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Growth and architectural traits in trees are economically and environmentally important
and thus of considerable importance to the improvement of forest and fruit trees. These
traits are complex and result from the operation of a number of molecular mechanisms.
This review will focus on the regulation of crown architecture, secondary woody
growth and adventitious rooting. These traits and processes have significant impact on
deployment, management, and productivity of tree crops. The majority of the described
work comes from experiments in model plants, poplar, apple, peach, and plum because
these species allow functional analysis of the involved genes and have significant
genomics resources. However, these studies convincingly show conserved mechanisms
for elaboration of specific growth and architectural traits. The conservation of these
mechanisms suggest that they can be used as a blueprint for the improvement of these
traits and processes in phylogenetically diverse tree crops. We will specifically consider
the involvement of flowering time, transcription factors and hormone-associated genes.
The review will also discuss the impact of recent technological advances as well as the
challenges to the dissection of these traits in trees.

Keywords: hormones, transcription factors, woody biomass growth, molecular mechanisms, crown architecture,
adventitious rooting, tree biotechnology

INTRODUCTION

Intensive forest plantation can alleviate the harvesting pressure on native forests via allowing
production of the same or larger amount of wood on a much smaller land base (Paquette and
Messier, 2010). Improved genetics through breeding is one, if not the leading factor in this increased
productivity (Fenning and Gershenzon, 2002; Ruotsalainen, 2014). However, tree breeding is
slow due to long generation times, traits that need a long time to evaluate and complex genetic
architecture of these traits (Fenning and Gershenzon, 2002). Understanding the involved genetic
mechanism could significantly accelerate the process through both conventional breeding and
genetic engineering.

Here we review the current knowledge about the molecular mechanisms that underpin three
developmental processes in trees with significant impact on intensive plantation deployment,
management and growth. The review will focus on mechanisms and genes that can provide positive
effects and thus are of breeding value rather than exhaustively discuss progress in the dissection of
each process. Where available, the reader will be pointed to reviews that deal with these processes
in a more comprehensive manner.
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MANIPULATION OF CROWN
ARCHITECTURE

Crown architecture is a compound trait resulting from the
position, size, periodicity, angle and density of the branches.
Crown characteristics affect plantation density, interception of
photosynthetic light and quality of the derived wood. Depending
on the plantation purpose, the direction and extent to which these
characteristics need to be changed can vary. Branches originate in
axillary meristems (AMs) and thus establishment and outgrowth
of AMs has a profound effect on branch characteristics and
crown architecture. AM initiation is exclusively characterized in
herbaceous plants and there is no information about the effect
of these genes in trees. We therefore will not cover here these
developments. Excellent reviews on AM initiation discuss in
detail these genes and mechanisms (Janssen et al., 2014; Yang and
Jiao, 2016).

Branch Outgrowth
Once established, the AM outgrowth is typically suppressed, a
phenomenon known as apical dominance. Auxin is central to the
establishment and maintenance of apical dominance (Figure 1).
The regulatory roles of auxin in apical dominance are indirect
and are explained by the canalization and secondary messengers’
models (Domagalska and Leyser, 2011; Teichmann and Muhr,
2015). However, only the latter provides genes and mechanisms
manipulated in trees and is thus covered here. According to this
model, auxin synthesized in the shoot apex, moves basipetally to
the roots to generate a secondary signal that travels acropetally
to regulate bud outgrowth. Cytokinin was the first candidate for
a second messenger because it has a strong positive effect on
axillary bud outgrowth when exogenously applied (Figure 1).
However, cytokinin acropetal transport was not able to activate
bud outgrowth (Faiss et al., 1997). This led to the discovery of the
shoot branching hormone strigolactones (SLs). SLs have strong
negative effects on bud outgrowth (Figure 1), are synthesized in
roots, acropetally transported to shoots and biosynthetic genes
are positively regulated by auxin. SLs metabolic and signaling
genes are strong regulators of bud outgrowth in a number of
plant species including several trees (Domagalska and Leyser,
2011; Muhr et al., 2016; Foster et al., 2018). RNAi knockdown
of poplar and apple orthologs of SLs biosynthetic genes resulted
in increased sylleptic branching (branches developed from lateral
buds that have not undergone dormancy) (Muhr et al., 2016;
Foster et al., 2018).

Branch Angle
Significant progress has been made in trees in elucidating the
mechanism underpinning branch angle characteristics. Using an
innovative sequencing approach and a distinct peach mutant with
acute branch angle, the causative gene was isolated to be TILLER
ANGLE CONTROL1 (TAC1) (Dardick et al., 2013). TAC1 was
originally found to control tiller angle in rice (Yu et al., 2007).
TAC1 belongs to a small family of genes. All the genes in the
family, characterized to date in several plant species, including
trees (poplar and plum) control branch or lateral root angles

(Figure 1; Xu et al., 2017; Hollender et al., 2018). Depending
on presence of a conserved domain, members of the family can
increase (TAC1) or decrease (LAZY1) branch angles (Figure 1;
Dardick et al., 2013; Hollender and Dardick, 2015; Xu et al.,
2017).

Roles of Gibberellins
Gibberellins control stem elongation, but can also regulate
crown characteristics (Figure 1). Gibberellin 2-oxidase (GA2ox)
overexpression leads to low levels of bioactive GAs, and
proliferation of long sylleptic branches at a wide, almost
perpendicular angle to the main stem (Mauriat et al., 2011;
Zawaski et al., 2011). After 2 years in the field, GA2ox
overexpressors produced a wide oval crown (Zawaski et al., 2011).
A similar effect was also observed in turf grass and rice (Agharkar
et al., 2007; Lo et al., 2008). These effects are possibly mediated
via the GAs regulation of PIN auxin efflux carrier abundance
(Willige et al., 2011; Lofke et al., 2013; Mauriat et al., 2014).
In contrast, modifications of GA signaling via DELLA domain
proteins produces a highly compact crown consisting of short
branches with narrow acute angle (Zawaski et al., 2011). The
effect of DELLA domain proteins on branching may be due their
interactions with the transcription factor BRANCHED1 (Daviere
et al., 2014).

Flowering and Crown Architecture
The determinacy of the meristem is genetically programmed,
heritable and significantly affects plant architecture, including
crown characteristics in trees (McGarry and Ayre, 2012).
Indeterminate meristems typically produce monopodial growth
characterized by a pronounced primary stem. In contrast,
plants with determinate meristems show sympodial growth, a
process of repeated loss of the shoot apical meristem (SAM)
through terminal differentiation and lateral outgrowth from the
axillary meristem resulting in a compound shoot architecture.
Monopodial and sympodial growth types result from differences
in the expression of genes and localization of proteins from the
CENTRORDIALIS/TERMINAL FLOWER/SELF PRUNING
(CETS) family that control flowering (McGarry and Ayre,
2012). CETS genes form a small gene family in Arabidopsis and
other plant species. Very small (few amino acid) changes in the
sequence of the proteins can reverse their function (Hanzawa
et al., 2005). For example, FT promotes, while a close family
member, TFL1 inhibits flowering (Hanano and Goto, 2011). FT
is a mobile signal originating in the leaf that moves through
the phloem stream to reach the shoot or axillary meristems and
initiates terminal flower development (Pin and Nilsson, 2012).
TFL1 plays an antagonistic role to FT in the SAM (Kobayashi
et al., 1999). Low and high FT/TFL1 ratio in the SAM results in
indeterminate and determinate growth respectively, (McGarry
and Ayre, 2012; Figure 1). This model has been confirmed
through transgenic overexpression of FT orthologs in several
tree species (Hsu et al., 2006, 2011; Srinivasan et al., 2012;
Klocko et al., 2016). FT overexpression leads to early flowering
and highly branched, sympodial growth. Increase in FT/TFL1
balance via downregulation of TFL1/CEN genes in apple leads
to similar effects as with FT overexpression (Kotoda et al., 2006;
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FIGURE 1 | Regulation of crown architecture in trees. Diagram in the middle shows a WT tree with the different regulators and their putative roles indicated. The tree
drawings to the left and right shows the effect of the different regulators on the crown architecture. Arrows show positive while blunted line negative effect. Vertical up
red arrow indicates upregulation, while blue down arrow downregulation of the gene.

Flachowsky et al., 2012). RNAi downregulation of two
TFL1/CEN-like homologs in poplar (PopCEN1 and PoCEN2)
produced similar but more moderate flowering and architectural
phenotypes (Mohamed et al., 2010). Interacting factors and
regulators of FT and TFL1/CEN, can also produce changes
in tree architecture. Overexpression of CsRAV1, a chestnut
ortholog of TEMPRANILLO, a regulator of FT (Castillejo and
Pelaz, 2008), led to upregulation of a poplar ortholog of FT
(PttFT2) expression (Triozzi et al., 2018) and consequently to
increased branching both under greenhouse and field conditions
(Moreno-Cortes et al., 2012, 2017). Under field conditions,
increased branching led to increased biomass (Moreno-Cortes
et al., 2017). Similarly, overexpression of a poplar ortholog of
GIGANTEA, a positive regulator of FT, upregulated PttFT2 and
increased sylleptic branching in poplar (Ding et al., 2018). FT
interacts with FD to promote flowering and overexpression of
poplar FD homolog led to precocious flowering and sympodial,
highly branched growth (Parmentier-Line and Coleman, 2015).

INCREASE OF SECONDARY WOODY
GROWTH

Secondary growth originates in a lateral meristem known
as vascular cambium, which in trees shows exaggerated and
perennial activity, compared to herbaceous plants, resulting in
production of massive amounts of conductive and supportive
tissues, referred to as wood (Helariutta and Bhalerao, 2003;
Elo et al., 2009; Barra-Jimenez and Ragni, 2017). Bifacial
periclinal division of the cambium cells, followed by growth

and differentiation results in production of phloem/bark to
the outside and xylem/wood to the inside of the tree trunk
(Helariutta and Bhalerao, 2003; Zhang et al., 2014). Excellent
reviews comprehensively discuss the process (Groover, 2005;
Demura and Fukuda, 2007; Groover et al., 2010; Spicer and
Groover, 2010; Mizrachi and Myburg, 2016). Here we focus on
genes and mechanisms that have positive effects on secondary
woody growth and thus are of potential breeding/improvement
value (Figure 2A). The only exception would be the genes
that affect bark development, Bark is typically considered as
waist byproduct and thus decrease of bark production would
be favored. However, notable exceptions where bark increase
would be the goal would be special plantation for production
of cork as well as breeding for resistance to pests, fires and
drought.

Gibberellins
The first demonstration of increased secondary growth was via
transgenic modifications of gibberellin biosynthesis (Eriksson
et al., 2000). Overexpression of the Arabidopsis GA-20 oxidase
(GA20ox), a key biosynthetic enzyme, resulted in significant
(2-fold) increase in wood production (Figure 2). Similarly,
overexpression of pine PdGA20ox1 in poplar resulted in nearly
3-fold increase in woody biomass (Jeon et al., 2016; Figure 2A).
In addition, overexpression of the poplar orthologs of the GA
receptor PttGIBBERELLIN-INSENSITIVE DWARF1 (PttGID1)
resulted in similar wood biomass enhancement (Mauriat and
Moritz, 2009; Figure 2A). Increase in bioactive gibberellins also
increased fiber length and cellulose/xylan content (Eriksson et al.,
2000; Jeon et al., 2016). Increase in GA signaling, however, did
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FIGURE 2 | Genes increasing secondary woody growth (A) and adventitious rooting (B) in trees. (A) Picture on the bottom shows a cross section from a from a
3-year-old poplar tree, approximately 10 cm in diameter, showing an extensive wood production in the middle and bark at the periphery. The diagram on the top
shows the cambium zone with the developing xylem and phloem. Green highlighted area indicates developing xylem and phloem. Blue highlight indicates cambium
zone. The black lines show the approximate presumed location where the positive regulators of secondary growth play critical roles. (B) Picture to the left is a
transgenic plant overexpressing BL (see text for detail) and to the right WT-717. See Yordanov et al., 2017 and the text for further details. The dotted line shows the
presence of additional unknown regulators, indicated by a question mark.

not result in changes in fiber length. The increased GA synthesis
and signaling in the transgenics poplars, had negative effect
on root development, decreased expression of defense-related
genes and resulted in poor leaf development (Eriksson et al.,
2000; Mauriat et al., 2014; Jeon et al., 2016). These negative
pleiotropic effects resulting from the constitutive overexpression
were mitigated by using a xylem-specific promoter (Jeon
et al., 2016). The xylem specific expression resulted in similar
increases of wood biomass (Jeon et al., 2016). However, tissue-
specific upregulation of PttGID1 using a different xylem-
specific promoter did not result in any increases in woody
biomass (Mauriat and Moritz, 2009), suggesting that different
promoter::gene combination can have specific effects. Cisgenic
modifications of several poplar GA 20-oxidase genes led to
no pleiotropic effects and increased wood biomass and fiber
length but the gains were more modest than these obtained
with the constitutive and xylem-specific promoters (Han et al.,
2011).

Cytokinins
The regulatory role(s) of cytokinins during secondary woody
growth has been known (Nieminen et al., 2008). However, it
was only recently demonstrated that modification of cytokinin
biosynthesis can have a positive effect on secondary woody
growth (Immanen et al., 2016). Transgenic poplars transformed
with the Arabidopsis AtIPT7 (key cytokinin biosynthetic gene)

driven by a xylem-specific promoter, showed significant (nearly
2-fold) increases in secondary growth and no negative pleiotropic
effects (Immanen et al., 2016) (Figure 2A).

Brassinosteroids
Recent evidence suggests that both brassinosteroid (BR)
biosynthesis and signaling has a positive effect on woody
biomass production (Noh et al., 2015; Jin et al., 2017; Shen
et al., 2018; Figure 2). Overexpression of key biosynthetic genes
(PtoDWF4 and CYP85A3) led to increased brassinosteroid
concentrations and woody biomass (Jin et al., 2017; Shen et al.,
2018). The productivity gains however, were much smaller than,
these observed with the manipulations of GA and cytokinin
biosynthesis/signaling. The increase in brassinosteroids led
to longer fibers and no or little impact on cell wall chemistry
(Jin et al., 2017; Shen et al., 2018). Similar results were
obtained with manipulation of brassinosteroid signaling.
Overexpression of a poplar ortholog of BEE3 (Brassinosteroid
Enhanced Expression 3), a transcription factor involved in
BR signaling increased stem, leaf and root biomass. As with
the enhancement of BR biosynthesis, gains in wood biomass
were less than these observed with GA and cytokinin and
ranged between 25 and 50%. The modifications of both BRs
biosynthesis and signaling did not cause any negative pleiotropic
effects, despite the strong constitutive promoters used in both
studies.
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Small Protein Signaling in the Cambium
Cambial cell division in Arabidopsis is controlled by a protein
ligand receptor complex (Fisher and Turner, 2007; Hirakawa
et al., 2008; Etchells and Turner, 2010). The ligand is the
small CLE41 protein, produced in the phloem and transported
into the cambium, where it interacts with the PXY receptor
to stimulate cambium cell division (Fisher and Turner, 2007;
Hirakawa et al., 2008; Etchells and Turner, 2010). Recently,
constitutive expression of aspen orthologs of the ligand and
receptor in transgenic poplar trees resulted in highly pleiotropic
and negative effects on growth and tissue organization (Etchells
et al., 2015). However, when the ligand and receptor were
simultaneously upregulated in their native tissue domains
employing tissue specific promoters, not only that the negative
effects were completely mitigated, but also the double transgenic
plants showed a nearly double increases in wood production
(Figure 2A).

Secondary Phloem and Bark
Development
Secondary growth also yields secondary phloem and bark.
Using activation tagging in poplar, the first gene that regulates
secondary phloem development was discovered (Yordanov
et al., 2010). The gene encodes a transcription factor of
the LATERAL ORGAN BOUNDARIES (LBD) gene family
that is a positive regulator of secondary phloem development
(Yordanov et al., 2010; Yordanov and Busov, 2011). Transgenic
plants overexpressing the gene produced more, while dominant
negative modification of the protein produced less secondary
phloem (Figure 2A).

GENES PROMOTING ADVENTITIOUS
ROOTING

Adventitious rooting (AR) is root formation from organs and
tissues that typically do not produce roots. The process is most
important in forestry and horticulture for clonal propagation
and deployment of elite germplasm. The cellular and molecular
events underlying AR has been reviewed elsewhere (Diaz-Sala,
2014; Legue et al., 2014; Pacurar et al., 2014). Here we focus on
several genes that have been functionally characterized in trees
and provide strong positive effects on AR formation.

Controls of Cell Proliferation Provide
Points for AR Manipulation
AINTEGUMENTA (ANT) and ANT-like (AIL) genes are a
group of eight AP2 transcription factors in Arabidopsis with
important functions in regulation of meristem establishment
and maintenance as well as organ growth and size (Horstman
et al., 2014). One of the members of the AIL family from poplar
(AIL1), showed induction during AR primordia activation (Rigal
et al., 2012) and overexpression of the gene caused increase
(Figure 2B), while RNAi downregulation decrease in the number
of ARs. AIL1 transcriptionally regulates Cyclin D3.1 by binding

to its promoter (Karlberg et al., 2011). Thus, AIL1 promotes AR
at least in part via activation of cell proliferation.

The BIG LEAF/STERILE APETALA (BL/SAP) gene from
poplar has a positive effect on AR formation when ectopically
expressed (Yordanov et al., 2017; Figure 2B). BL is an F box
protein that regulates leaf size in poplar and Arabidopsis through
control of cell proliferation (Wang et al., 2016; Li et al., 2018).
BL/SAP targets proteins for degradation that negatively regulate
AIL genes (PLETHORA 1 and 2) (Horstman et al., 2014; Wang
et al., 2016; Li et al., 2018). Thus, BL likely regulates AR formation
through promoting degradation of a repressor(s)of the AIL-like
genes (Figure 2B), which has a positive effect on cell proliferation
and meristem organization.

Both AIL1 and BL, when overexpressed have significant
pleiotropic effects (Rigal et al., 2012; Yordanov et al., 2017) and
to serve as biotechnological tool for increased AR formation, will
require inducible or tissue-specific upregulation.

Gibberellins
GAs inhibit AR likely thought interfering with polar auxin
transport (Mauriat et al., 2014). Increase and decrease in GA
biosynthesis and signaling leads to decreased and increased AR
(Busov et al., 2006; Gou et al., 2010; Elias et al., 2012). As
mentioned earlier, GAs have strong positive effects on secondary
woody growth and thus the decrease of AR may present an
impediment for the clonal propagation of transgenics with
increased GAs biosynthesis. Alternatively, decrease in bioactive
GAs and block of signaling, which promotes AR formation, leads
to various levels of dwarfism. Dwarfism is a desirable trait in
fruit and ornamental tree crops and the increased AR formation
would provide an additional benefit for the propagation of these
genotypes. In forestry, however, extreme dwarfism may lead to
loss in biomass productivity and thus, this effect can be either
mitigated via increased girth growth using gene stacking with
other transgenes that promote radial expansion (see above) or
selection of semi-dwarfism genotypes (Elias et al., 2012).

Activation Tagging Discovery of
AR-Involved Genes
Using activation tagging (AT), the poplar gene ETHYLENE
RESPONSE FACTOR 3 (ERF003) was shown to have positive
effect on AR formation (Trupiano et al., 2013). In addition to
ERF003, several other AT mutants affected in AR and associated
with ethylene signaling and biosynthesis were also discovered
(Trupiano et al., 2013). These genes however, have not been
recapitulated through re-transformation experiments and thus
their involvement and utility in manipulation of AR formation
is still tentative.

FUTURE OUTLOOK

Improvements in Transformation
Technologies
Transformation is the golden standard for asserting gene
function and preferred method of choice in delivering advanced
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editing tools like CRIPSR/Cas9 system (Busov et al., 2005;
Altpeter et al., 2016; Ran et al., 2017). However, transformation
technologies are slow, inefficient, require cumbersome tissue
culture processes and remain largely genotype-specific (Busov
et al., 2005; Altpeter et al., 2016; Baltes et al., 2017), even
in genera considered as ‘easy-to-transform’ like poplars. Thus,
major strides in understanding and improving transformation
technologies are needed (Altpeter et al., 2016).

Understanding Promoter Architecture
The need for research in isolation and engineering artificial
promoters for precise targeting of transgenic manipulations has
been known and well-recognized. However, research in this
area has been lagging behind. The advances in gene editing
and synthetic technologies would further necessitate better
understanding promoter architecture in order to being able to
effectively modify and design level and specificity of promoter
activities.

Application of CRISPR Technology
New technological advances in gene editing technologies
like CRISPR/Cas9 promise to revolutionize tree improvement
(Tsai and Xue, 2015). The CRISPR/Cas9 was successfully
implemented in a poplar tree (Fan et al., 2015; Zhou et al.,
2015). CRISPR/Cas9 compared to RNAi produced stronger and
more uniform phenotypic effects when the same gene was
targeted (Zhou et al., 2015). Although now, the majority of
the CRISPR/Cas9 applications involve generation of knock-
outs via non-homologous end joining, a significant progress
is also made in the application of CRISPR/Cas9 for gene
editing through homologous recombination (Schaeffer and
Nakata, 2015). However, the latter is still in developmental
stages for plants. CRIPSR/Cas9 can also alleviate the regulatory
burdens associated with field-testing because, in some countries
CRISPR/Cas9-modified genotypes are considered as a non-GMO
type of modification.

Using Induced and Natural Mutants
Application of natural or induced mutants in tree research has
been rare. However, significant strides have been made in both
approaches (Busov et al., 2010; Dardick et al., 2013). As described
above, using activation tagging in poplar, genes important for
secondary growth (Yordanov et al., 2010, 2014, 2017) and AR
formation (Trupiano et al., 2013) were discovered. In addition
to induced mutants, many natural tree mutants exist. The new
sequencing technologies allow efficient mapping of the causative
mutations, (Dardick et al., 2013). These approaches can be further
used for identifying genes affecting various aspects of tree growth
and development.

Understanding Integrative System
Controls
A significant progress has been made in identification of
individual genes and pathways regulating different traits.
However, it has been long known at an organismal level that the
various processes are highly coordinated at tissue and organismal
level but also in response to various environmental cues.
Identification of the coordinating genes, signals and mechanisms
can lead to more integrative manipulation of one or several traits.
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