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Although positive effects on growth and reproduction of Antarctic vascular plants have
been reported under warmer temperatures, it could also increase the vulnerability of
these plants to freezing. Thus, we assessed in situ whether warming decreases the
freezing resistance of Colobanthus quitensis and Deschampsia antarctica, and we
compared the level and mechanism of freezing resistance of these species in the field
with previous reports conducted in lab conditions. We assessed the freezing resistance
of C. quitensis and D. antarctica by determining their low temperature damage (LT50),
ice nucleation temperature (NT) and freezing point (FP) in three sites of the King George
Island. Plants were exposed during two growing seasons to a passive increase in
the air temperature (+W). +W increased by 1K the mean air temperatures, but had
smaller effects on freezing temperatures. Leaf temperature of both species was on
average 1.7K warmer inside +W. Overall, warming decreased the freezing resistance
of Antarctic species. The LT50 increased on average 2K for C. quitensis and 2.8K
for D. antarctica. In contrast, NT and FP decreased on average c. 1K in leaves of
warmed plants of both species. Our results showed an averaged LT50 of −15.3◦C
for C. quitensis, and of −22.8◦C for D. antarctica, with freezing tolerance being the
freezing resistance mechanism for both species. These results were partially consistent
with previous reports, and likely explanations for such discrepancies were related with
methodological differences among studies. Our work is the first study reporting the level
and mechanisms of freezing resistance of Antarctic vascular plants measured in situ, and
we demonstrated that although both plant species exhibited a great ability to cope with
freezing temperatures during the growing season, their vulnerability to suffer freezing
damage under a warming scenario increase although the magnitude of this response
varied across sites and species. Hence, freezing damage should be considered when
predicting changes in plant responses of C. quitensis and D. antarctica under future
climate conditions of the Antarctic Peninsula.

Keywords: Antarctica, climate change, Colobanthus quitensis, Deschampsia antarctica, freezing events, LT50,
photoinactivation, warming
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INTRODUCTION

Antarctica is the coldest and windiest landmass on Earth
(Robinson et al., 2003). Mean air temperatures in the coastal
zone of the Antarctic Peninsula and adjacent islands (also called
Maritime Antarctica) seldom exceed 0 or +5◦C during the
summer (Smith, 2003), with daily temperature ranges from
−10 to +15◦C for the same period (Convey, 2013). Thus,
Antarctic plants are constantly dealing with low temperatures,
even during the growing season (Convey, 1996; Convey et al.,
2014). For this reason, low temperature stress seems to be
part of the explanation for its lower plant species diversity
compared to the Arctic (Convey, 2006). Only two vascular plants
have been able to establish natural populations in the maritime
Antarctica: The pearlwort Colobanthus quitensis (Kunth) Bartl.
(Caryophyllaceae) and the hair grass Deschampsia antarctica
Desv. (Poaceae) (Smith, 2003).

The constant low temperatures that characterize the growing
period in the Maritime Antarctica are likely to be near the
minimum thresholds for many physiological processes. This
suggests that in the context of climate change, small increments
in the temperature experienced by plants in this environment
will have a relatively greater biological impact than the same
increment experienced in a less extreme environment (Convey,
2001, 2006). During the last part of the past century air
temperatures in the Antarctic Peninsula increased at a faster
rate than the rest of Antarctica and the globe (Vaughan
et al., 2003; Turner et al., 2014). This warmer climate caused
longer growing seasons with higher temperatures, ice retreats
and higher frequency of rains, which promoted the expansion
and increase of population sizes and numbers of C. quitensis
and D. antarctica along the Peninsula (Fowbert and Smith,
1994; Gerighausen et al., 2003; Torres-Mellado et al., 2011;
Cannone et al., 2016). Apparently, warmer temperatures favored
plant growth and reproduction by providing more favorable
thermal conditions for different physiological processes (e.g.,
photosynthesis), but also by increasing plant nutrient availability
via stimulation of soil microbial activity in N-cycling (Wasley
et al., 2006; Yergeau et al., 2012). However, these positive
effects of warmer temperatures in Antarctica could be negligible
because warming can decrease plant freezing survival (Inouye,
2000).

The ability to survive freezing temperatures (i.e., freezing
resistance) is highly related to the ambient temperature that
plants experience (Beck et al., 2004; Bannister et al., 2005).
Thus, warmer daytime temperatures due to climate change may
decrease the ability of plant to survive freezing conditions.
This is particularly important for high-latitude and -elevation
plants to resist freezing temperatures, where it has been shown
that warming turned even the most freezing-resistant species
more vulnerable to damage by freezing (Loveys et al., 2006;
Woldendorp et al., 2008; Rixen et al., 2012). For example,
Marchand et al. (2006) reported a reduction of plant performance
(i.e., leaf relative chlorophyll content, maximum efficiency of
photosystem II, stomatal conductance) of four Arctic plant
species after they were exposed to consecutive heat waves.
Apparently, warmer conditions reduced cold acclimation of

plants, resulting in damage after the exposure to the natural
low temperatures of the Arctic. Likewise, Sierra-Almeida and
Cavieres (2010) reported that in situ warmer temperatures
decreased on average 4K the freezing resistance of seven alpine
species of central Chilean Andes. Although Turner et al. (2016)
reported that warming in the Antarctic Peninsula (AP) has
stopped in the last decade; they warned that new warming
episodes are likely to occur in the future. In addition, Lee
et al. (2017) pointed out that the recently paused warming
observed in the AP is a consequence of short-term natural
climate variability and that a new warming phase will be
observed across the AP. Thus, to assess whether warmer
temperatures reduce the ability of Antarctic plants to resist
freezing is crucial to predict their vulnerability to future warming
events.

Chronically low temperatures of the Antarctica suggest
that C. quitensis and D. antarctica are morphological and
physiologically adapted to cope with these stressful conditions.
Overall, plants have two physiological mechanisms of freezing
resistance: avoidance and tolerance. Freezing avoidance (FA)
prevents the ice formation through freezing point depression
or by supercooling, meanwhile freezing tolerance (FT) is
defined as the ability of plants to survive the extracellular
freezing (Larcher, 2003). In the case of Antarctic plants, they
have exhibited freezing avoidance and tolerance mechanisms
(Bravo et al., 2001; Reyes-Bahamonde, 2013). Molecular and
biochemical aspects of the freezing resistance have been studied
in these species, especially in D. antarctica (e.g., Bravo and
Griffith, 2005; Olave-Concha et al., 2005; Piotrowicz-Cieślak
et al., 2005; Bravo et al., 2009; Zúñiga-Feest et al., 2009).
However, studies dealing with the freezing temperature causing
injury to these species are scarce (Bravo et al., 2001; Gianoli
et al., 2004; Chew et al., 2012). Studies with laboratory grown
plants have reported that the freezing resistance of C. quitensis
fluctuates between −14 and −4.8◦C, whilst for D. antarctica
it fluctuates between −26.4 and −12◦C. Discrepancies among
those studies on the level of freezing resistance of Antarctic
plants have been attributed to methodological issues. Particularly,
the time and temperature that plants were maintained under
greenhouse and/or growth chambers before freezing injury
assays varied enormously among them. Therefore, in situ
determinations are required to unveil the real level of freezing
resistance of the Antarctic vascular plants and the mechanisms
involved. In addition, manipulative field experiments are needed
to assess the likely effect of warming in this important
trait.

In this study, we conducted a field experiment in the
King George Island, where we increased the air temperatures
experienced by C. quitensis and D. antarctica during two
growing seasons to assess their in situ vulnerability to freezing
damage under different thermal conditions. Specifically, our
aims were: (1) to assess the in situ level of the freezing
resistance of C. quitensis and D. antarctica and whether
warming decrease this ability (i.e., leaf NT, FP and/or LT50
of warmed plants should occur at higher temperatures than
of unwarmed plants); and (2) to compare the level and
mechanism of freezing resistance of these Antarctic plants
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species in the field with previous reports conducted under lab
conditions.

MATERIALS AND METHODS

Study Area
This study was carried out in the King George Island, South
Shetland Archipelago, nearby the Henryk Arctowski Polish
Station (62◦09′ S, 58◦28′ W). Plants were obtained from three
sites, which differed in soil nutrients, plant cover and relative
abundance of the Antarctic vascular species (Supplementary
Table S1 and Figure 1). Site 1 (62◦ 9′43.33′′S; 58◦27′58.80′′W)
was located near the beach, about 90 m from the coast line
thus receiving sea spray, plant cover is >90% and vegetation is
dominated by D. antarctica. This site receives great inputs of
guano and feces because of the activity of sea birds and mammals
(see Supplementary Table S1 for soil nutrient contents). Site
2 (62◦ 9′49.15′′S; 58◦28′9.60′′W) was located 200 m distant
of the site 1, plant cover is 100% and it is dominated by a
compact and continuous moss carpet where C. quitensis and
D. antarctica are growing interspaced (Cavieres et al., 2018). This
site seems to be favorable for plant growth because of well drained
soils and nutrient availability (Figure 1 and Supplementary
Table S1). Site 3 (62◦ 9′52.90′′S; 58◦28′21.31′′W) is a typical
fellfield located 550 m from the beach and at 30 m a.s.l.
Plant cover is <10%, and the scarce vegetation is dominated
by lichens and only isolated individuals of C. quitensis and
D. antarctica species are present across a stony and rocky soil
matrix (Figure 1).

The growing season in the study area usually starts with
the snowmelt in December and finishes in March with the first
snowfall. During two growing periods we collected microclimatic
data (83 and 55 days for the first and second growing
season, respectively), period ever which the daily mean air
temperature was 1.8◦C, with mean maximum and minimum
temperatures of 4.7 and−0.4◦C, respectively, with night freezing
temperatures occurring frequently during the entire growing
seasons (Table 1). Precipitation occurs as rain in summer, with
estimations that range from 350 to 750 mm (Green et al.,
2007).

Plant Species
Studied species were the pearlwort C. quitensis (Kunth) Bartl.
(Caryophyllaceae) and the hair grass D. antarctica Desv.
(Poaceae). C. quitensis is a long-lived perennial herb. It
forms low, compact, discrete cushions with densely packed
shoots and a log taproot (Greene and Holtom, 1971). Its
geographical distribution comprises from Mexico and from
the Andes mountains of Ecuador down to c. 68◦S in the
Maritime Antarctica (Moore, 1970). Despite its wide latitudinal
distribution, this species inhabits sites with similar conditions,
characterized by sparsely vegetated, sheltered, moist, and well-
drained mineral soils (Smith, 2003). D. antarctica is a long-lived
perennial herb that forms low, caespitose shallow-rooted tufts
(Greene, 1964; Moore, 1979). D. antarctica distributes from
central Chile and Argentina (33◦S) to the Terra Firma Islands

southwestern Antarctic Peninsula (68◦S; Smith and Poncet,
1987). In Antarctica this species colonize habitats ranging from
mineral to organic soils, from well drained to waterlogged areas,
and from nutrient-deficient to highly nutrient-enriched habitats
(Smith, 2003).

Experimental Design
In December 2013, on each site we selected seven plant
individuals of C. quitensis and D. antarctica. On each individual,
we placed a hexagonal Open Top Chamber (thereafter OTC),
similar to those used in the International Tundra Experiment
(ITEX). Each OTC was made with transparent Plexiglass R©walls
of 40 cm height, 115 cm in basal diameter, and reinforced
with aluminum profiles. OTCs walls were punched with 25
holes of 1.5 cm diameter each to allow some wind to pass
through and hence avoid an excessive increase in air temperature.
OTCs were secured to the ground with ropes to avoid being
moved and/or destroyed by the strong winds. Another seven
individuals per species were randomly selected at 2 m distant
from the nearest OTC. These individuals were growing under
natural temperatures conditions. Hence, we obtained two
experimental conditions with 7 replicates each: warmed (+W)
and unwarmed control plants (-W) repeated in three sites. The
spatial arrangement of both OTC and control plots was random,
taking care that distance between OTC is enough to avoid any
possible effects of OTCs on the neighboring control plots by
affecting wind or snow deposition. Although the use of passive
warming systems such as OTC has been controversial (e.g.,
Kennedy, 1995; De Boeck et al., 2012), some authors arguably
consider that OTCs are a reasonable analog of regional warming
for remote areas such as polar habitats (Hollister and Webber,
2000; Bokhorst et al., 2013).

Microclimatic conditions were monitored in warming and
control plots during two growing seasons (Table 1). For this, a
weather station was installed on each site (2 units HOBO R©U-
30 Station, Onset Computer Co., Bourne, MA, United States;
1 Em50 Data Logger, Decagon Devices Inc., Pullman, WA,
United States). Air and soil temperature sensors were placed at
5 cm (n = 1) above and 5 cm below (n = 1) ground surface, and
temperature conditions were recorded every hour. In addition,
leaf temperature was measured for warmed and unwarmed plants
of C. quitensis and D. antarctica. For this, each leaf temperature
sensor was placed beneath a leaf (n = 1) and were connected to the
weather station programmed to record temperature every hour.
Missing leaf temperatures data in site 1 during 2015 were absent
because sensors were destroyed. A similar situation occurred with
air and leaf temperature sensors in site 3 during 2014. Due to
logistic limitations to access the study area, weather stations were
installed and uninstalled in the field for each growing season.
Thus, records of microclimatic conditions in the Table 1 started
in December 10th 2013 and finished in March 8th 2014 for the
first growing season. For the second growing season records
started in January 10th (sites 2 and 3) and 13th (site 1) and
finished in March 4th 2015.

Air temperature data were used to estimate growing degree
days (GDDs; McMaster and Wilhelm, 1997). GDDs were used
as a measure of the accumulated amount of heat (in ◦C)
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FIGURE 1 | Study area in the King George Island (South Shetland Archipelago) where experimental warming was installed. Photographs correspond to (A) Site 1,
nearest the beach; (B) Site 2, and (C) Site 3; (D) showed several individuals of C. quitensis inside an OTC (see Materials and Methods sections for site descriptions
and experimental design).
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TABLE 1 | Thermal conditions of Antarctic plants exposed to experimental warming during two growing seasons in the King George Island, Maritime Antarctica
(Antarctic Peninsula).

Site 1 Site 2 Site 3

Variable −W +W −W +W −W +W

2014 Length of the growing season (days) 77 89 83

Mean air temperature (Tmean, ◦C) 1.3 ± 0.1 2.7 ± 0.1∗ 0.9 ± 0.1 2 ± 0.1∗ − −

Maximum air temperature (Tmax, ◦C) 4.5 ± 0.4 9.1 ± 0.6∗ 3.9 ± 0.3 6.6 ± 0.4∗ − −

Minimum air temperature (Tmin, ◦C) −1 ± 0.2 −0.8 ± 0.2 −1.3 ± 0.2 −0.8 ± 0.2 − −

GDD0 (◦C day−1) 116.6 288.5∗ 115.1 254.5∗ − −

Frequency of freezing events (Ffreq, %) 77 73 80.9 75.3 − −

Intensity of freezing events (Fint, ◦C) −1.7 ± 0.2 −1.6 ± 0.2 −1.9 ± 0.2 −1.5 ± 0.1 − −

Absolute min temperature (◦C) −6.5 −4.9 −6.8 −5.8

Duration of freezing events (Fdur, h) 11.9 ± 0.8 9.9 ± 0.8 17.6 ± 0.8 13.1 ± 0.6∗ − −

Minimum soil temperature (◦C) 3.4 ± 0.2 4.8 ± 0.3∗ 1.7 ± 0.1 2.4 ± 0.1∗ 3.1 ± 0.1 4.3 ± 0.1∗

Leaf temperature of C. quitensis (◦C) 4 ± 0.1 4.9 ± 0.1∗ 2.3 ± 0.1 3.8 ± 0.1∗ − −

Leaf temperature of D. antarctica (◦C) 3.7 ± 0.1 5.3 ± 0.1∗ 2.4 ± 0.1 4.9 ± 0.2∗ − −

2015 Length of the growing season (days) 53 55 55

Mean air temperature (Tmean, ◦C) 2.7 ± 0.1 3.7 ± 0.1 2.1 ± 0.1 2.9 ± 0.1 2.1 ± 0.1 3.1 ± 0.1

Maximum air temperature (Tmax, ◦C) 5.3 ± 0.4 9.2 ± 0.6∗ 4.9 ± 0.4 7.8 ± 0.5∗ 5.1 ± 0.4 8.4 ± 0.5∗

Minimum air temperature (Tmin, ◦C) 0.6 ± 0.3 0.3 ± 0.3 0 ± 0.3 −0.1 ± 0.3 −0.1 ± 0.3 −0.02 ± 0.3

GDD0 (◦C day−1) 152.2 242.4∗ 128.2 206.5∗ 138.3 220.5∗

Frequency of freezing events (Ffreq, %) 27.5 37.3 47.3 49.1 60 41.8

Intensity of freezing events (Fint, ◦C) −2.2 ± 0.4 −1.9 ± 0.3 −1.8 ± 0.3 −1.8 ± 0.3 −1.4 ± 0.4 −1.8 ± 0.3∗

Absolute min temperature (◦C) −5 −5.6 −6.2 −6.2 −6.4 −5.8

Duration of freezing events (Fdur, h) 10.6 ± 2.5 10.1 ± 2 11.7 ± 2.4 10.7 ± 2.2∗ 11.2 ± 2.3 11.4 ± 1.8

Minimum soil temperature (◦C) 3.5 ± 0.3 4.4 ± 0.3∗ 1.6 ± 0.2 2.1 ± 0.2 2.5 ± 0.2 2.4 ± 0.2

Leaf temperature of C. quitensis (◦C) − − 3.4 ± 0.1 3.8 ± 0.1 3.2 ± 0.1 5.1 ± 0.1∗

Leaf temperature of D. antarctica (◦C) − − 3 ± 0.1 4.7 ± 0.2∗ 3.8 ± 0.1 5.7 ± 0.1∗

Values correspond to mean ± SE (n = 1), and they are shown for natural temperature conditions (−W) and warming (+W) at three sites in the study area. Asterisks
indicate significant differences between natural and warm conditions (χ2, P < 0.05).

above a base temperature to represent a cumulative index
of the energy available to growing plants, according to the
formula:

GDD = [[(maximum daily temperature + minimum daily

temperature)/2]] − base temperature

The daily GDDs were summed per each entire growing
season. We used 0◦C as a conservative base growing
temperature (the temperature above which plants can
perform metabolic functions, e.g., photosynthesis, cell
elongation), because plants from cold climate generally
vary in their absolute base growing temperature,
and this value encompasses this variability (Körner,
2011).

Freezing Resistance Determinations
Plant Material Collection
We collected seven plant samples replicates for each species,
experimental condition and site, excepting by the site 3 where
we collected six replicates. Plant samples corresponded to
complete individuals with at least seven modules (small rosettes
or tillers). We collected all plant material between 11:00 AM
and 12:00 PM. Plant samples were placed in plastic boxes with

belowground organs wrapped in wet paper to prevent changes
in tissue water content and mechanical damage. Samples were
then transported to a field laboratory at the Polish Scientific
Station, less than 10 min away from the study sites. We
kept plant samples outdoor but protected from wind until
freezing resistance determinations were performed within 24 h
of collection, which were carried out between February 25th and
March 5th 2015.

Low Temperature Damage
For each species, experimental condition and site, we estimated
the freezing temperature producing 50% damage (LT50). For
this, we selected and detached six rosettes/tillers from different
plant samples, and they were separated into six subsamples.
One subsample was used as control and stored at 2◦C and
darkness during 24 h. Remaining five subsamples were separately
placed in a small plastic bag, which was then placed in a
larger plastic bag with a weight to ensure that each subsample
was submerged in a cryostat (F25-ME, Julabo Labortechnik
GmbH, Germany) with antifreeze solution (Polycool Mix 25,
PolyScience, IL, United States). Cryostat was cooled previously
at five different target temperatures: −8, −12, −16, −20 and
−25◦C. All subsamples were transferred from outdoor to the
cryostat and incubated during 2 h to reach homogeneous leaf
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temperatures. After that freezing treatment, subsamples were
removed from the cryostat and placed back into cold room,
under darkness and at 2◦C during 24 h for thawing. In most
studies dealing with plant freezing resistance, samples are cooled
gradually to determine LT50 (2–5 K h−1; e.g., Hekneby et al.,
2006; Ladinig et al., 2013; Briceño et al., 2014). However,
given that cooling rates used by previous studies dealing with
freezing resistance of Antarctic vascular plants varied from 1
to 17 K h−1 (Bravo et al., 2001; Gianoli et al., 2004; Chew
et al., 2012), it makes impossible to find a consensus cooling
rate for comparative purposes. Although sudden cooling can
lead to increased tissue damage owing to anomalous water
diffusion and ice crystal formation (Guy, 2003; Wisniewski et al.,
2014), our procedure induced similar plant damage as a cooling
rate of 16 K h−1 (see Pescador et al., 2018 for details of
cooling rates assay), enabling to assess cooling directly as proxy
for natural and immediate freezing exposure (Larcher et al.,
2010).

Leaf damage was assessed as percentage of photoinactivation
(PhI) of the photosystem II as described by Larcher (2000).
For this, we measured the ratio of variable to maximum
fluorescence (Fv/Fm) of dark-adapted leaf by using a chlorophyll
fluorometer (MINI-PAM, Walz, Germany). LT50 corresponds to
the temperature at which PhI reaches a 50% value in subsamples,
and was determined by linear interpolation using the temperature
of the highest PhI of <50% and the temperature of the lowest
PhI of >50% (Bannister et al., 2005). PhI was chosen because it
measures changes in photosynthetic performance that correlates
very well with direct measurements of tissue damage (i.e., visual
freezing injuries and vital stain; Boorse et al., 1998; Neuner
and Buchner, 1999) and because is an easy, rapid and cheap
method to work in areas with difficult logistic as it is the
Antarctica.

Thermal Analyses
A small module (rosette or tiller) was removed from each of
six-seven plant samples taken from each species, experimental
condition and sites. Each module was attached to a thermocouple
(Gauge 30 copper-constantan thermocouples; Cole Palmer
Instruments, Vernon Hills, IL, United States), and immediately
enclosed in a small, tightly closed cryotube. The cryotubes
were placed in a cryostat (F25-ME, Julabo Labortechnik GmbH,
Germany), and the temperature was decreased from 0 to
−20◦C, at a cooling rate of 2 K h−1. The temperature
of individual module was monitored every second with
a Personal Daq/56 multi-channel thermocouple USB data
acquisition module (IOtech, Cleveland, OH, United States).
The sudden rise in leaf temperature (exotherm) produced
by the heat released during the extracellular freezing process
was used to determine two variables: the ice nucleation
temperature (NT), which corresponds to the lowest temperature
before the exotherm, indicating the onset of ice crystal
formation, and the freezing point (FP), the highest point
of the exotherm, indicating the freezing of water in the
apoplast, including symplastic water driven outward by the
water potential difference caused by the apoplastic ice formation
(Larcher, 2003). We chose this cooling rate because it is

the same used by previous studies where thermal analyses
were carried out (Bravo et al., 2001; Reyes-Bahamonde,
2013).

Statistical Analyses
Differences in air (i.e., mean, maximum, minimum, intensity,
and duration of freezing events) and leaf temperatures between
warming and control conditions were assessed by Chi square
(χ2) tests. Differences in the effect of warming and site on LT50,
NT and FP were assessed by using Factorial ANOVAs as well
(See details in Supplementary Table S2). Differences between NT
and LT50 in determining freezing resistance mechanisms for each
species and experimental conditions were assessed with t-tests.
Data were checked for normality before analyses.

RESULTS

Microclimatic Conditions
Air, soil and leaf temperatures during both growing seasons
were affected by warming (Table 1). Although minimum air
temperatures (Tmin) and the intensity of freezing events (Fint)
were similar between +W and −W conditions (average Tmin
ranged from −13 to 0.6◦C and average Fint was −1.8◦C in
both growing periods), the frequency (Ffreq) and duration
of freezing events (Fdur) tended to be lower and of shorter
duration inside +W plots (Table 1). The maximum air
temperature (Tmax) was consistently higher inside +W plots.
For example, in 2014 +W increased 4.6 and 2.7◦C the air
Tmax in the sites 1 and 2, respectively. This Tmax increase
was of 3.9, 2.9, and 3.3◦C in the sites 1, 2, and 3 in 2015.
Regarding the growing degree days above 0◦C (GDD0), in
2014 GDD0 were 59.6 and 54.8% greater in +W than in –W
conditions in the sites 1 and 2, respectively (Table 1). In
2015, +W increased GDD0 on average 37% in the three sites
(Table 1).

Freezing Resistance in the Field Under
Warming Scenario
Antarctic plant species exhibited different ranges of freezing
resistance in the field (Supplementary Table S3). Considering
all sites together, average of ice Nucleation Temperature (NT)
and Freezing Point (FP) of C. quitensis were −3.7 ± 0.1◦C and
−2.2 ± 0.1◦C, respectively (Figure 2). Freezing temperature
producing 50% photoinactivation (LT50) ranged from
−12.4 ± 0.1◦C in site 2 to −17.4 ± 0.5◦C in site 1 (Figure 2;
F2,32 = 172.5, P < 0.0001). For D. antarctica, NT ranged
from −3.6 ± 0.3◦C in site 1 to −5.4 ± 0.3◦C in sites 2 and
3 (Figure 3; F2,34 = 24.1, P < 0.0001). Similarly, FP ranged
from −2.5 ± 0.3◦C in site 1 to −4 ± 0.6◦C in site 3 (Figure 3;
F2,32 = 12.2, P < 0.001). In contrast, LT50 decreased (more
negative) from −20.4 ± 0.8◦C in site 3 to −24 ± 0.5◦C in sites 1
and 2 (Figure 3; F2,34 = 22.7, P < 0.0001). It seems noteworthy
that NT were sharply higher than LT50 on C. quitensis and
D. antarctica at any site, suggesting that both species are able
to tolerate ice formation within their leaf tissues. Thus, the
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FIGURE 2 | Freezing resistance of Colobanthus quitensis measured in plants growing in three sites in the King George Island. Freezing parameters measured were:
NT, ice nucleation temperature (◦C); FP, freezing point (◦C); and LT50, freezing temperature producing 50% photoinactivation (◦C). Values correspond to mean ± SE
(n = 6–7). Treatments were: –W, plants under natural temperature conditions; +W, plants under warm temperature conditions. Less negative values indicate higher
freezing resistance. Significant differences between natural and warm conditions are shown as different lowercases (P < 0.05).

mechanism of freezing resistance did not vary with site and
was freezing tolerance for both C. quitensis and D. antarctica
(Supplementary Table S3).

Antarctic plants varied their vulnerability to suffer
freezing damage with warming (Supplementary Table S3).
For C. quitensis, warming (+W) increased (less negative
temperature) on average 2K the LT50 of plants growing in sites
1 and 2 (Figure 2; F1,32 = 34, P < 0.0001). In contrast, +W
decreased on average 1.2K the NT (F1,32 = 6.8, P = 0.014)
and 0.6K the FP (F1,32 = 2.6, P = 0.012) of plants growing
at sites 2 and 3 (Figure 2). For D. antarctica, +W effects on
freezing resistance varied with site (Figure 3). For example,
LT50 increased 2.8K with +W but only on plants from site 2
(F2,34 = 6.7, P = 0.003). In contrast, +W decreased 0.8 and 1.9 K
the NT of plants growing in sites 1 and 3 (F1,34 = 5.4, P = 0.026),
respectively, but no effects on NT were observed in plants at site

2 (Figure 3). Similarly, FP of D. antarctica inside +W occurred
at temperatures 2K more negative than control plants but only
at site 3 (F1,34 = 8.4, P = 0.007). Despite the opposite effects of
warming on NT and LT50 of Antarctic plants, both C. quitensis
and D. antarctica were always classified as freezing tolerant
species (Supplementary Table S3).

DISCUSSION

Sufficient levels of resistance to freezing temperatures during
the summer is key for the survival, growth and reproduction
of C. quitensis and D. antarctica in the Maritime Antarctica
(Cavieres et al., 2016). Paradoxically, the regional warming that
promote the growth and reproduction of these species (Cannone
et al., 2016) could reduce their survival ability making even the
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FIGURE 3 | Freezing resistance of Deschampsia antarctica measured in plants growing in three sites in the King George Island. Freezing parameters measured
were: NT, ice nucleation temperature (◦C); FP, freezing point (◦C); and LT50, freezing temperature producing 50% photoinactivation (◦C). Values correspond to
mean ± SE (n = 6–7). Treatments were: –W, plants under natural temperature conditions; +W, plants under warm temperature conditions. Less negative values
indicate higher freezing resistance. Significant differences between natural and warm conditions are shown as different lowercases (P < 0.05).

best cold adapted plants more susceptible to damage by freezing
temperatures (Woldendorp et al., 2008; Ball et al., 2011). As far as
we are aware, our work is the first study reporting the level and
mechanisms of freezing resistance of Antarctic vascular plants
measured in situ, and we demonstrated that both plant species
exhibited a great ability to cope with freezing temperatures during
the growing season. Nonetheless, increases in the temperatures
experienced by plants during the growing season changed this
functional trait suggesting increases in their vulnerability to suffer
freezing damage under warmer temperature scenarios.

Overall, warmer conditions decreased the freezing resistance
of both Antarctic species. That is, LT50 occurred at higher

(less negative) temperatures in warmed plants of C. quitensis
and D. antarctica (Supplementary Table S3 and Figures 2,
3). The LT50 increased on average 2K for C. quitensis and
2.8K for D. antarctica, despite mean air temperatures increased
only by 1K with OTCs. This suggests that further increases
in ambient temperature, as those projected in future climate
scenarios could lead to greater changes in this plant functional
trait. Whilst LT50 increases in warmer conditions were observed
at all sites for C. quitensis, for D. antarctica it showed site
specific responses (Supplementary Tables S2, S3). These results
highlight two aspects that have to be considered. First, C. quitensis
would be more vulnerable to freezing damage than D. antarctica
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with warmer conditions. Several studies have reported that
the Antarctic vascular plants respond differently to warmer
conditions (Xiong et al., 2000; Cannone et al., 2016). For
example, whereas in D. antarctica no effects of warming on
leaf carbon gain and plant growth has been observed, in C.
quitensis warmer temperatures promoted both plant traits (Sáez
et al., 2018). Our microclimatic data showed that although
freezing temperatures events were frequent and of long duration
during the Antarctic summer, the intensity of those events were
relatively mild (average of−2◦C, with absolute records c.−7◦C).
Previous studies on the climate of the study area have reported
summer freezing events of−5 and−7.8◦C (Cygan, 1981; Araźny
et al., 2013). However, air temperatures suddenly decrease in
autumn, with some records of −13◦C in April (Araźny et al.,
2013). If we considered that snow duration and cover are highly
unpredictable in the area because of topography and especially
of wind speed (Angiel et al., 2010), Antarctic plants could be
frequently exposed to such freezing temperatures during the
summer- autumn transition. In that scenario, D. antarctica has
a temperature safety margin of seldom 10K because warmed
plants exhibited an averaged LT50 of −22.4◦C. However, this
safety margin doesn’t exist for C. quitensis, which exhibited an
averaged LT50 of−13.8◦C. Although, both species have the ability
to cope with summer freezing events in the area, if ambient
temperatures continue to rise, as some authors propose (Lee et al.,
2017), they might have negative consequences for plant survival
of C. quitensis but not for D. antarctica.

Secondly, a site-dependent response of D. antarctica to
warming was observed, where warming increased LT50 only in
plants from site 2. This site is dominated by moss carpets and
presents a permanent water-saturated but well drained substrate,
abundant in organic matter and N content of 18–40 ppm
(Kozeretska et al., 2010; Supplementary Table S1). According
to substrate preferences of this species, moss carpets is where
this species is more abundant and frequent (Casanova-Katny
and Cavieres, 2012; Park et al., 2013), and where individual
plants grow bigger (Casanova-Katny and Cavieres, 2012; Cavieres
et al., 2018). Given that this site presents a greater availability
of resources (i.e., water and nutrients) compared to the other
sites, and where the presence of neighbors (moss carpets) can
ameliorates the harsh climatic conditions (see Casanova-Katny
and Cavieres, 2012; Cavieres et al., 2018), the site-dependent
LT50 response to warming of D. antarctica could be attributed
to the tradeoff between plant growth and stress resistance, where
warmer temperatures are favoring plant allocation to growth. The
absence of better soils (site 3), the presence of sea spray and
animal disturbance (site 1) and the absence of moss carpets (sites
1 and 3) generate that plants on these sites are constantly dealing
with stress, even under warmer conditions.

Contrary to our expectations, NT and FP occurred at lower
(more negative) temperatures in leaves of warmed plants of both
species. FP and NT depend on specific properties of the plant
tissues and may vary according to the cell sap concentration
and/or the accumulation of water-binding substances inside the
cell (Sakai and Larcher, 1987). NT decreases in plant tissues
with small cell sizes, relative low water content, and/or little or
no intercellular space for nucleation (Sakai and Larcher, 1987).

Sáez et al. (2018) reported that in situ warmer temperatures
induced changes in morpho-anatomical leaf traits of C. quitensis
and D. antarctica that might relate with the changes in freezing
resistance reported here, but further studies are needed to unveil
their relation and consequences for the plant freezing resistance.
In addition, several studies have reported that water-soluble
carbohydrates depress FP, and their accumulation is positively
related to abiotic stress survival, which is also the case of these
two Antarctic plant species (Bravo et al., 2001; Pastorczyk et al.,
2014). We expected that lower FP values contributed to increase
the freezing resistance of Antarctic plants, by decreasing their
LT50. However, this was not the case. This could be related with
the fact that +W plants were exposed to warmed temperatures
during days but similar cold temperatures as –W plants during
the nights. This has two implications. First, plants under +W
may be exposed to more frequent freeze/thaw events than plants
under −W. This may cause recurrent xylem embolism and cell
dehydration (Pearce, 2001), which may induce the warmed plants
to keep some freezing avoidance capability such as lower NT
and FP than unwarmed plants. It has been observed that the
degree of frost hardening may be a function of the number of
freezing events (Beck et al., 2004). Second, warmer days imply
better conditions for CO2 assimilation in the +W treatment
(e.g., Sáez et al., 2018) but similar respiration rates during the
night on both +W or −W. Then, there is a higher probability
that carbohydrates synthesized exceeded carbohydrates respired
in +W than in −W treatment with the consequent higher
accumulation of non-structural carbohydrate in +W, which can
act as compatible solutes reducing the FP, but these putative
explanations remain to be elucidated.

Previous studies have measured the freezing resistance of
C. quitensis and/or D. antarctica of plants grown under controlled
conditions in the lab. However, there were discrepancies in the
level (i.e., LT50 values) and mechanism of freezing resistance
(i.e., freezing avoidance or tolerance), as well as in their capacity
for cold acclimation. For instance, Bravo et al. (2001) reported
that C. quitensis avoided freezing by supercooling, that non-
acclimated plants of C. quitensis experienced freezing injury at
−4.8◦C, when ice nucleation was induced by silver iodine, and
its LT50 decreased only 1K after cold acclimation at 4◦C for
21 days under the same measurement condition. In contrast,
LT50 of C. quitensis decreased from −7 to −15◦C with a similar
cold-acclimation period without using ice nucleator according
to Gianoli et al. (2004) and Reyes-Bahamonde (2013), and they
classified C. quitensis as a freezing tolerant species (Table 2). In
the case of D. antarctica, all previous studies classified it as a
meanly freezing tolerant plant (Table 3). According to Bravo et al.
(2001), cold-acclimation decreased LT50 from −12 to −26.6◦C.
However, Chew et al. (2012) found that LT50 of D. antarctica
decreased from −12◦C in non-acclimated to −17◦C in cold-
acclimated plants, whilst Reyes-Bahamonde (2013) found that
this species exhibited a LT50 of −16.5 and −18.4◦C in non- and
cold-acclimated plants, respectively (Table 3).

Considering all sites together our results showed an average
LT50 of −15.3 and −22.8◦C for C. quitensis and D. antarctica,
respectively, and that both species exhibited freezing tolerance as
the mechanism of freezing resistance. In the case of C. quitensis
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TABLE 2 | Previous studies where freezing resistance of Antarctic plants has been reported.

Colobanthus quitensis Deschampsia antarctica Freezing injury method

Reference A NA A NA

Casanova-Katny, 1997 lab − − −26.4 −14.8 Photoinactivation

Field − − −27 − Photoinactivation

Bravo et al., 2001 −5.8 (FA) −4.8 (FA) −26.6 (FA/FT) −12 (FA/FT) Ion leakage

Gianoli et al., 2004 −15 −7 − − Plant survival

Chew et al., 2012 − − −17 −12 Survival and regrowth

Reyes-Bahamonde, 2013 −14.9 (FT) −7 (FT) −18.4 (FT) −16.5 (FT) Photoinactivation

This study −15.3 − −22.8 − Photoinactivation

Values correspond to mean LT50 ± SE, obtained for non-acclimated (NA) and cold acclimated plants (A) after 21 days to 2–5◦C, excepting for Chew et al. (2012), which
corresponded to cold acclimation period of 14 days. Freezing mechanisms are shown between brackets: Freezing Avoidance (FA) and Tolerance (FT).

our LT50 are similar to those previously reported for cold-
acclimated plants, which is reasonable considering temperature
conditions recorded in the field when the determinations were
carried out. For D. antarctica, however, LT50 were relatively
different from previous reports. Likely explanations for the
discrepancies in the level and mechanism of freezing resistance
of Antarctic vascular plants found here with those previously
reported arise from methodological differences among studies.
For example the method used to assess freezing injury can lead
to important differences. Bravo et al. (2001) estimated LT50
of C. quitensis and D. antarctica from electrolyte leakage by
freezing-induced cell lysis, whereas Reyes-Bahamonde (2013)
LT50 estimations were based on photoinactivation. On the
contrary, Gianoli et al. (2004) calculated LT50 of C. quitensis with
plant survival percentage, and Chew et al. (2012) LT50 estimations
of D. antarctica were based on tiller survival from re-growth. It
has been reported that photoinactivation method agrees very well
with the results obtained by methods that directly measure plant
tissue damage (i.e., survival, visual assessment of freezing injuries
and vital staining; Boorse et al., 1998; Neuner and Buchner,
1999). Our estimations coincided with similar LT50 reported for
C. quitensis with those methods (see Table 2 for references).
The electrolyte leakage method can lead to confusing results,
because on one hand, it can overestimate leaf damage given
that cellular solutes other than electrolytes may be induced by
freezing, and on the other hand, coriaceous leaves do not release
electrolytes readily, which can lead to spurious estimates of LT50
using this method (Boorse et al., 1998; Bannister, 2007). However,
Antarctic vascular plants exhibited similar LT50 regardless they
were calculated by ion leakage or photoinactivation methods as
it is shown in the Table 3. In the case of D. antarctica, our
LT50 values were intermediate compared to previous studies.
Nevertheless, this result have to be taken with caution as some
replicates did not reach the 50 percent damage (i.e., six replicates
in the site 1). Thus, average LT50 in the field could be even
more negative than we reported. This point is consistent with
Casanova-Katny (1997) who found that the LT50 of D. antarctica
was below−27◦C in the field.

As mentioned, the ambient temperatures experienced by
plants affect their ability to resist freezing temperatures
(Beck et al., 2004). Thus, a second methodological aspect

that differed among studies and that could underlie the
discrepancies in the freezing resistance of Antarctic species is
the residence time and temperature used on growth chambers.
For example, Bravo et al. (2001) and Gianoli et al. (2004)
collected adult plants from Antarctica that were vegetative
propagated at 15◦C for a couple of years before the freezing
determinations. Chew et al. (2012) obtained adult plants from
seeds collected in the field, while Reyes-Bahamonde (2013)
used plants grown at constant 11◦C during 2 months after
their collection in the field. However, although Bravo et al.
(2001) and Gianoli et al. (2004) used similar plants residence
time and growth temperature for determinations, they found
different LT50 for C. quitensis. A similar situation occurred
for D. antarctica (Table 2). Probably, multiple factors could
influence the level of freezing resistance. Such discrepancies
reinforce the importance of in situ determinations as we did
here.

Finally, our results clearly showed that warmer temperatures
affect the freezing resistance of Antarctic vascular plants.
These results are in line with previous studies conducted
in alpine and arctic plant where similar plant responses
to warming (decreases in freezing resistance with warming)
were reported (e.g., Loveys et al., 2006; Marchand et al.,
2006; Woldendorp et al., 2008; Sierra-Almeida and Cavieres,
2010; Rixen et al., 2012). The ability to withstand freezing

TABLE 3 | A comparison of two criteria for LT50 determinations in Colobanthus
quitensis and Deschampsia antarctica.

Species Origin LT50 PhI LT50 IonL Z p

Colobanthus
quitensis

Arctowski −7.1 ± 0.5 −6.6 ± 0.4 0.94 0.345
Punta
Arenas

−6.3 ± 0.4 −6.9 ± 0.5 1.48 0.138

La Parva −6.7 ± 0.3 −7.3 ± 0.6 2.02 0.053

Deschampsia
antarctica

Actowski −19.9 ± 1.5 −20.1 ± 1.9 0.41 0.686

Plants were collected from different localities, cultivated in growth chambers, and
measured in laboratory conditions at the University of Concepción. LT50 values
(mean ± SE, n = 5) were obtained by using two methods: PhotoInactivation (PhI)
and Ion Leakage (IonL). Statistical differences were assessed by using Wilcoxon
matched paired tests. Followed criteria are described by Flint et al. (1967) and
Bannister (2005) respectively.
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temperatures is a key feature of species inhabiting cold climates,
hence if new warming phases occur in the Antarctic Peninsula
due to climate change, the survival of C. quitensis could be
threatened. Whilst D. antarctica seems to be unaffected by
warming on this trait, other aspects of its biology could be
altered by warming (e.g., increases in respiration). Nevertheless,
more research is needed to unveil the likely consequences of
global warming on plants from cold biomes where in situ
determinations of plant freezing resistance are crucial to
understand the physiological mechanisms underlying plant
adaptations to current and future climatic scenario for the
Antarctic in particular.
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