species. Further studies should be carried out at the community or ecosystem level
with multiple species to additionally test the roles of factors such as regeneration,
competition, and disturbance in determining a species’ northern distribution
limit.
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INTRODUCTION

In the context of climate change, altitudinal and latitudinal
gradients can be used as natural laboratories to deduce species’
responses to global warming (Körner, 2007; De Frenne et al.,
2013). Nowadays, northward and upward shift of species
distribution has been observed in a wide range of studies (Kelly
and Goulden, 2008; Chen et al., 2011; Boisvert-Marsh et al.,
2014; Desprez et al., 2014; Rinas et al., 2017; Sittaro et al., 2017),
but the underlying physiological mechanisms are under debate.
Therefore, we may use geographical gradients to explore the
mechanisms for species’ distribution under current conditions,
and thus to understand and forecast the responses of species’
distribution to predicted climate change.

Compared to a few eco-physiological evidences for the
formation of a species’ northernmost distribution, altitudinal
tree-line formation has attracted lots of studies during the last
several decades, and several important hypotheses have been
proposed (Li and Krauchi, 2005). Notably, two mutually exclusive
hypotheses: the Carbon Limitation Hypothesis (CLH) (Stevens
and Fox, 1991) and the Growth Limitation Hypothesis (GLH)
(Körner, 1998; Hoch and Körner, 2003), have been extensively
tested, as they both have the potential to be applied worldwide
(Körner, 1998) due to intrinsic response or adaptation strategies
of plants to a variety of environmental factors at the alpine
tree-line. Non-structural carbohydrates (NSC, sum of starch and
total soluble sugars) and nutrients (nitrogen or phosphorus)
of plant tissues were generally used to evaluate the carbon or
nutrient status along altitudinal gradients to test the hypotheses
mentioned above (Hoch and Körner, 2003, 2012; Li et al., 2008a;
Sullivan et al., 2014; Fajardo and Piper, 2017). NSC, formed
during photosynthesis, could act as substrate for respiration to
provide the energy needed for growth and maintenance processes
(Körner, 2003); and the level of its two main components, soluble
sugars and starch, could reflect the balance between carbon gain
and carbon utilization and loss within a plant, representing a
tree’s capital for growth and acting as a buffer during insufficient
source activities due to environmental stress (Li et al., 2002;
O’Brien et al., 2014). Meanwhile, nitrogen and phosphorus are
the two most limiting elements to terrestrial vegetation (Reich
and Oleksyn, 2004), which are not only directly related to carbon
assimilation and allocation but also indirectly to stress tolerance
or resistance (DeHayes et al., 1989; Villagra et al., 2013; Yan et al.,
2016). However, at a single species level, whether the factors in
determining the latitudinal distribution range are also associated
with carbon and nutrient status still remain unclear.

Apart from the vital roles of carbon and nutrients to support
plant survival and growth, ontogenetic variations in responses
to environment variability or stress have gained more attention
(Niinemets, 2010; le Roux et al., 2013; Klockmann et al., 2017).
To date, numerous studies have already reported ontogenetic
variations in carbon assimilation and allocation (Portsmuth
et al., 2005; Steppe et al., 2011), resource use strategies (Gedroc
et al., 1996; Rivas-Ubach et al., 2012), and stress tolerances
(Cavender-Bares and Bazzaz, 2000; Niinemets, 2010). Compared
to adult trees, however, less attention has been paid to early life
stages (e.g., seedlings or saplings), which are more sensitive to

environmental changes or stresses (Niinemets, 2010). Although
adult trees may persist over hundreds of years, if seedlings or
saplings fail to keep pace with the rate of rising temperature
or climate change (Zhu et al., 2012; Bell et al., 2014; Máliš
et al., 2016), in the long-term the distribution range of a species
will shrink. Hence, to predict the responses of tree species
to climate change, disentangling ontogenetic variations along
environmental gradients is indispensable for a more profound
understanding of adaptation strategies among different life
stages, as well as for a better understanding of the mechanisms
in determining the latitudinal range.

The Chinese cork oak (Quercus variabilis Blume) is one of the
most widely distributed tree species in eastern Asia, stretching
from approximately 24◦ to 40◦N and 97◦ to 140◦E (Chen et al.,
2012). The different regions where the species is present differ
greatly in terms of climatic and edaphic conditions, providing
an ideal situation for studying the spatial patterns of carbon or
nutrient allocation within a single widespread species. In the
present study, leaves, branches, and fine roots in healthy juvenile
and mature trees in seven sites along a designed 1500 km north-
south transect in China, were collected and analyzed. Our aims
were to answer the questions of (1) how the carbon or nutrient
status vary along the south-north transect; and (2) whether there
is a consistent difference in NSCs and nutrients between juvenile
and mature trees across latitudes. Our results will contribute
toward understanding and predicting the impacts of climate
change on the range dynamics of woody plants along latitudinal
gradients.

MATERIALS AND METHODS

Sampling Protocol
A south-north transect covering 14 latitudinal degrees (∼26◦–
40◦N) (c.1500 km) was setup in the natural distribution range
of Q. variabilis in China, and seven sites were designed along
the transect with a latitudinal interval of ∼2◦ (Figure 1 and
Supplementary Table S1). Using the geographical location-based
method by Gong and Jian (1983), we calculated the phenological
date for each site (Supplementary Table S1), so that we collected
samples at the same phenological stage across the seven sites to
avoid effects of plant phenological variation or bias on carbon or
nutrient status (Bansal and Germino, 2009; Bazot et al., 2013).
The sampling tasks were conducted on two age classes (juvenile
and mature) of natural stands during the mid-growing season
(August, 2014) and the dormant season (Dec, 2014). At each site,
three 50 m × 50 m temporal plots (n = 3), with a minimum
distance of 10 km from each other, were set up. Within each plot,
three to four canopy trees of the same age class, without browsing
and other damages, were selected. The sampling processes were
identical for the two sampling seasons. From each sample tree,
three to four upper and outer-most sun-exposed branches were
cut to collect the leaves (only for growing season) and branches
(1-2a). Fine roots (<5 mm in diameter) attached to coarse roots
of each sample tree were manually excavated using a mini-spade
and carefully collected. All samples were stored in a cool box
until they were taken to the laboratory. The same tissue from
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FIGURE 1 | Distribution of the sampling sites of Quercus variabilis in China (PG: Pinggu, Beijing; LC: Lincheng, Hebei; JY: Jiyuan, Henan; NX: Neixiang, Henan; ZG:
Zigui, Hubei; CL: Cili, Hunan; and CB: Chengbu, Hunan).

individuals in the same age class collected from the same site
was pooled as one mixed sample. All samples were heated in a
microwave oven at 600 W for 60 s, and then dried at 65◦C for
72 h and ground to pass a 0.20 mm sieve for further analyses.

Biochemical Analysis
Total Soluble Sugars and Starch
The powdered material (∼0.10 g) was put into a 10 ml centrifuge
tube, and 5 ml of 80% ethanol was added. The mixture was
incubated at 80◦C in a water bath shaker for 30 min, and then
centrifuged at 4000 rpm for 5 min. The pellets were extracted
two more times with 80% ethanol. Supernatants were retained,
combined, and stored at −20◦C for soluble sugar determinations.
The ethanol-insoluble pellet was used for starch extraction.
Glucose was used as a standard. Soluble sugars were determined
using the anthrone method (Seifter et al., 1950). The starch
concentration was measured spectrophotometrically at 620 nm
using anthrone reagent, and was calculated by multiplying the
glucose concentrations by the conversion factor of 0.9 (Osaki
et al., 1991). The concentration of soluble sugars and starch was
described on a dry matter basis (mg g−1 DW).

Total Nitrogen and Phosphorus
For the determination of tissues’ nitrogen (N) and phosphorus
(P) concentrations (mg g−1 DW), finely ground material
(∼50 mg) was first digested with H2SO4 and then H2O2 for
further analysis. The nitrogen concentration was then measured
using the Kjeldahl method (Kjeltec 2200, FOSS, Sweden),

while the phosphorus concentration was determined with the
molybdenum blue spectrophotometric procedure (6505 UV
spectrophotometer, United Kingdom) (Page, 1982).

Environmental Data
The monthly climatic data (2014) were interpolated with the
kriging method (Matheron, 1963) from 675 national weather
stations around China (download from1) using GIS software
(ArcGIS v10.0, Esri, United States). The soil data was obtained
from the gridded Global Soil dataset (30 arc-second resolution)
which was developed by Shangguan et al. (2014)2. The special
values of each sampled plot were then extracted according to the
geolocation information (latitude and longitude) of the plot. The
climatic variables, monthly mean temperature (◦C) and monthly
mean precipitation (mm), were divided into two parts as one
for the growing season (April to September; represented as gT
mean and gPPT) and another for the dormant season (October
to December; denoted as dT mean and dPPT). The soil variables,
on the other hand, included total nitrogen (SN, %) and total
phosphorus (SP, %) for each plot.

Statistical Analyses
All statistical analyses were conducted using R statistical software
(RStudio version 1.0.1433). Shapiro-Wilk and Bartlett’s tests

1http://data.cma.cn
2http://globalchange.bnu.edu.cn
3http://www.rstudio.com/
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were used to test for normality and homogeneity of variances,
respectively, and it was found that all data met the assumption
for further variance analysis. We utilized a linear mixed effects
model with tree age (juvenile and mature trees), sampling site
(latitudinal gradient), and season (growing season: Aug; and
dormant season: December) as fixed effects and individuals as
a random effect (R package ‘lme4’). The response variables
included soluble sugar, starch, NSC, nitrogen, and phosphorus in
the current-year leaves, branches, and fine roots. The mean and
standard error were given if necessary. For both the sampling
seasons, a partial pairwise correlation analysis was performed
to explore the correlations between the response variables with
the environmental factors (e.g., climate or soil), where bio-
factors (tree age and tree tissue) were treated as covariant (R
package ‘psych’). The contributions of all the environmental
and biological factors to variations of responsible variables were
performed by the redundancy analysis (RDA). The variation
partitioning was achieved by means of partial redundancy
analysis (pRDA) to extract the pure effect of environment factors
and the pure effect of bio-factors (R package ‘vegan’).

RESULTS

Non-structural Carbohydrate and Its
Components
The tree age significantly affected leaf soluble sugars and leaf
NSC concentration, as well as branch starch, but did not impact
root NSCs (Table 1). The sampling season and the interaction
between sampling season and tree age significantly influenced
the NSCs in the branches and fine roots (Table 1). For instance,
root NSC in both juveniles and mature trees was significantly
higher in December than in August (p < 0.001) (Supplementary
Figure S1). However, during the growing season, root NSC in
juveniles (30.34 ± 1.46 mg g−1) was significantly lower than
that in mature trees (42.79 ± 3.06 mg g−1, p < 0.05), whereas
it showed an opposite result (80.61 ± 4.79 mg g−1 for juveniles
and 60.52 ± 2.94 mg g−1 for mature trees, p < 0.001) during the
dormant season. On the other hand, the NSCs including the ratio
of soluble sugars to starch varied strongly with latitude and tissue
type (Figure 2 and Supplementary Figures S2–S4). The results
from simple linear models indicated that the NSC of various
tissues for both life stages did not show any decreasing trend with
increasing latitude (Figure 2). Inversely, the NSC in the branches
and roots of juveniles significantly or marginally significantly
increased with the increasing latitude for both sampling seasons
(Figure 2).

Nitrogen, Phosphorus Concentrations
and Their Ratios
The tree age had significant impacts on N, P, and N:P ratio of the
studied tissues with exception of leaf N and branch N (Table 1
and Supplementary Figure S5). Mature trees generally had
higher P concentration across tissues than juveniles, especially
during the dormant season (Supplementary Figure S5). During
the growing season, the N, P, and N:P ratio in the leaves of

mature trees were 18.93 ± 0.32 mg g−1, 1.63 ± 0.18 mg g−1, and
14.27 ± 1.48, respectively, whereas, the corresponding values for
juveniles were 18.54 ± 0.36 mg g−1, 1.13 ± 0.07 mg g−1, and
17.71 ± 1.08, respectively (Supplementary Figure S5). The P and
N:P ratio in various tissues were interactively affected by tree age
and latitude (Table 1), and N:P ratio in the leaves and roots of
mature trees during the growing season increased significantly
with latitude (Supplementary Figure S6). The tissues’ N varied
significantly with latitude (Table 1 and Figure 3), while root N
of both life stages increased with increasing latitude for both
sampling seasons with the exception of mature trees’ roots in the
dormant season (Figure 3).

Correlation Between Non-carbohydrates,
Nutrients, and Environmental Factors
The season transition strongly affected the intensity of
correlations between dependent variables with environmental
variables (Figures 4, 5). During the growing season, tissues’ NSC
and N have no significant correlations with the environmental
factors, e.g., geographical, soil, or climatic variables (Figure 4A).
The ratios of soluble sugar to starch were negatively correlated
with precipitation of growing season. The ratios of N to P
were positively correlated with latitude and longitude but
negatively correlated with elevation, soil N, precipitation, and
mean temperature of growing season (Figure 4A). The partial
RDA revealed that only a total of 26.2% variations of dependent
variables were jointly explained by environmental factors
(17.5%) and bio-factors (8.3%) (Supplementary Figure S7A).
Nevertheless, during the dormant season, soluble sugar, NSC,
the ratio of soluble sugar to starch and tissue nitrogen were
correlated positively with latitude and longitude but negatively
with elevation, soil N, soil P, precipitation, and mean temperature
of dormant season (Figure 4B). A total of 48.2% variations of
dependent variables were jointly explained by environmental
(27.5%) and bio-factors (20.6%) (Supplementary Figure S7B).

DISCUSSION

The present study showed that NSCs (total soluble sugars,
starch, and NSC) in woody tissues (branches and fine roots)
of both life stages had higher concentrations in the dormant
season than in the growing season along the latitudinal gradient
(Supplementary Figure S1). Our results were consistent with
Martínez-Vilalta et al. (2016) who complied data from 121
studies including 177 species under natural conditions and found
that NSCs varied seasonally, with a general increase during
winter months. Compared to evergreen species, deciduous trees
generally stored more NSC in the tissues (e.g., stem or root) to
withstand low temperature in the coming winter and to support
bud-break and shoot growth in the early spring (Klein et al.,
2016). On the other hand, higher level of NSC in reserved
tissues during the dormant season may attribute to lower level
of growth and maintenance respiration due to low temperature
in the winter, with more starch broken down into soluble sugars
to promote cold tolerance by adjusting the intracellular osmotic
concentration (Morin et al., 2007), as shown by an increase in the
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FIGURE 2 | The non-structural carbohydrate concentrations (mg/g) (mean ± se, n = 3) across life stages (juveniles vs. mature), tissues (leaf, branch, and fine root),
and sampling seasons (growing season: Aug, 2014; and dormant season: Dec, 2014) along the latitudinal gradient. For each subplot, blue color denotes mature
individuals and red denotes juveniles; fitted curves, determinant coefficients, and p-values of simple linear regression are given.

sugar-starch ratios in juvenile roots in our study (Supplementary
Figure S4). Juveniles’ roots had lower NSC concentration in
the growing season but higher NSC concentration in the
dormant season than that of mature individuals, especially for
north populations (Figure 2), indicating that juveniles are more
sensitive to seasonal transition than mature trees. This further

suggests that juveniles may use a strategy to invest more NSC into
fast growth (thus leading to lower level of NSC in juveniles than
in mature trees during the growing season) to get a competitive
advantage with relatively larger body size in a community.
During the dormant season, juveniles generally had a higher
level of NSC to cope with low temperature because of their
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FIGURE 3 | The total nitrogen and phosphorus concentrations (mg/g) (mean ± se, n = 3) across life stages (juveniles vs. mature), tissues (leaf, branch, and fine root),
and sampling seasons (growing season: Aug, 2014; and dormant season: Dec, 2014) along the latitudinal gradient. For each subplot, blue color denotes mature
individuals and red denotes juveniles; fitted curves, determinant coefficients, and p-values of simple linear regression are given.

FIGURE 4 | Partial correlation analysis for dependent variables (soluble sugar, starch, NSC, ratio of sugar to starch, N, P, and ratio of N to P) and environmental
factors (latitude, longitude, elevation, soil N, soil P, precipitation, and monthly mean temperature) where tree age and tree tissue were regarded as control factors
[(A): growing season; (B): dormant season]. Significantly positive or negative correlations (p < 0.05) are displayed in blue and in red color, respectively; and color
intensity and circle size are proportional to the correlation coefficients.
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FIGURE 5 | Results of redundancy analysis [(A): growing season; (B): dormant season] showing samples (mature tree: dark blue points; juvenile tree: red square),
responsive variables (black triangle), and affecting factors (blue arrow).

relatively younger tissue and smaller body size (i.e., smaller
carbon pool size) (Bansal and Germino, 2009, 2010). On the
other hand, Li et al. (2008b) proposed that trees growing at the
elevational or the latitudinal climate limit rely not only on the
total NSC concentration but also require a sufficiently high sugar-
starch ratio to overwinter successfully. Our results support this
view, as both life stages maintained comparable high ratio of
soluble sugars to starch in the dormant season (Supplementary
Figure S1).

Although there exists considerable disparities between
altitudinal and latitudinal gradients (Jump et al., 2009), both
gradients are mainly dominated by temperature. In this regard,
the altitudinal tree-line hypotheses (e.g., GLH and CLH) present
important reference values to deduce the driven mechanism
for latitudinal range. In the present study, we found that tissue
NSC did not exhibit decreasing trends for both life stages
along the latitudinal gradient. Nevertheless, NSC in the woody
tissues of juveniles increased significantly with increasing
latitude during both the sampling seasons, suggesting that
carbon limitation cannot act as a determinant driver to north
latitudinal range of the species studied. This result fails to
support the CLH along latitudinal gradients. Li et al. (2016)
also observed weekly increasing latitudinal trends of leaf NSCs
from tropical to cold temperate forests at the levels of species
and plant functional groups. Alternatively, other factors, such as
recruitment limitation, rather than NSC at the north edges may
contribute to the oak’s north-latitudinal limit formation. Our
previous study found that the relative densities of seedlings of
the species studied were significantly lower in the northern edge
than in the core populations (Gao et al., 2017).

Apart from the role of carbon status in determining the
range limit, nutrient shortage is another important factor to
elucidate the issue which not only limited carbon assimilation

but also limited tissue development (McNown and Sullivan, 2013;
Sullivan et al., 2014). Ontogenetic variations in tissue P but not in
tissue N were found in this study (Supplementary Figure S5),
where mature trees had higher tissue P concentration than
juveniles, especially during the dormant season, consequently
leading to relatively lower N:P ratio occurring in mature trees.
This result is inconsistent with Noh et al. (2007) who found that
N and P concentrations in tissues of Q. acutissima significantly
decreased with tree age or size. Indeed, plant nutrient demand
and morphological structure (e.g., root morphology), which
vary with ontogeny (Álvarez-Yépiz et al., 2014), may contribute
to the discrepancies mentioned above. For example, mature
trees featured with larger and deeper root system could help
to uptake more available soil P which mainly originates from
rock weathering, while available soil N mostly comes from
atmospheric deposition in nature ecosystems (Verhoeven and
Schmitz, 1991; Güsewell, 2004).

Leaf nutrient concentrations were generally closely correlated
with soil available nutrients (Koerselman and Meuleman, 1996;
Tessier and Raynal, 2003; Ordoñez et al., 2009; Wang et al.,
2017). The mean value of the leaf N:P ratio in the present study
was 14.3 ± 1.48 for mature trees and 17.7 ± 1.08 for juveniles
for the growing season (Supplementary Figure S5), which may
indicate that the juveniles are slightly limited by P according
to the threshold for P-limitation established by Koerselman and
Meuleman (1996), but this case is still not limited by P availability
according to the relaxed threshold suggested by Güsewell (2004).
Sun et al. (2015) found that the mean N, P concentration and
the N:P ratio of Chinese cork oak leaves were 19.00 ± 0.26 mg
g−1, 1.03 ± 0.03 mg g−1, and 20.48 ± 0.63, respectively, across
the distribution range of that species in China. Hence, leaf N:P
ratio in the present study was lower than that of Sun et al. (2015)
but similar to that of Wu et al. (2012) (16.56 for Q. variabilis).

Frontiers in Plant Science | www.frontiersin.org 8 October 2018 | Volume 9 | Article 1444

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01444 October 16, 2018 Time: 16:44 # 9

Liu et al. Intrinsic Resource Along Latitudinal Gradient

In line with our results of P concentration (1.13 ± 0.07 mg
g−1 for juvenile, 1.63 ± 0.18 mg g−1 for mature), Han et al.
(2005) pointed out that low leaf P across China’s flora, compared
to the global average revealed by Reich and Oleksyn (2004)
(P: 1.77 mg g−1), is a result of low soil P content in China.
On the other hand, we found that the N:P ratio in leaves and
roots of mature trees increased with latitude (Supplementary
Figure S6), which is a result of increased tissue N accompanied by
relatively stable P concentration across latitudes. A higher leaf N
concentration in plants in colder habitats is generally considered
as an adaptation mechanism that enhances the metabolic activity
and growth rates under low temperatures or short growing season
(Reich and Oleksyn, 2004; Soolanayakanahally et al., 2009; El
Zein et al., 2011). Fajardo and Piper (2017) also found that
nutrient limitation is not likely to be involved in the carbon
limitations and could not be an explanation for altitudinal tree-
line formation. Our recent field investigation found that the
Chinese cork oak showed increasing annual basal increment with
increasing latitude from south to north (Gao et al., 2018). We
therefore speculate that higher availability of resources (e.g., NSC,
N, and P) found in northern populations supports higher growth
rate, which in turn decreases the resource storage and remains the
resource availability at a stable level.

The fact that more pronounced negative correlations between
resource storage and climatic variables (e.g., mean temperature)
were found in the dormant season (Figure 4B) implies that
the projected climate warming could alter trajectories in plant
resource allocation into growth and regeneration (De Frenne
et al., 2012; Lapenis et al., 2013; Carón et al., 2015), especially as
the climate warming in China is predicted to be strongest during
the winter months (Ge et al., 2013). This in turn may result in
distribution range shift. The results presented here are based on
one species with two sampling dates, and should be supplemented
by further studies carried out at the community or ecosystem
level with multiple species and spanning multiple years, to
take into account species-specific responses to environmental
variations (Drobyshev et al., 2013; Boisvert-Marsh et al., 2014)
as well as their inter-annual fluctuations (Scartazza et al., 2013).
Meanwhile, the other factors such as recruitment potential
(Graignic et al., 2014), competitive interaction (Ettinger and
HilleRisLambers, 2013; Liang et al., 2016), and disturbance
(Slaton, 2015; Renwick et al., 2016) had been found to affect
distribution range, which should be considered in further
exploring the mechanism determining tree species’ northern
distribution range other than resource availability.

CONCLUSION

In the present study, from the perspective of carbon and
nutrient allocation strategy, a whole-tree approach integrating
with two distinct life stages was used to explore the mechanisms
that determine tree latitudinal range limit, with a case study
of Chinese cork oak. Our results indicate that tissue NSCs
(soluble sugar, starch and sum of soluble sugar and starch,
NSC) and nutrient concentrations (nitrogen and phosphorus) in
both mature and juvenile trees did not decrease with increasing
latitude across seasons, and even root nitrogen and root NSC
in the juvenile trees increased with latitude. Our results suggest
that available carbon, N, and P may not be the determinant
factors driving the latitudinal range limit of the species studied.
These findings will greatly improve our understanding of the
mechanism involved in determining the latitudinal range limit,
and help to understand and predict the dynamics of the northern
range under global warming.
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